Xanthine Oxidoreductase Is Involved in Macrophage Foam Cell Formation and Atherosclerosis Development

Akifumi Kushiyama, Hirofumi Okubo, Hideyuki Sakoda, Takako Kikuchi, Midori Fujishiro, Hirokazu Sato, Sakura Kushiyama, Misaki Iwashita, Fusanoi Nishimura, Toshiaki Fukushima, Yusuke Nakatsu, Hideaki Kamata, Shoji Kawazu, Yukihito Higashi, Hiroki Kurihara, Tomoichiro Asano

Objective—Hyperuricemia is common in patients with metabolic syndrome. We investigated the role of xanthine oxidoreductase (XOR) in atherosclerosis development, and the effects of the XOR inhibitor allopurinol on this process.

Methods and Results—Oral administration of allopurinol to ApoE knockout mice markedly ameliorated lipid accumulation and calcification in the aorta and aortic root. In addition, allopurinol treatment or siRNA-mediated gene knockdown of XOR suppressed transformation of J774.1 murine macrophage cells, treated with acetylated LDL or very low density lipoprotein (VLDL) into foam cells. This inhibitory effect of allopurinol was also observed in primary cultured human macrophages. In contrast, overexpression of XOR promoted transformation of J774.1 cells into foam cells. Interestingly, SR-A1, SR-B1, SR-B II, and VLDL receptors in J774.1 cells were reduced by XOR knockdown, and increased by XOR overexpression. Conversely, expressions of ABCA1 and ABCG1 were increased by XOR knockdown and suppressed by XOR overexpression. Finally, productions of inflammatory cytokines accompanied by foam cell formation were also reduced by allopurinol administration.

Conclusion—These results strongly suggest XOR activity and/or its expression level to contribute to macrophage foam cell formation. Thus, XOR inhibitors may be useful for preventing atherosclerosis. (Arterioscler Thromb Vasc Biol. 2012; 32:291-298.)

Key Words: atherosclerosis ■ cell physiology ■ cytokines ■ macrophages ■ xanthine oxidoreductase

A relationship between serum uric acid levels and atherosclerotic disease development has been suggested.1-3 In addition, there is epidemiological evidence of an association between hyperuricemia and metabolic syndrome,1 type 2 diabetes,4 chronic kidney diseases,5,6 heart failure incidence in older adults,7 and with mortality in patients undergoing percutaneous coronary intervention or with acute myocardial infarction.8-10 Uric acid itself reportedly functions as an antioxidant,11 though the process of uric acid synthesis is accompanied by the generation of reactive oxygen species. Xanthine oxidoreductase (XOR) is a key enzyme in the uric acid production pathway; XOR oxidizes hypoxanthine from nucleic acid metabolites into xanthine, and xanthine into uric acid. XOR basically oxidizes a variety of purines and pterins, classified as molybdenum iron-sulfur flavin hydroxylases. XOR tissue and cellular distributions are high in the mammalian liver and intestine due to XOR-rich parenchymal cells.12 XOR activity is low in human serum, brain, heart, and skeletal muscle, though a recent study revealed microvascular endothelial cells to be rich in XOR activity.13 It seems that XOR does not induce harmful reactive oxygen species production under normal conditions but in pathological states such as ischemic congestive heart failure, XOR activity increases drastically and XOR localizes within CD68 positive macrophages.14 Allopurinol, a xanthine oxidase (XO) inhibitor, has been widely used for hyperuricemia treatment. Oxypurinol, a hydroxide and the main metabolite of allopurinol generated by XOR, covalently binds to XOR and thereby inhibits its activity.15 Allopurinol reportedly ameliorates chronic stable angina16 and protects the heart during ischemic reperfusion,17 and oxypurinol improves the left ventricular ejection fraction in congestive heart failure patients with low left ventricular ejection fraction.18 It was also suggested that XO inhibitors improve endothelium-dependent vascular relaxation in blood vessels of hyperlipidemic rabbits.19

Macrophages play key roles in atherosclerosis development. Macrophages migrate into pathological lesions such as dysfunctional endothelium and then develop into foam cells,
which contribute to vascular stenosis and plaque instability. Foam cell formation by macrophages is accelerated by several extracellular factors, i.e., LDL, especially modified LDL,20 such as oxidized LDL or acetyl LDL (AcLDL), very low density lipoprotein (VLDL),21 and saturated free fatty acids, as well as by cellular mechanisms such as lipid uptake, metabolism, and efflux. The serum of Watanabe heritable hyperlipidemic rabbits (WHH), characterized by a mutated LDL receptor, also reportedly induces macrophage foam cell formation.22,23 Moreover, foam cells secrete cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β,24 inducing cellular migration and apoptosis, which also contribute to the development of unstable plaques. The relationships between uric acid metabolism and atherosclerosis and their underlying mechanisms have yet to be elucidated. We thus investigated the effects of XOR and an inhibitor, allopurinol, on atherosclerosis development, focusing especially on effects on macrophages.

