Downregulation of Endothelial MicroRNA-200b Supports Cutaneous Wound Angiogenesis By Desilencing GATA Binding Protein 2 and Vascular Endothelial Growth Factor Receptor 2

Yuk Cheung Chan, Sashwati Roy, Savita Khanna, Chandan K. Sen

Objective—MicroRNAs (miRs) regulate angiogenesis by posttranscriptional silencing of target genes. The significance of angiostatic miR-200b in switching on skin wound angiogenesis was tested.

Methods and Results—Wounding caused imminent and transient downregulation of miR-200b in dermal wound-edge endothelial cells. Derailing this injury response by lentiviral delivery of miR-200b in vivo impaired wound angiogenesis. Computational prediction, target reporter luciferase assay, and Western blot analysis provided first evidence that miR-200b targets globin transcription factor binding protein 2 (GATA2) and vascular endothelial growth factor receptor 2 (VEGFR2). Overexpression of GATA2 or VEGFR2 in endothelial cells rescued the angiostatic effect of miR-200b in vitro. Downregulation of miR-200b derepressed GATA2 and VEGFR2 expression to switch on wound angiogenesis, which was disrupted in diabetic wounds. Treatment of endothelial cells with tumor necrosis factor-α, a proinflammatory cytokine abundant in diabetic wounds, induced miR-200b expression, silenced GATA2 and VEGFR2, and suppressed angiogenesis. These outcomes were attenuated using anti-miR-200b strategy. Neutralization of tumor necrosis factor-α in the diabetic wounds improved wound angiogenesis and closure, which was accompanied by downregulation of miR-200b expression and desilencing of GATA2 and VEGFR2.

Conclusion—Injury-induced repression of miR-200b turned on wound angiogenesis. In mice with diabetes mellitus, excessive tumor necrosis factor-α induced miR-200b blunting proangiogenic functions of GATA2 and VEGFR2. (Arterioscler Thromb Vasc Biol. 2012;32:1372-1382.)

Key Words: angiogenesis ■ GATA binding protein 2 ■ microRNAs ■ vascular endothelial growth factor receptor 2 ■ wound healing

Chronic nonhealing cutaneous wounds lead to loss of limbs and represent a major public health threat affecting over 6.5 million Americans annually. Patients with peripheral vasculopathies such as those associated with diabetes mellitus are more susceptible to develop chronic nonhealing wounds, indicating that reestablishment of blood flow, mainly driven by angiogenesis, is essential in the wound healing process. Understanding the molecular mechanisms regulating wound angiogenesis would help develop therapeutic strategies to prevent amputation.

MicroRNAs (miRs), small noncoding RNAs inducing posttranscriptional gene regulation, are emerging as master switches that control the angiogenic response of endothelial cells. Through sequence-specific interaction with transcript, miRs negatively modulate gene expression via inhibition of protein translation or transcript degradation. Our group and others have reported that angiogenesis is tightly regulated by these small noncoding RNAs. Several miRs have been identified to control angiogenesis under physiological and diseased conditions. miR-200b is an miR-200 family member which is clustered with miR-200a and miR-429 in chromosome 1p36. This miR is expressed in a wide variety of cells including ovarian cancer cells, mammary stem cells, renal mesangial cells, and endothelial cells, regulating multiple cellular functions such as proliferation, motility, apoptosis, and stemness. Our laboratory has recently reported that hypoxia inhibits the expression of miR-200b in human dermal microvascular endothelial cells (HDMECs), promoting angiogenesis. Endothelial miR-200b targets a cluster of proteins that intercept vascular endothelial growth factor (VEGF) signaling. Thus, miR-200b serves as a potent rheostat to restrain angiogenesis. In this work, we sought to elucidate the significance of miR-200b in the regulation of cutaneous wound angiogenesis. This work recognizes that wound itself represents a signal that transiently represses gene silencers (miR) to unleash tissue development in an adult setting.
in miR-200b expression of the nonendothelial compartment of wound-edge tissue (Figure II in the online-only Data Supplement). To test the significance of transiently downregulated endothelial miR-200b in wound angiogenesis, miR-200b overexpressing lentivirus was delivered intradermally into skin 3 days before wounding. Real-time polymerase chain reaction from laser capture microdissected dermal tissue element indicated that miR-200b was significantly upregulated after delivery of the miR-200b overexpressing lentivirus, compared with that of the control lentivirus–delivered dermal fraction (Figure III in the online-only Data Supplement). Overexpression of miR-200b significantly impaired wound angiogenesis, as evident by compromised wound blood flow measured by laser Doppler (Figure 1D). This observation was in agreement with lower CD-31 positive cells at the wound edge after miR-200b overexpression (Figure 1E). Consistent with these findings, miR-200b overexpression significantly impeded wound closure (Figure 1C and Figure IV in the online-only Data Supplement), suggesting that wound-induced downregulation of endothelial miR-200b serves as a turn-on signal for cutaneous wound angiogenesis supporting closure.

Methods

Secondary-Intention Excisional Mouse Dermal Wound Models

Male C57BL/6 mice were obtained from Harlan Laboratory. Mice homozygous (BKS.Cg-m +/+ Lepob5db) or their respective nondiabetic lean control littermates m+/db (aged 10–12 weeks) were obtained from Jackson Laboratory. For wound-edge collection study, two 8×16 mm full-thickness excisional wounds were placed on the dorsal skin, equidistant from the midline and adjacent to the 4 limbs. For lentivirus delivery and soluble tumor necrosis factor (TNF) receptor 1 (sTNFR1) treatment study, 2 or four 6-mm diameter full-thickness excisional wounds were developed on the dorsal skin of mice with a 6-mm disposable biopsy punch. All animal studies were performed in accordance with protocols approved by the Laboratory Animal Care and Use Committee of The Ohio State University. During the wounding procedure, mice were anesthetized by low-dose isoflurane inhalation for 5 to 10 minutes per standard recommendation. Each wound was digitally photographed at the time point indicated. Wound size was calculated by the software ImageJ. The animals were euthanized at the indicated postwounding time point, and wound-edge tissues (1 mm away from the wound, snap frozen) or the wound tissues (in optimal cutting temperature compound) were harvested.

In Vivo Dermal Delivery of Lentivirus or sTNFR1

In vivo dermal delivery of lentivirus was achieved by intradermal injection of miR overexpressing lentivirus. Briefly, miR-200b or control miR overexpression lentivirus (Applied Biological Materials) at titer 2×10^7 cfu/mL (50 μL per wound) was intradermally injected into the skin 1 mm away from the wound edge 3 days before the induction of 6-mm diameter full-thickness cutaneous wound on C57BL/6 mice under anesthesia as described above. sTNFR1 treatment was based on a previous study with slight modification. Briefly, a 6-mm diameter wound was created as described above. On days 2 and 5 postwounding, sTNFR1 (Sigma) at dose 5 μg/wounds (total volume 50 μL) or vehicle was intradermally injected into the wounds in m+/db nondiabetic mice and db/db diabetic mice.

