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Lipoprotein(a), or Lp(a), is a plasma lipoprotein that accu-
mulates in concentrations ranging from undetectable to 

as high as 200 mg/dL, mostly depending on the synthesis rate 
of its unique protein, apo(a), which consists of multiple repeti-
tions of kringle IV, type 2 of plasminogen.1 Additionally, plasma 
levels of Lp(a) are inversely proportional to the size of the 
apo(a) isoform, which is genetically determined.2 Considering 
that cholesterol represents about one fifth of the particle, Lp(a) 
can be equivalent to an extra 40 mg/dL of low-density lipo-
protein (LDL) cholesterol in some individuals. The complex 
is the result of a covalent association between apoB100 and 
the function-free apo(a). The size of this lipoprotein ranges 
from that of a large high-density lipoprotein (HDL) to that 
of a small remnant depending on its triglyceride content. It 
is an apoB-containing lipoprotein and therefore viewed as an 
atherogenic particle. Because apo(a) does not form Lp(a) in 
murine plasma, development of a transgenic mouse model 
has required the concomitant expression of human apo(a) and 
apoB100.3 Apo(a) binds via a single disulfide bridge to the 
carboxyl-terminus of apoB100 and thus cannot associate with 
chylomicrons, which only contain apoB48.4 Also, apo(a) pref-
erentially binds apoB100 of LDL-sized particles, although 
the linkage between the 2 proteins is likely to take place 
on the surface of hepatocytes, which produce exclusively 
VLDL-sized particles.5 On the clearance front, Lp(a) does not 
bind to the LDL receptor, and only modest increases in Lp(a) 
levels are seen in patients with familial hypercholesterolemia.6 
This means that cholesterol-lowering agents acting more or 
less directly via upregulation of the LDL receptor (statins, res-
ins, and cholesterol absorption inhibitors) have modest to no 
effects or may even raise plasma Lp(a) levels.7–9 Other agents, 
such as fibrates and niacins, share similar lipid-modulating 
effects (decreasing triglycerides, increasing HDL choles-
terol) but show diverging effects on Lp(a) levels, which may 
be increased modestly by fenofibrate10 and decreased sig-
nificantly by niacin.11 The mechanism of action of niacin on 
Lp(a) is not defined, but is likely related to reduced secretion 
of apoB-containing lipoproteins by the liver. This notion is 
confirmed by emerging therapies that directly regulate hepatic 

apoB output, such the apoB antisense mipomersen and the 
liver-specific thyromimetic eprotirome, both of which lower 
Lp(a) levels.12,13

See accompanying article on page 1220

Because production of apo(a) is the critical step in the assem-
bly and plasma accumulation of Lp(a), a logical approach to 
targeting this lipoprotein pharmacologically would be via 
inhibition of the synthesis of this apparently unnecessary pro-
tein. No available drugs are known to act on this mechanism. 
Even though Lp(a) was discovered nearly 50 years ago, the 
debate on whether it represents a risk factor for cardiovascu-
lar disease is still ongoing, but consensus is finally mounting 
up for its role in the disease process, necessity of screening, 
and recommendation of therapeutic targeting.14 Because of the 
absence of agents that exclusively and significantly modulate 
Lp(a) levels, there is no clinical trial information on the impor-
tance of lowering Lp(a) levels to reduce cardiovascular events. 
However, Maher et al15 in 1995 published evidence showing 
that the excess cardiovascular risk attributable to elevated 
Lp(a) levels was nearly eliminated by lowering LDL below 
100 mg/dL. This was interpreted by many practitioners as a 
recommendation to use Lp(a) simply as a marker to decide the 
level of LDL lowering necessary to control risk. It is undeni-
able, however, that some high-risk patients in practice present 
with extremely elevated Lp(a) levels as the most prominent 
risk factor, and it is not known whether aggressive reduction of 
Lp(a) would be of benefit in these individuals. Recent popula-
tion data have given what many consider the final confirmation 
of the importance of apo(a) and Lp(a) in cardiovascular risk 
attribution.16,17 Therefore, more emphasis is currently being 
placed on determining Lp(a) levels as part of cardiovascular 
risk profiling, often leading to management of inappropri-
ately elevated levels (50 mg/dL of particle mass).14 Niacin, 
the only commonly used lipid-lowering agent that reduces 
Lp(a) levels, is currently being questioned as an appropriate 
agent for high-risk subjects given the negative results of the 
Atherothrombosis Intervention in Metabolic Syndrome with 
Low HDL/High Triglycerides: Impact on Global Health (AIM-
HIGH) trial, where it failed to convey additional risk reduction 
to coronary artery disease patients already taking statin, alone 
or with ezetimibe.18 In this National Institutes of Health 
cosponsored trial, niacin was used with the intent of increasing 
HDL cholesterol levels in subjects at LDL goal, and therefore 
the lack of clinical effects is currently being attributed to either 
an ineffective HDL modulation by niacin or the general futility 
of raising HDL in high-risk individuals with LDL already at 
goal. Because niacin also reduced Lp(a) levels by 25%, it may 
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be inferred that this maneuver also fails to produce benefits. 
It has to be noted, however, that in the AIM-HIGH trial the 
median Lp(a) level was low (20 mg/dL).