Materials and Methods

Animals

This study was approved by the Ethics Committee of the Institute for Adult Diseases, Asahi Life Foundation. All animal experiments were conducted in accordance with the Guidelines for the Care and Use of Laboratory Animals of the same institution. ApoE knockout (KO) mice (B6.129P2-Apoεmm1/ε/J) were purchased from Charles River Co. (Wilmington, MA). All mice were maintained under pathogen-free conditions and a 12-hour light/dark cycle with free access to food and water. The 9-month-old ApoE KO mice were given water either with or without 10 \(\mu\)mol/L allopurinol for 4 weeks, as previously described.25 The water was replaced every 2 days. Food was withdrawn 12 hours before the experiment.

Preparation of Tissue Samples for Histological Analysis

Nine-month-old mice, with and without allopurinol administration, were euthanized. The heart and entire aorta were removed en bloc and then formalin-fixed. Samples were rinsed with phosphate-buffered saline and aortic roots were routinely embedded in OTC compound (Sakura Finetek Japan, Tokyo, Japan). Sequential 5-μm slices of the aortic root were obtained. The aortic tree was incised longitudinally and then rinsed with phosphate-buffered saline.

Histological Analysis

The aortic root slices and opened aortic trees were stained with oil red O, as previously described.26 Aortic root slides were counterstained with hematoxylin. In addition, these samples were processed for immunofluorescent staining with antimacrophage antibody (Ab) (1:200, Abcam #56297, Cambridge, UK), and Alexa-fluor488-labeled anti-rat IgG (1:250, Invitrogen, CA). DAPI staining was used to detect the nuclei. Digital images of lesions were obtained with a Nikon Eclipse 50 microscope.

Areas of calcification and lipid accumulation as well as those of macrophage accumulation were histomorphometrically analyzed using MultiGauge ver. 3.1 (FujiFilm, Tokyo, Japan), according to the manufacturer’s instructions. The ratios of the lesion area stained by MultiGauge were similarly calculated.

Serum Investigation

Serum triglyceride (TG), cholesterol, free fatty acids, and uric acid were assayed with the Triglyceride E test, Cholesterol E test, HDL Cholesterol E test, NEFA C test, and UA C test (all from Wako Chemicals, Osaka, Japan), respectively, according to the manufacturer’s instructions. LDL cholesterol (cLDL) was calculated by the Friedewald formula as previously described.27

Reagents and Cell Culture

The murine macrophage J774.1 cell line was purchased from Riken (Tsukuba, Japan), cultured in RPMI 1640 (Sigma-Aldrich, St. Louis, MO) medium supplemented with 10% fetal calf serum (Invitrogen), penicillin 100 U/mL, and streptomycin 100 \(\mu\)g/mL (Invitrogen) at 37°C in 5% CO\textsubscript{2}. Allopurinol and all reagents were of analytic grade. Lipopolysaccharide (LPS) from Escherichia coli 0111: B4 was purchased from Sigma-Aldrich Japan. Serum of 3-month-old WHHL rabbits was purchased from Oriental Yeast (Tokyo, Japan). Primary Ab for western blotting and immuno-fluorescent staining were purchased, as follows: anti-XOR (Santa Cruz Biotechnology, CA, #sc-20991), LDLR (Cayman Chemical, MI, #1007665), VLDL receptors, SR-A1 (R&D Systems, MN, #AF2258, 1797), CD36 (Lifespan Bioscience, WA, #LS-B662/10019), SR-B1, -B2, ABCG1 (Novus Biologicals, CO, #NB400–101, 102, 132) and ABCA1 (Thermo Scientific, MA, #PA1-16789).

Isolation and Purification of Primary Human Macrophages

To obtain monocytes/macrophages, we isolated peripheral blood mononuclear cells were isolated from 20 mL of blood by centrifugation over a density gradient using Ficoll-Paque PREMIUM (GE Healthcare Japan, Tokyo, Japan). Peripheral blood mononuclear cells were resuspended in 10 mL of RPMI 1640 medium containing 10% fetal bovine serum and purified using Ficoll-Paque PREMIUM. The primary human macrophages obtained were spread onto 24-well culture plates. The indicated concentration of allopurinol was added to the medium 2 hours prior to addition of WHHL rabbit serum and purified using MSP-P (JIMRO, Gunma, Japan) according to the manufacturer’s instructions. The primary human macrophages obtained were spread onto 24-well culture plates. The indicated concentration of allopurinol was added to the medium 2 hours prior to additional incubation with 50 \(\mu\)g/mL AcLDL (COSMO-Bio, Tokyo, Japan) for 24 hours. After incubation with or without allopurinol or AcLDL, the cells were stained with AdipoRed according to the manufacturer’s instructions. Lipid accumulation in macrophages was visualized with a Leica DMIRB microscope.