Cell culture, transfection, lentiviral overexpression, miR target reporter luciferase assay, RNA extraction, real-time polymerase chain reaction, immunohistochemistry, immunocytochemistry, Matrigel tube formation assay, laser capture microdissection, laser Doppler, and statistical analyses are described in detail in the online-only Data Supplement.

Results

Downregulation of Endothelial miR-200b Supports Wound Angiogenesis

To validate whether miR-200b is implicated in the skin wound healing process, 8×16 mm full-thickness cutaneous wounds were induced on the dorsal skin of C57Bl6 mice, and wound edges (1-mm skin wound margin) on days 3, 7, and 14 postwounding were collected to study the expression of miR-200b. miR-200b was transiently downregulated on day 3 postwounding (Figure 1A). Previously, our group and others reported that miR-200b exerts antiangiogenic effects in endothelial cells. Thus, we sought to investigate the response of endothelial miR-200b in the wound-edge tissue. Real-time polymerase chain reaction performed on laser microdissected wound-edge endothelial cells recognized that wound-dependent transient lowering of miR-200b was prominent in the endothelial cells (Figure 1B). The expression pattern of miR-200a, an miR that is encoded in the same cluster as for miR-200b, was comparable to that of miR-200b (Figure I in the online-only Data Supplement). Wounding did not cause significant changes in miR-200b expression of the nonendothelial compartment of wound-edge tissue (Figure II in the online-only Data Supplement). To test the significance of transiently downregulated endothelial miR-200b in wound angiogenesis, miR-200b overexpressing lentivirus was delivered intradermally into skin 3 days before wounding. Real-time polymerase chain reaction from laser capture microdissected dermal tissue element indicated that miR-200b was significantly upregulated after delivery of the miR-200b overexpressing lentivirus, compared with that of the control lentivirus–delivered dermal fraction (Figure III in the online-only Data Supplement). Overexpression of miR-200b significantly impaired wound angiogenesis, as evident by compromised wound blood flow measured by laser Doppler (Figure 1D). This observation was in agreement with lower CD-31 positive cells at the wound edge after miR-200b overexpression (Figure 1E). Consistent with these findings, miR-200b overexpression significantly impeded wound closure (Figure 1C and Figure IV in the online-only Data Supplement), suggesting that wound-induced downregulation of endothelial miR-200b serves as a turn-on signal for cutaneous wound angiogenesis supporting closure.
Antiangiogenic effects of miR-200b are mediated by GATA2 or VEGFR2, endothelial cells were infected with lentiviral vector overexpressing miR-200b-resistant forms of GATA2 or VEGFR2 (without the 3′UTR of transgene in the clone). This was followed by miR-200b mimic delivery to cells and Matrigel culture. Lentiviral overexpression of GATA2 significantly induced protein expression by ≈2-fold at multiplicity of infection 1 (Figure IXA in the online-only Data Supplement). Similar results were obtained with lentiviral overexpression of VEGFR2 at multiplicity of infection 0.5 (Figure IXB in the online-only Data Supplement). Overexpression of GATA2 or VEGFR2 partially reversed miR-200b-dependent inhibition of tube formation (Figure 2E and 2F). Simultaneous overexpression of both GATA2 and VEGFR2 rescued the angiostatic effect of miR-200b in a seemingly additive but not synergistic manner (Figure X in the online-only Data Supplement). GATA2 controls the expression of VEGFR2. Silencing GATA2 alone using specific small interfering RNA downregulated the expression of VEGFR2 (Figure XIA in the online-only Data Supplement). Overexpression of GATA2 significantly induced VEGFR2 expression in the presence of miR-200b (Figure XIB in the online-only Data Supplement). Overexpression of VEGFR2 partially rescued the antiangiogenic effect caused by GATA2 knockdown (Figure XIC in the online-only Data Supplement).
Supplement), establishing that the VEGFR2-GATA2 signaling axis helps sustain wound angiogenesis.

Endothelial Expression of GATA2 and VEGFR2 Is Negatively Regulated by miR-200b in Cutaneous Wound-Edge Tissue

Given that the expression of endothelial miR-200b was downregulated on day 3 postwounding (Figure 1A and 1B), it was anticipated that the expression of its target proteins GATA2 and VEGFR2 would be upregulated. Immunohistochemical studies demonstrated that endothelial GATA2 expression was significantly upregulated on both days 3 and 7 postwounding (Figure 3A). In contrast, endothelial VEGFR2 expression was upregulated on day 7 but not on day 3 postwounding (Figure 3B). To establish the significance of miR-200b in modulating GATA2 and VEGFR2 expression in the cutaneous wounds, the expression levels of GATA2 and VEGFR2 in day 7 wounds treated with either miR-200b overexpressing or control lentivirus were...
Figure 3. Expression of endothelial globin transcription factor binding protein 2 (GATA2) and vascular endothelial growth factor receptor 2 (VEGFR2) was induced during wound healing process and was modulated by microRNA-200b (miR-200b). Representative diagram shows (A) GATA2 and (B) VEGFR2 immunohistochemistry (red), in the intact skin, wound sample from days 3 and 7 postwounding. Representative diagram shows (C) GATA2 and (D) VEGFR2 immunohistochemistry (red) in day 7 wound sample treated with control or miR-200b overexpressing lentivirus. Colocalization of the GATA2 or VEGFR2 signaling with endothelial marker CD31 (green) was achieved by coincubation of anti-CD31 and anti-GATA2 or anti-VEGFR2 antibodies. Quantification of GATA2 or VEGFR2 intensity in CD31-positive cells. Results are mean±SEM (n=4). ***P<0.001, **P<0.01 compared with respective control; *P<0.05 compared with day 3 wounds.
investigated. Lentiviral overexpression of miR-200b blunted GATA2 and VEGFR2 upregulation on day 7 postwounding (Figure 3C and 3D), establishing that wound-inducible endothelial GATA2 and VEGFR2 expression is, at least partially, mediated via downregulation of endothelial miR-200b.

miR-200b-GATA2-VEGFR2 Signaling Axis Is Disrupted in Diabetic Wounds

We investigated whether the intrinsic miR-200b signaling is disrupted in diabetic wounds. Mice homozygous for spontaneous mutation of the leptin receptor (db/db mice) display obesity and hyperglycemic phenotype and serve as an established model for type 2 diabetes mellitus. These mice exhibited impaired wound closure and significant impairment in wound angiogenesis (Figure XII in the online-only Data Supplement). Investigation of miR-200b expression level in cutaneous wound-edge tissue from db/db diabetic mice revealed that acute transient downregulation of miR-200b in the early phase of wound healing was disrupted (Figure 4A). This observation was consistent with GATA2 and VEGFR2 immunohistochemistry outcomes. Expressions of GATA2 and VEGFR2 proteins in wound-edge endothelial cells of db/db mice were significantly lower compared with that from m+/db nondiabetic lean control littermates (Figure 4B and 4C).