In the study by Chennamsetty et al19 published in this 
issue of Arteriosclerosis, Thrombosis, and Vascular Biology, 
evidence is presented for a negative regulation of apo(a) syn-
thesis that could eventually be exploited for development of 
therapeutics to reduce Lp(a) levels. In a recent report, the 
same group of investigators showed that bile acid strongly 
inhibits apo(a) synthesis.20 Patients with biliary obstruction 
and plasma bile acid levels 10 times above normal had Lp(a) 
levels either undetectable or inappropriately low for the apo(a) 
isoform. Lp(a) levels increased by nearly 10-fold on average 
after correction of the biliary obstruction. It should be noted 
that a similar observation was previously made with chil-
dren affected by Alagille syndrome, where the inappropriate 
maturation of intrahepatic biliary canaliculi causes a signifi-
cant elevation in plasma bile acid levels, and where extreme 
hypercholesterolemia is accompanied by low or undetectable 
Lp(a) levels.21 In their previous paper, the authors also showed 
that ligation of the common biliary duct in transgenic mice 
expressing human apo(a) reduced the synthesis of this protein 
by nearly 90%. This effect was repeated by cholic acid treat-
ment, thus suggesting a role for farnesoid X receptor (FXR), a 
transcription factor that binds and gets activated by bile acids. 
Indeed, the effect of cholic acid on apo(a) synthesis was not 
noted in FXR null mice. The authors were able to identify the 
direct repeat 1 element (nucleotides 2826 to 2814) of the 
apo(a) gene promoter as a negative FXR response element. 
The inhibitory effect of FXR was attributable to competi-
tive direct repeat 1 binding with hepatocyte nuclear factor 
4a, which instead promotes transcription of the apo(a) gene. 
Although impressive, the results also showed that the inhibi-
tory effect of cholic acid on apo(a) synthesis could not be 
attributed exclusively to FXR competition with hepatocyte 
nuclear factor 4a at the direct repeat 1 element. Because FXR 
also transactivates mouse fibroblast growth factor (FGF)15 
and its human ortholog, FGF19, an intestinal protein that sig-
nals transcriptional repression of bile acid biosynthesis,22 the 
authors conducted another series of experiments to complete 
this promising story.

In the current paper, the investigators show that FGF19 binds 
to fibroblast growth factor receptor 4 and activates a signal-
ing cascade involving the MAPK/ERK1/2 pathway leading to 
suppression of apo(a) transcription via nuclear displacement of 
phosphorylated Elk-1 and binding to Ets-1, a negative control 
element (21630 to 21615) in the human apo(a) gene pro-
moter. FGF19 treatment of primary hepatocytes from human 
apo(a) transgenic mice reduced accumulation of apo(a) in the 
medium by nearly 50%. Injection of FGF19 in mice produced 
a similar effect on liver mRNA and plasma levels of apo(a). 
An acute knockdown of fibroblast growth factor receptor 4, 
the receptor for FGF19, significantly reduced the inhibitory 
effect on apo(a) transcription. After showing that FGF19 
causes phosphorylation of ERK1/2, both cloning experiments 
and in silico analysis suggested the Ets-1 element as the bind-
ing site for an inhibitory effect. Elk-1 was then an obvious 
choice, because this nuclear factor is a substrate for ERK1/2 
and is known to bind Ets-1. Proof of this involvement comes 

from a chromatin precipitation experiment showing binding 
of Elk-1 to the Ets-1 element of the apo(a) promoter after 
incubation with FGF19.

Although obtained in an artificial setting using human pro-
teins in the mouse model, these results are novel and relevant 
to development of therapeutics, as they forecast the possibil-
ity that natural molecules such as bile acids or novel FXR 
and FGF19 agonistic agents may be used to decrease apo(a) 
synthesis and regulate plasma Lp(a) levels. However, a more 
informed expectation for the clinical applicability of such 
an intervention would obviously derive from human studies. 
Since FXR agonists have been tested and may be marketed 
for treatment of subjects with primary biliary cirrhosis (http://
clinicaltrials.gov/ct2/show/NCT00550862), this patient popu-
lation is unlikely to yield information on Lp(a), as its levels 
should be depressed by the condition and further suppressed 
by treatment. We encourage an evaluation of Lp(a) level 
changes in existing clinical trial data sets of subjects taking 
either bile acids for treatment or prevention of cholelithiasis, 
or bile acid binding resins for lipid or glucose management.
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