Quantification of Lipid Accumulation in Macrophages

J774.1 cells were cultured at 90% confluence on 96-well or 12-well plates for lipid accumulation assays as previously described.28 The indicated concentration of allopurinol was added to the medium 2 hours prior to additional incubation with 10 ng/mL LPS, 1% WHHL rabbit serum, 50 \(\mu\)g/mL AcLDL or 50 \(\mu\)g/mL VLDL, for 24 hours. The cells were then stained with AdipoRed and visualized with a Leica DMIRB microscope, or subjected to lipid accumulation quantification using an ARVO MX fluorimeter (PerkinElmer, MA), according to the manufacturer’s instructions.

DiI AcLDL Uptake Assay

For the DiI (3,3′-diododecylindocarbocyanine)-AcLDL uptake assay, 50 \(\mu\)g/dL. DiI AcLDL were added to RPMI 1640 medium containing the indicated concentrations of WHHL rabbit serum and allopurinol. Then the cells were incubated for another 4 hours, and finally rinsed twice with phosphate-buffered saline. Cellular DiI-AcLDL uptake was then measured using the ARVO MX fluorimeter.

Overexpression of XOR and Knockdown of XOR

The cDNA encoding mouse XOR was obtained from Kazusa DNA Research Institute (Chiba, Japan). XOR cDNA and control LacZ cDNA were each inserted into pcDNA3.1 (+) plasmids. The siRNAs of XOR and the control were purchased from Invitrogen (XOR siRNA #1320003 MSS238717, control siRNA HiGC 12935–400). Lipofection of cDNA plasmids or siRNA was performed using FuGene HD (Roche, Basel, Switzerland) or lipofectamine RNAiMAX (Invitrogen), respectively, according to the manufacturer’s instructions.
Western blot analysis was carried out as described previously. In brief, 10 μg of protein were separated by SDS-PAGE and electropherically transferred to membranes, which were then incubated with specific Ab. The antigen-Ab interactions were visualized using HRP-conjugated secondary Ab and SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific). Band images were obtained with LAS-4000 (FujiFilm) and quantified using MultiGauge ver. 3.1. Fold changes in protein expressions, as compared to β-actin, were determined in triplicate.

Quantification of Cytokine Expressions

J774.1 cells were cultured in RPMI 1640 with 10% FCS. The indicated concentration of allopurinol was added to the medium 2 hours prior to additional incubation with 10 ng/mL LPS or 1% WHHL rabbit serum for 24 hours. Then, mRNA was prepared from the cells using an RNeasy-mini kit (QIAGEN, Hilden, Germany) according to the manufacturer’s instructions and 1 μg of this mRNA was reverse transcribed with Transcriptor Reverse Transcriptase (Roche). Quantitative real-time PCR was run with a LightCycler480 (Roche Diagnosis Japan) using FastStart SYBR Green Master (Roche). The primers were designed as follows: mouse IL-1β forward, 5′-TGCTCTACAGGTCACAAAGAAA-3′, mouse IL-1β reverse, 5′-CTGCTCAGGTCACAAAGAAA-3′, mouse IL-6 forward, 5′-GATGGCCTACAAACTGGATATAATC-3′, mouse IL-6 reverse, 5′-CTGGCACCACTAGTTGGTTGTC-3′, mouse TNF-α forward, 5′-GGTCTTTCTCCTTCTGCT-3′, mouse TNF-α reverse, 5′-GTCTGGGCCCCATAGAATCTGAT-3′, mouse actin forward, 5′-ATCA TTGCTCTCCTGAAGG-3′, mouse actin reverse, 5′-GCTGATCAC ATCTGAGAA-3′. Post-PCR melting curves confirmed the specificity of single-target amplification. Relative gene expressions were calculated by the efficiency correction method. Fold changes in the expressions of IL-1β, IL-6, IL-12, and TNF-α normalized by the actin level were determined in triplicate.

Statistical Analysis

Results are presented as means±SE. ANOVA and Student t test were used for parametric data, the Mann-Whitney U test for nonparametric data. Statistical significance was P<0.05.