TNF-α-Inducible miR-200b Inhibits Angiogenic Responses by a GATA2/VEGFR2-Dependent Mechanism

To dissect the molecular mechanism underlying aberrant expression of miR-200b in diabetic wound-edge tissue, endothelial cells were challenged with wound-relevant stimuli. Diabetic wounds are refractory to resolution of inflammation and display a prolonged abundance of proinflammatory mediators. Our group and others reported prolonged overproduction of proinflammatory TNF-α in diabetic wounds.12,15 Treatment of HDMECs with recombinant human TNF-α produced a significant downregulation of miR-200b expression at 6 hours, 24 hours, and 72 hours (Figure 5B). Treatment of primary HDMEC with TNF-α also induced miR-200b expression (Figure XIIIA in the online-only Data Supplement), resulting in lower GATA2 and VEGFR2 protein expression (Figure XIIIB and XIIIC in the online-only Data Supplement). To characterize the significance of miR-200b in TNF-α-associated downregulation of GATA2 and VEGFR2, we delivered the short hairpin loop against miR-200b (anti-miR-200b) in HDMECs and studied the expression of GATA2 and VEGFR2. Delivery of anti-miR-200b blunted TNF-α-induced miR-200b upregulation (Figure XIV in the online-only Data Supplement). Inhibition of miR-200b by anti-miR-200b attenuated TNF-α-dependent downmodulation of GATA2 and VEGFR2 (Figure 5C). To further investigate the functional significance of the TNF-α-miR-200b signaling axis in endothelial cells, HDMECs were pretreated with TNF-α and were allowed to display angiogenic outcomes on Matrigel in the presence of TNF-α at the same dose. TNF-α significantly inhibited tube formation, which was rescued by pretreatment of anti-miR-200b (Figure 5D). These data demonstrate that TNF-α-dependent induction of endothelial miR-200b restrains angiogenic response via a GATA2/VEGFR2-dependent mechanism.

Neutralization of TNF-α Rectifies Aberrant miR-200b-GATA2-VEGFR2 Signaling and Improves Diabetic Wound Angiogenesis

To test the significance of TNF-α in deregulated miR-200b-dependent pathway in diabetic wounds in vivo, sTNFR1 was intradermally injected into the wounds on days 2 and 5 postwounding to specifically neutralize the effect of overproduced TNF-α. Antagonizing the effect of TNF-α significantly reduced the overproduction of miR-200b in the diabetic wounds (Figure 6A). Interestingly, results from immunohistochemistry revealed that loss of endothelial GATA2 and VEGFR2 in diabetic wounds was significantly reversed by the treatment of sTNFR1 (Figure 6B and 6C). Neutralization of overproduced TNF-α significantly improved wound closure (Figure 6D and Figure XV in the online-only Data Supplement). This observation was in agreement with the improvement of blood flow and endothelial cell abundance (Figure 6E and 6F). These results demonstrate that diabetic wound–associated exaggerated TNF-α production induces miR-200b expression, leading to loss of both GATA2 and VEGFR2, subsequently resulting in poor wound vascularization and closure.

Discussion

miR-200b belongs to the miR-200 family member which controls epithelial-mesenchymal transition.7 Loss of miR-200b induces a mesenchymal phenotype, enhanced motility, and invasiveness of wide variety of transformed cells.7 Our group and others have reported that miR-200b not only modulates cell motility but also controls several proangiogenic proteins regulating endothelial cell function. The current work establishes that acute transient down-regulation of endothelial miR-200b is critical for successful angiogenic outcome during the cutaneous wound healing process. It also provides first evidence demonstrating that GATA2 serves as a novel direct target of miR-200b-regulating angiogenic response. GATA2, a zinc finger transcription factor involved in hematopoietic and endothelial development, is the most abundantly expressed GATA factor in endothelial cells.17 Besides its role in regulating the promoter of many endothelial specific genes including endothelin-1, von Willebrand factor, and VE-cadherin,17 GATA2 modulates angiogenesis in response to mechano-sensitive stimuli in a p190RhoGAP-dependent fashion.14 It also controls several genes including matrix metalloproteinase-219 and endomucin19 to support endothelial cell migration. This is consistent with the findings from the current investigation indicating that endogenous GATA2 critically supports angiogenesis. Although the transcriptional control of GATA2 has been well studied,17 little is
Figure 4. Diabetic wounds exhibited disrupted microRNA-200b (miR-200b)-globin transcription factor binding protein 2 (GATA2)-vascular endothelial growth factor receptor 2 (VEGFR2) signaling. A, Quantitative polymerase chain reaction (PCR) analysis of miR-200b expression of day 3 wound-edge tissues isolated from m+/db nondiabetic mice and db/db diabetic mice. Fold changes of the wound samples were compared with their corresponding intact skin control. Results are mean±SEM (n=5). ***P<0.001, **P<0.01 compared with m+/db d3 wounds. Representative diagram shows (B) GATA2 and (C) VEGFR2 immunohistochemistry (red) in the day 7 wound sample from m+/db nondiabetic mice and db/db diabetic mice. Colocalization of the GATA2 or VEGFR2 signaling with endothelial marker CD31 (green) was achieved by coincubation of anti-CD31 and anti-GATA2 or anti-VEGFR2 antibodies. Quantification of GATA2 or VEGFR2 intensity in CD31-positive cells. Results are mean±SEM (n=4). **P<0.01, *P<0.05 compared with day 7 m+/db nondiabetic control mice.
Figure 5. MicroRNA-200b (miR-200b) served as a mediator of tumor necrosis factor-α (TNF-α)–induced downregulation of globin transcription factor binding protein 2 (GATA2) and vascular endothelial growth factor receptor 2 (VEGFR2) expression, and antiangiogenic response of endothelial cells. A, Quantitative polymerase chain reaction (PCR) analysis of miR-200b expression after treatment of TNF-α as indicated time in human dermal microvascular endothelial cells (HDMECs). B, Western blot analysis of GATA2 and VEGFR2 protein expression in TNF-α–treated HDMECs at different time points. C, Western blot analysis of GATA2 and VEGFR2 protein expression in TNF-α–treated HDMECs in the presence or absence of anti-miR-200b. D, Matrigel tube formation visualized by phase contrast microscopy at 8 hours in TNF-α–treated HDMECs in the presence or absence of anti-miR-200b. Results are mean±SEM (n=4). ***P<0.001, **P<0.01, *P<0.05 compared with respective control; ††P<0.01, †P<0.05 compared with cells treated with TNF alone. NS indicates not statistically significant.
Figure 6. Neutralization of tumor necrosis factor-α (TNF-α) reversed the aberrant microRNA-200b (miR-200b) induction, rescued the loss of globin transcription factor binding protein 2 (GATA2) and vascular endothelial growth factor receptor 2 (VEGFR2) expression, and improved wound closure and angiogenesis. A. Quantitative polymerase chain reaction (PCR) analysis of miR-200b expression of d3 wound-edge tissue isolated from m+/db nondiabetic mice, db/db diabetic mice treated with placebo, and db/db diabetic mice treated with soluble TNF receptor 1 (sTNFR1; n=5). Fold changes of the wound samples were compared with their corresponding intact skin control. B. Quantification of GATA2 or VEGFR2 intensity in CD31 positive cells (n=4). C. Representative diagram shows GATA2 and VEGFR2 immunohistochemistry (red) in the day 7 wound sample from m+/db nondiabetic mice, db/db diabetic mice treated with placebo, and db/db diabetic mice treated with sTNFR1. Colocalization of the GATA2 or VEGFR2 signaling with endothelial marker CD31 (green) was achieved by coincubation of anti-CD31 and anti-GATA2 or anti-VEGFR2 antibodies. D. Wound closure was monitored on days 1, 3, 5, and 7 postwounding and was presented as percentage of wound closure (n=6): black, m+/db nondiabetic mice; red, db/db diabetic mice treated with placebo; and blue, db/db diabetic mice treated with sTNFR1. E. Wound angiogenesis, as depicted by cutaneous blood flow measured by laser Doppler (n=6) and F. quantification of CD31 positive staining (n=4) on day 7 postwounding. Results are mean±SEM. ***P<0.001, *P<0.05 compared with m+/db nondiabetic wounds; †††P<0.01, ‡P<0.05 compared with db/db diabetic wounds.
known about its posttranscriptional regulation. So far, only 2 studies addressing miR-dependent posttranscriptional modification of GATA2 have been reported.20,21 The current investigation provides first evidence establishing that miR-200b directly binds to GATA2 3′UTR and induces translational repression. During the preparation of this article, Choi et al10 reported that miR-200b directly targets VEGFR2, which is in agreement with our observation in the reporter assay and Western blot analysis. Observations from rescue experiments reported herein validate that the miR-200b-dependent antiangiogenic response is mediated by posttranscriptional silencing of GATA2 and VEGFR2. Given that GATA2 directly transactivates the promoter of VEGFR2,33 which is consistent with our observation that GATA2 supports VEGFR2 expression in endothelial cells, this work elucidates a novel regulatory mechanism wherein VEGFR2 expression is regulated by miR-200b at 2 levels: GATA2-dependent transcriptional and posttranscriptional silencing (direct interaction with the 3′UTR). In fact, the miR-200 family not only targets key players in the VEGF-signaling cascade but also modulates many mediators that potentially block angiogenesis. miR-200a, for example, can target β-catenin,22 a membrane-bound protein enabling adherens junction formation and thus stabilizing blood vessel.23 miR-200 family, via silencing notch ligand Jagged-1,24 can potentially suppress endothelial proliferation and sprouting.25 Taken together, observations of the present study and the current literature consolidate the concept that miR-200b and its associated family members silence clusters of molecules in different angiogenic circuits to dictate endothelial cell phenotype and functional outcomes.

Several studies have reported the involvement of miR dysregulation in the diabetes mellitus–associated pathogenic angiogenesis. In type 2 diabetic Goto-Kakizaki rats, upregulation of miR-320 inhibited angiogenic response of myocardial microvascular endothelial cells by targeting insulin-like growth factor 1.26 Elevation of miR-503 silenced cyclin E1 and cdc25A, subsequently inhibiting angiogenesis in diabetic ischemic muscle.27 High glucose-induced loss of miR-93, an miR targeting renal endothelial VEGF, resulted in aberrant angiogenesis.28 In the current work, we demonstrate that diabetic wound-edge endothelial cells suffer from silencing of GATA2 and VEGFR2, which is consistent with previous findings,20,30 via an miR-200b-dependent mechanism.

Excessive TNF-α is known to complicate closure of diabetic wounds.31 Strategies to antagonize TNF-α improve perfusion11 and closure of nonhealing wounds.12,31 In diabetic wounds, prolonged overproduction of TNF-α induces fibroblast apoptosis12 and inhibits fibroblast filopodia formation,33 resulting in compromised granulation tissue formation. TNF-α overload also desensitizes insulin signal and downregulates insulin receptor in diabetic keratinocytes leading to impairments in keratinocyte proliferation and differentiation.34 Intriguingly, TNF-α plays a dual role in regulating the angiogenic behavior of endothelial cells. Physiological low dose of TNF-α induces angiogenesis whereas supraphysiological high dose of TNF-α suppresses angiogenic response.16,35 Persistent stimulation of TNF-α inhibits angiogenic response whereas pulse of TNF-α primes endothelial cells for sprouting.36 Because of prolonged and unresolved inflammatory response in diabetic wounds, it is expected that dermal microvascular endothelial cells will shift to an antiangiogenic phenotype because of high TNF-α. This work establishes that persistent elevated TNF-α exerts substantial antiangiogenic effects via an miR-200b-GATA2-VEGFR2 mechanism. It also unveils the prospect of using local neutralization of TNF-α as a productive therapeutic strategy.

TNF-α may induce miR-200b via activation of p53. Promoter analysis and chromatin immunoprecipitation studies revealed that p53 can bind and transactivate the promoter of miR-200b,27,34 which is consistent with our observation in diabetic wounds after day 3 postwounding. TNF-α-induced expression of miR-200b-200a-429 cluster was attenuated by p53 knockdown (Figure XVII in the online-only Data Supplement), suggesting a p53-dependent transcriptional control of endothelial miR-200b in response to TNF-α stimulation. Thus, it is tempting to speculate that in diabetic wounds exaggerated TNF-α upregulates miR-200b via activation of p53. In addition, it is possible that miR-200b upregulation could be sustained in a GATA2-dependent self–feed-forward mechanism. Putative GATA binding site has been identified in the miR-200b promoter.39 Binding of this site by GATA3, a GATA2 homolog, inhibited the expression of miR-200b cluster,39 suggesting that GATA2 might serve as a negative regulator of miR-200b expression. In this regard, TNF-α-associated upregulation of miR-200b silences GATA2, which might relieve the trans-repression of miR-200b promoter, leading to sustained miR-200b expression under conditions of prolonged inflammation. It is noteworthy that this positive feed-forward loop could be further intensified by the self-regulatory mechanism of GATA2 owing to the positive regulation of GATA2 on its own promoter.17

In summary, this work reports that downregulation of endothelial miR-200b is crucial in turning on cutaneous wound angiogenesis by derepression of GATA2 and VEGFR2 expression. These findings support the concept that injury-responsive acute transient repression of miR serves as a potent signal, which unleashes reparative tissue development in an adult setting. GATA2 is recognized as a validated target of miR-200b. Diabetic wounds exhibit silencing of GATA2 and VEGFR2, which is a consequence of miR-200b being refractory to injury. Elevated TNF-α, as expected in dysregulated diabetic wounds, induces miR-200b which in turn silences angiogenic GATA2 and VEGFR2 (Figure XVII in the online-only Data Supplement). Taken together, this work sheds new light on the regulation of wound angiogenesis by miRs and develops the significance of such regulation in the context of diabetic complications.
Sources of Funding
This work was supported by National Institutes of Health awards GM077185 and GM069589 to C.K. Sen and DK076566 to S. Roy.

Disclosures
None.

References
Downregulation of Endothelial MicroRNA-200b Supports Cutaneous Wound Angiogenesis By Desilencing GATA Binding Protein 2 and Vascular Endothelial Growth Factor Receptor 2
Yuk Cheung Chan, Sashwati Roy, Savita Khanna and Chandan K. Sen

Arterioscler Thromb Vasc Biol. 2012;32:1372-1382; originally published online April 12, 2012; doi: 10.1161/ATVBAHA.112.248583
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/32/6/1372

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2012/04/12/ATVBAHA.112.248583.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/
Supplemental Materials

Supplementary Methods:

Cell culture, miR mimics/ siRNA transfection, lentiviral over-expression and treatments Human dermal microvascular endothelial cells (HDMECs) were cultured under standard conditions (37°C in a humidified atmosphere consisting of 95% air and 5% CO2) in MCDB-131 medium supplemented with 10% FBS, 10 mM L-glutamine and 100 IU/mL penicillin, 0.1 mg/mL streptomycin, (Invitrogen) as described previously. Primary adult human dermal microvascular endothelial cells (HDMECs) were grown at 37°C, 95% air and 5% CO2 in EBM-2 medium (Lonza) supplemented with EGM-2MV single quotes (Lonza) as described previously. HEK-293 cells were cultured in humidified chamber (37°C, 95% air and 5% CO2) with DMEM medium supplemented with 10% FBS and 100 IU/mL penicillin, 0.1 mg/mL streptomycin. One day before transfection, cells were seeded in 12-well plate at density 0.15 x 10^6 cells/well. Confluence will reach approximately 70% at the time of transfection. Transfection was achieved by liposome-mediated delivery of miR-200b mimic (20nM), miR-200b inhibitor (100 nM) or siRNA smart pool for human GATA2, VEGFR2 and p53 (100nM) using DharmaFECTTM 1 transfection reagent (Dharmacon RNA Technologies) and OptiMEM serum-free medium (Invitrogen). All the miR mimics, inhibitors and siRNA were obtained from Dharmacon RNA Technologies. Supplementary table I shows the corresponding sequences of siRNA employed in this study. Cells were either harvested directly or seeded on Matrigel® pre-coated plates for further analysis after 72-h transfection unless specified. For lentiviral over-expression studies, HDMECs were infected with lentiviral particles carrying miR-200b resistant form of GATA2 or VEGFR2 at different MOI (from 0.1 to 1) for 48 hours. Medium were refreshed and cells were allow to grow for another 48 hours. Protein was extracted for Western blot to validate the transduction efficiency. Both GATA2 and VEGFR2 over-expression lentivirus were obtained from Applied Biological Materials. For Matrigel® study, medium was removed after 48h transduction
and cells were then transfected with miR-200b mimic (20nM) for another 48 hours. Cells were seeded on Matrigel® pre-coated plates to study the tube formation ability. For TNF-α treatment, HDMECs or primary HDMECs were seeded in 12-well plate at density 0.15 x 10⁶ cells/well. Medium were refreshed and recombinant human TNF-α (R & D system) at 50 ng/ml or vehicle (1% BSA in PBS) were added to the cells according to the previous study.² Cells were collected for RNA or protein at the time indicated. For the TNF-α -miR-200b inhibitor study, cells were first transfected with control or anti-miR-200b (100nM) for 48 hours, followed by treatment with either vehicle or TNF-α. After 24 hours, cells were either lyzed for protein/ RNA extraction or plated on Matrigel® pre-coated plate for further analysis.

Luciferase reporter construct The reporter constructs pLu-GATA2-3’UTR, pLu-VEGFR2-3’UTR and their mutant form were obtained from Signosis. The constructs were designed based on the sequence of miR-200b binding site and a total of 251bp (for both pLu- wild type GATA2-3’UTR and pLu- mutated GATA2-3’UTR), 496bp (pLu- wild type VEGFR2-3’UTR) or 432 bp (pLu- mutated VEGFR2-3’UTR) were cloned in the 3’UTR of pLuc plasmid. Firefly luciferase was cloned under the control of CMV promoter. For mutated construct, the seed sequence regions were replaced to non-sense sequence (for details, please see Supplementary Figure V).

miR target reporter luciferase assay HEK-293 cells were transfected with 100ng pLuc-GATA2-3’UTR, pLuc-VEGFR2-3’UTR plasmid or their corresponding mutant construct (Supplementary Figure V) using lipofectamine TM LTX/ plus reagent (Invitrogen) according to the manufactures protocol.¹ Normalization was achieved by co-transfection with renilla plasmid (10ng). Cells were lyzed after 48 hours and luciferase activity was determined using dual-luciferase reporter assay system (Promega). Data are presented as ratio of firefly to renilla luciferase activity (FL/RL).
RNA extraction and quantitative real-time PCR RNA from cells or murine wound sample was extracted using miRVana miRNA Isolation Kit according to the manufactures protocol (Ambion). RNA was first reverse-transcribed using Taqman MicroRNA Reverse Transcription Kit (Applied Biosystems), followed by semi-quantitative real time PCR using Universal PCR Master Mix and specific Taqman miR primers (Applied Biosystems) as described previously.1,3

Western blots Western blot was performed using antibodies against GATA2 (Santa Cruz biotechnology) and VEGFR2 (Cell Signaling) as described previously.1 Briefly, the cells were lyzed in lysis buffer containing 10mM Tris pH 7.4, 150mM NaCl, 1% Triton X-100, 1% deoxycholic acid, 0.1 % SDS and 5mM EDTA. Cell lysates were resolved in SDS-PAGE, transblotted to PVDF membrane (Amersham), blocked in 10% skim milk and incubated with primary antibody against either GATA2 (1: 5,000) or VEGFR2 (1: 2,000) overnight at 4°C. Signal was visualized using corresponding HRP-conjugated secondary antibody (Amersham, 1:3,000) and ECL Plus™ Western Blotting Detection Reagents (Amersham). β-actin (Sigma, 1: 7, 000) serves as loading control.

Immunohistochemistry (IHC) and immunocytochemistry (ICC) Immunostaining of GATA2, VEGFR2 and CD31 was performed on cryosections of wound sample using specific antibodies as described previously.4 Briefly, OCT embedded tissue were cryosectioned at 10µm thick, fixed with cold acetone, blocked with 10% normal goat serum and incubated with specific antibodies against CD31 (BD Bioscience, 1:400) and GATA2 (Santa Cruz biotechnology, 1:2,000) or VEGFR2 (Santa Cruz biotechnology, 1:200) overnight at 4°C. Signal was visualized by subsequent incubation with fluorescence-tagged secondary antibodies (FITC-tagged α-rat, 1:200; Alexa 568-tagged α-rabbit, 1:200). Images were captured by microscope and quantification of fluorescent intensity of image was achieved by software AxioVision Rel 4.6 (Carl Zeiss Microimaging). For ICC, cells were fixed with
paraformaldehyde, permeabilized with 0.1% TritonX-100, blocked with 10% normal goat serum and incubated with primary antibody against GATA2 (1:3,000) and VEGFR2 (1:200) overnight as described previously.\(^1\) Signal was visualized using Alexa Fluor® 488 dye-conjugated antibody against rabbit (Invitrogen, 1:200), counterstained with DAPI. Images were captured by microscope using software AxioVision Rel 4.6 (Zeiss).

Matrigel® tube formation assay *In vitro* angiogenesis was determined by tube formation ability on Matrigel® as described previously.\(^1\) Cells were plated out after transfection or treatment and seeded on Matrigel® pre-coated 4-well plate at density 5 x 10\(^4\) cells/ well. The angiogenic property was assessed 8 hours after seeding, and the tube length was measured using the software AxioVision Rel 4.6 (Zeiss).

LCM Laser capture microdissection was performed using the laser microdissection system from PALM Technologies (Bernreid, Germany) containing a PALM MicroBeam and RoboStage for high-throughput sample collection and a PALM RoboMover (PALM Robo software, Version 2.2) as described previously.\(^5\) For immunofluorescence-directed LCM, blood vessels were stained with CD31 antibody (1:25), FITC-conjugated secondary antibody (1:200), and subsequently visualized using fluorescent lamp. For dermal LCM, sections were stained with hematoxylin for 30s, subsequently washed with DEPC-H\(_2\)O and dehydrated in ethanol. Dermal fraction was identified based on the histology. Blood vessel or dermal fraction were typically cut and captured under a 20× ocular lens, using Cut elements. The samples were catapulted into 25 µl of cell direct lysis extraction buffer (Invitrogen). Approximately 250,000 µm\(^2\) of tissue area was captured into each cap and the extract was then held at −80°C for extraction process.
Laser Doppler Dermal blood flow was analyzed by laser Doppler imaging device as described previously.\(^4\) Briefly, mice with d7 skin wounds were anesthetized with isoflurane. The MoorLDI-Mark 2 laser Doppler blood perfusion imager (resolution: 256 × 256 pixels, visible red laser beam at 633 nm) was used for mapping tissue blood flow as reported previously.\(^4\)

Statistical Analyses

Data reported represent means ± SEM. Difference between two means was tested by Student t-test while one-way ANOVA analysis was employed to compare three groups or more. P<0.05 was considered as statistical significance.
Supplementary References:

Supplementary Table I:

Sequence of siRNAs employed in this study:

<table>
<thead>
<tr>
<th>siRNA</th>
<th>GATA2 siRNA</th>
<th>VEGFR2 siRNA</th>
<th>p53 siRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5’-GCAAGGCUCGUUCCGUUC-3’</td>
<td>5’-GGGAUGGCCUCUCCGUUA-3’</td>
<td>5’-GAAAUUUGCGUGGAGUA-3’</td>
</tr>
<tr>
<td></td>
<td>5’-GAAGGGAUCCAGACUCGGA-3’</td>
<td>5’-GGAAAUCUCUUGCAAGCUA-3’</td>
<td>5’-GUGCAGCUGUGGGUUGAUU-3’</td>
</tr>
<tr>
<td></td>
<td>5’-GCACAAUGCUGUAAACAGGCA-3’</td>
<td>5’-CUCAUUGUUGCUCCGUA-3’</td>
<td>5’-GCAGUCAGAUCCUAGCGUC-3’</td>
</tr>
<tr>
<td></td>
<td>5’-GGGCAGAAACCACCUA-3’</td>
<td>5’-GGGCAUGUACUGACGAUA-3’</td>
<td>5’-GGAGAAUAUUUCACCCUUC-3’</td>
</tr>
</tbody>
</table>

Supplemental Figure Legends

Supplementary Figure I. Down-regulation of endothelial miR-200a was evidenced during cutaneous wound healing. Quantitative PCR analysis of miR-200a expression of (A) day 3 and day 7 wound edge tissue (8x 16mm full-thickness excisional wounds, n=5) and (B) laser microdissected endothelial cells (n=3) from d3 wounds, compared to their respective control skin sample. Results are mean ± SEM. * indicates p<0.05 compared to respective control.

Supplementary Figure II. Wound-induced repression of miR-200b was not evident in epidermis or non-endothelial dermal tissue element in cutaneous wound healing. Quantitative PCR analysis of miR-200b expression of laser microdissected (A) epidermal or (B) non-endothelial dermal tissue element from d3 wound-edge tissue compared to their respective control skin sample. Results are mean ± SEM. N.S= not statistically significant

Supplementary Figure III. Intradermal delivery of miR-200b over-expressing lentivirus induced miR-200b expression in the dermis of murine skin. (A) Representative diagram shows LCM of dermal fraction before collection and after collection. (B) Quantitative PCR analysis of miR-200b expression of laser microdissected dermal fraction 3 days after delivery of control or miR-200b over-expressing lentivirus (2 x 10⁷ cfu/ml, 50µl per site) (n=6). Results are mean ± SEM. * indicates p<0.05 compared to control lentivirus.
Supplementary Figure IV. Wound closure response following treatment with miR-200b or control miR over-expressing lentiviral vector. Wounds were treated with miR-200b over-expressing lentiviral or control particles as described in Materials. Wound closure was monitored by digital planimetry and was presented as % of wound closure (n=4). Results are mean ± SEM. *** indicates p<0.001, * indicates p<0.05 compared to respective control.

Supplementary Figure V. Predicted binding sites of miR-200b and the sequence of reporter construct. Bioinformative analysis of possible binding sites of (A) GATA2 and (B) VEGFR2 3’UTR for miR-200b using algorithms including Targetscan, Pictar, miRDB, miRanda and Diana-microT (upper panel). Sequence of wild type GATA2 3’UTR (middle panel, A) and GATA2 3’UTR with the mutation of predicted binding site (lower panel, A) cloned in the reporter construct. Sequence of wild type VEGFR2 3’UTR (middle panel, B) and the corresponding 3’UTR with the mutation of predicted binding sites (lower panel, B) cloned in the reporter construct. The predicted binding sites are the underlined sequences with mutated sequence shown in italic. All reporter construct were cloned by Signosis.

Supplementary Figure VI. miR-200b negatively regulated GATA2 and VEGFR2 expression in primary HDMECs Western blot analysis of (A) GATA2 and (B) VEGFR2 protein expression in miR-200b mimic delivered primary HDMECs (n=3). β-actin serves as loading control. Results are mean ± SEM. *** indicates p<0.001 compared to control mimic.

Supplementary Figure VII. miR-200b mimic delivery induced loss of both GATA2 and VEGFR2, and inhibits angiogenesis in vitro. (A) Representative diagram shows GATA2 (left) or VEGFR2 (right) immunocytochemistry, counterstained with DAPI, after miR-200b mimic delivery in HDMECs from
three independent experiments. (B) Representative diagram shows Matrigel® tube formation at 8 h in HDMEC treated with control mimic or miR-200b mimic from three independent experiments.

Supplementary Figure VIII. GATA2 and VEGFR2 knockdown exerted angiostatic effects on HDMECs. Western blot analysis of (A) GATA2 and (B) VEGFR2 protein expression in corresponding siRNAs delivered HDMECs (n=3). β-actin serves as loading control. Results are mean ± SEM. *** indicates p<0.001, ** indicates p<0.01 compared to control siRNA. Matrigel® tube formation at 8 h in (C) GATA2 or (D) VEGFR2 siRNA-transfected HDMECs (n=3). Results are mean ± SEM. *** indicates p<0.001, ** indicates p<0.01 compared to respective control.

Supplementary Figure IX Over-expression of GATA2 or VEGFR2 induced GATA2 or VEGFR2 expression, respectively Western blot analysis of (A) GATA2 and (B) VEGFR2 protein expression after lentiviral over-expression of GATA2 and VEGFR2, respectively in HDMECs (n=3). β-actin serves as loading control. ** indicates p<0.01, * indicates p<0.05 compared to respective control.

Supplementary Figure X. Simultaneous over-expression of GATA2 and VEGFR2 induced angiogenic response additively. Matrigel® tube formation at 8 h in HDMEC treated with control mimic, miR-200b mimic and miR-200b with GFP control over-expression, GATA2 over-expression, VEGFR2 over-expression or simultaneous over-expression of both GATA2 and VEGFR2 (n=3). Results are mean ± SEM. *** indicates p<0.001 compared to respective control miR, * indicates p<0.05 while ** represent p<0.001 compared to GFP control. ### indicate p<0.001 compared to GATA2 over-expression alone. N.S= not statistically significant.
Supplementary Figure XI. VEGFR2 served as a mediator of GATA2-associated angiogenesis. (A) Western blot analysis of VEGFR2 protein expression in GATA2 knockdown HDMECs. β-actin serves a loading control (n=3). (B) Western blot analysis of VEGFR2 protein expression in miR-200b mimic delivery with or without GATA2 over-expression. β-actin serves a loading control (n=3). (C) Representative diagram and quantification of tube formation (% of control) showing Matrigel® tube formation at 8 h in HDMEC treated with control siRNA, GATA2 siRNA and GATA2 siRNA + lentiviral VEGFR2 over-expression (n=4). Results are mean ± SEM. *** indicates p<0.001, ** indicates p<0.01, * indicates p<0.05 compared to respective control treated cells. ++ represent p<0.01 compared to GATA2 siRNA alone.

Supplementary Figure XII. Diabetic mice exhibited impaired wound angiogenesis. Wound angiogenesis, as depicted by (A) cutaneous blood flow measured by laser Doppler (n=5) and (B) microvessle counts measured by CD31-immunostaining (n=5) at day 7 post-wounding. Results are mean ± SEM. *** indicates p<0.001, ** represents p<0.01 compared to m+/db non-diabetic wounds.

Supplementary Figure XIII. TNF-α treatment induced miR-200b expression and suppresses protein expression of GATA2 and VEGFR2 in primary HDMECs. (A) Quantitative PCR analysis of miR-200b expression after treatment of TNF-α for 24h in primary HDMECs. (B) Western blot analysis of GATA2 and VEGFR2 protein expression in TNF-α-treated primary HDMECs. β-actin serves as loading control (n=4). Results are mean ± SEM. *** indicates p<0.001, ** indicates p<0.01 compared to vehicle treated cells.
Supplementary Figure XIV. Delivery of anti-miR-200b reversed TNF-α-dependent miR-200b induction HDMECs. Quantitative PCR analysis of miR-200b expression after treatment of TNF-α for 24h in presence of absence of anti-miR-200b (n=4). Results are mean ± SEM. * indicates p<0.05 compared to vehicle treated cell, ++ indicates p<0.01 compared to TNF-α + control anti-miR.

Supplementary Figure XV. Neutralization of TNF-α improved wound closure in diabetic mice. Wounds were induced in m+/db non-diabetic mice, db/db diabetic mice treated with placebo, and db/db diabetic mice treated with sTNFR1 as described in Methods. Wound closure was monitored on day 1, 3, 5, 7, 9, and 11 post-wounding and was presented as % of wound closure (n=6). Results are mean ± SEM. *** indicates p<0.001, ** indicates p<0.01 compared to m+/db non-diabetic mice, +++ indicates p<0.001, ++ indicates p<0.01 and + indicates p<0.05 compared to db/db diabetic mice treated with placebo.

Supplementary Figure XVI. Knockdown of p53 attenuated TNF-α induced induction of miR-200a, miR-200b and miR-429 in HDMECs. Quantitative PCR analysis of (A) miR-200a, (B) miR-200b, and (C) miR-429 expression after treatment of TNF-α for 24h in HDMECs in the presence or absence of p53 siRNA. Results are mean ± SEM. ** indicates p<0.01 compared to vehicle-treated cells, * indicates p<0.05 compared to TNF-α alone.

Supplementary Figure XVII. Summary depicting the identified miR-200b-dependent molecular mechanisms implicated in wound angiogenesis. In diabetic wounds excessive TNF-α induced miR-200b expression leading to silencing of angiogenic GATA2 and VEGFR2, resulting in impairment in wound healing. VEGFR2 was further down-regulated by a direct repression of GATA2.
Supplemental Figure I

(A) Wound edge

(B) LCM endothelial tissue element

miR-200a expression (fold of control)

day 3 day 7

control skin wound

control skin d3 wound
Supplemental Figure II

(A) LCM epidermal tissue element

(B) LCM non-endothelial dermal tissue element

miR-200b expression (folds of control)

control skin day 3 wounds

N.S

control skin day 3 wounds

N.S
Supplemental Figure III

(A) Before collection and After collection of epidermis and dermis.

(B) miR-200b expression (fold of control) for control and lentivirus conditions with a significant difference indicated by *.
Supplemental Figure V

(A) Position 1424-1430 of GATA2 3′ UTR

5′...AAGAAAAAGAAUCGCGAUGUAAU...
hsa-miR-200b 3′ AUAAGUAUAUGGGUCUCGUAAU

Wild type GATA2 3′ UTR

5′ -
CCAGTCCTGCAGGAGCCACACGGCCACG
AACTACTATTTCTGACTAGTGCCTCGAATAA
GAAAAGAGAATCGCCGATATTTCTGTTTTAT
TGTTTATTGCGCTTTTATTTATTGTAGTAGT
GAACCTAGTTATTTGTTAATTATGTA-3′

Mutated GATA2 3′ UTR

5′ -
CCAGTCCTGCAGGAGCGCAACAGGGCAACG
AACTACTATTTCTGACTAGTGCCTCGAATAA
GAAAAGAGAATCGCCGATATTTCTGTTTTAT
TGTTTATTGCGCTTTTATTTATTGTAGTAGT
GAACCTAGTTATTTGTTAATTATGTA-3′

(B) Position 1028-1034 of VEGFR2 3′ UTR

5′...CACCCGCAGACCCGCAUGAUAAU...
hsa-miR-200b 3′ AUAAGUAUAUGGGUCUCGUAAU

Wild type VEGFR2 3′ UTR

5′ -
GTTCAGTGAGCTGGTTGGTGATGAAGGAGATTTTACCCCCCTTTT
GGTCTCCCTGGTTCCCAACCCACCTCTCAACCCGCCCAACCAGTCTTTT
TTTTACCCCTGGTCGTCATTAAAGCTAGTTGGTTTCTGTCGTTGGAA
ATTAGCCGACTCCAAATATTATTATAGCAGAAATTATACACGTGTTTTATTA
GACTTATACATATACAGTTTCTACTGATTTTTCTGTGTGCTCTTTTT
TCAAAGAAGGAAGATGTGTTTTTTTGTTTTTGTCTGCCAACGATAGGCA
ATTAGCTATAAGCAGCTGACTGAGCAGCATATATTATGCTGTTTTTGAA
ATGAGAATAATAAAGCTTTTATATATAGAATCTTGTACATCTCATTGTGGTTGATG-3′

Mutated VEGFR2 3′ UTR

5′ -
CCTGTCCTCCCAACCCACTCTCAACCCGCCCAACCAGTGTGAATTATGTTGGTTTCTGTCGTTGGAA
ATTAGCCGACTCCAAATATTATTATAGCAGAAATTATACACGTGTTTTATTA
GACTTATACATATACAGTTTCTACTGATTTTTCTGTGTGCTCTTTTT
TCAAAGAAGGAAGATGTGTTTTTTTGTTTTTGTCTGCCAACGATAGGCA
ATTAGCTATAAGCAGCTGACTGAGCAGCATATATTATGCTGTTTTTGAA
ATGAGAATAATAAAGCTTTTATATATAGAATCTTGTACATCTCATTGTGGTTGATG-3′
Supplemental Figure VI

(A) GATA2

control	miR-200b mimic	mimic

GATA2 protein expression (fold of control)

(B) VEGFR2

control	miR-200b mimic	mimic

VEGFR2 protein expression (fold of control)
Supplemental Figure VII

(A) control mimic control mimic
miR-200b mimic miR-200b mimic

(B) control mimic
miR-200b mimic

Scale bar: 50μm Scale bar: 300μm
Supplemental Figure VIII

(A) GATA2 and β-actin expression levels after control siRNA and GATA2 siRNA treatment.

(B) VEGFR2 and β-actin expression levels after control siRNA and VEGFR2 siRNA treatment.

(C) Representative images of tube formation after control siRNA and GATA2 siRNA treatment. Scale bar: 300μm.

(D) Representative images of tube formation after control siRNA and VEGFR2 siRNA treatment. Scale bar: 300μm.
Supplemental Figure IX

(A) GATA2 over-expressing lentivirus (MOI)

(B) VEGFR2 over-expressing lentivirus (MOI)

GATA2 protein expression (fold of control)

VEGFR2 protein expression (fold of control)
Supplemental Figure X

<table>
<thead>
<tr>
<th>miR-200b mimic</th>
<th>control mIR</th>
<th>GFP</th>
<th>GATA2</th>
<th>VEGFR2</th>
<th>G+K</th>
</tr>
</thead>
</table>

![Images of cell cultures](image1)

![Bar graph](image2)

- **GFP**: control GFP lentivirus
- **GATA2**: GATA2 over-expressing lentivirus
- **VEGFR2**: VEGFR2 over-expressing lentivirus
- **G+K**: GATA2 over-expressing lentivirus + VEGFR2 over-expressing lentivirus
Supplemental Figure XII

(A) Blood flow (arbitrary units)

(B) CD31 positive signal (arbitrary units)

Scale bar: 500μm
Supplemental Figure XIV

![Graph showing miR-200b expression levels for different treatments.]

- **Vehicle**
- **Control**
- **Anti-miR**
- **Anti-miR-200b**

Treated with TNF-α (50ng/ml), 24h
Supplemental Figure XV

% of wound area

Days of postwounding

- m+/db non-diabetic
- db/db diabetic + placebo
- db/db diabetic + sTNFR1

*** *** **
Supplemental Figure XVII

Diabetic wounds

↑ TNF-α

↑ miR-200b

Silence GATA2 --- Silence VEGFR2

↓ Angiogenesis

↓ Impaired wound healing