Results

In Vivo Quantification of Atherosclerotic Plaque in ApoE KO Mice

A 10 μmol/L dose of allopurinol was administered daily for 4 weeks to 9-month-old ApoE KO mice (n=8). Oil red O staining revealed markedly reduced lipid accumulation in the aortic roots of allopurinol-treated ApoE KO mice (upper panels of Figure 1a), quantified as a 45.5% reduction in lipid droplets as compared with control ApoE KO mice (Figure 1b). Numbers of macrophages in aortic sections were also significantly lower, as shown by immunostaining (lower panels of Figure 1a), and quantification revealed a 72.2% reduction in the macrophage accumulation area (Figure 1c). The area of calcification in the aorta (Figure 1d) was also estimated and revealed a 67.0% reduction in the allopurinol-treated group, as compared with the control (Figure 1e). In allopurinol-treated mice, serum TG levels were slightly lower than in control mice, but this difference was not statistically significant (Figure 1f). Serum uric acid was reduced by 65.1%, whereas serum concentrations of total cholesterol, HDL, cLDL, and free fatty acids did not differ between the allopurinol-treated and control groups (1f). There were no differences in body weight between the 2 groups throughout the study period.
Thus, allopurinol markedly suppressed atherosclerosis in vivo without significantly altering cholesterol levels.

In Vitro Quantification of Macrophage Foam Cell Formation

J774.1 cells were incubated with 10 ng/mL LPS, 50 μg/mL acetyl LDL (AcLDL), 50 μg/dL VLDL, or 1% WHHL rabbit serum in the absence or presence of the indicated allopurinol concentrations (Figure 2a and 2b). Transformation of J774.1 cells into lipid-containing foam cells was examined by Adipored staining, followed by quantification. It was revealed that allopurinol reduced lipid accumulation in J774.1 cells, induced by AcLDL, VLDL, or WHHL rabbit serum. LPS treatment for 24 hours did not affect lipid accumulation in J774.1 cells. Very similarly, allopurinol markedly ameliorated AcLDL-induced lipid accumulation in primary human macrophages (Figure 2c).

Allopurinol Suppresses Uptake of AcLDL Into Macrophages

Because AcLDL-induced transformation of J774.1 cells into foam cells was suppressed, the effect of allopurinol on AcLDL uptake was investigated. The J774.1 cells were incubated with normal or 0.5% to 2% WHHL rabbit serum, in the absence or presence of the indicated allopurinol concentrations. Then, transport of Dil AcLDL into the cells was examined. Allopurinol concentration-dependently inhibited WHHL serum-enhanced Dil AcLDL uptake, but had no effect on that taken up by cells incubated with normal rabbit serum (Figure 2c).

XOR Expression and Lipid Accumulation

Because allopurinol was shown to inhibit lipid accumulation in macrophages, we next examined the effect of XOR overexpression, which resulted in an approximately 1.8-fold increase in total expression of XOR protein, whereas siRNA-mediated gene-knockdown of XOR resulted in a 50% expression reduction (Figure 3a). XOR overexpression exacerbated foam cell formation (Figure 3b and 3c) and increased Dil AcLDL uptake (Figure 3d) into J774.1 cells, although these reactions were inhibited by XOR knockdown (Figure 3b, 3e, and 3f). XOR overexpression also induced lipid accumulation even in the absence of additional lipids in the medium.
Moreover, XOR overexpression with VLDL incubation induced cellular enlargement and multinucleation (Figure 3b).

Expressions of Lipoprotein Receptors and ABC Transporters Involved in Lipid Transport

XOR overexpression induced expressions of lipoprotein receptors, such as SR-B1, SR-B2, and VLDL. XOR siRNA knockdown diminished CD36, SR-A1, and LDL receptors. With XOR overexpression, ABCA1 and ABCG1 were diminished, whereas XOR knockdown induced expressions of ABC transporters such as ABCA1 and ABCG1 (Figure 4). In support of these data, allopurinol also suppressed lipoprotein receptors and induced ABCA1 and ABCG1 (Supplemental Figure III, available online at http://atvb.ahajournals.org).

Inflammatory Cytokine Secretions and Key Molecules in Atherosclerosis Development

Inflammatory cytokines such as IL-1β, IL-6, IL-12, and TNFα were dose-dependently inhibited by allopurinol when foam cell formation was triggered by WHHL serum (Supplemental Figure IVa–IVd), whereas secretions of LPS-induced cytokines, other than IL-6 (Supplemental Figure IVg), were unaffected by allopurinol (Supplemental Figure IVe, IVf, and IVh). Incubation with WHHL serum induced VCAM1,
MCP-1, and MMP2 but neither ICAM1 nor MMP9 expression. Allopurinol suppressed these inductions and inhibited expression of MMP9. LPS induced MCP-1 and MMP2, and these expressions were slightly blunted by allopurinol administration. VCAM1 and MMP9 were suppressed by 10 ng/mL LPS, and adding allopurinol further suppressed both (Supplemental Figure V).

Discussion
This study is the first to show that XOR plays a key role in the transformation of macrophages into foam cells and the development of atherosclerotic plaque. It was clearly demonstrated that oral administration of allopurinol for 4 weeks significantly inhibited lipid accumulation and calcification in the aortas of ApoE KO mice. Interestingly, serum lipid levels were not significantly altered by allopurinol. TG was slightly, but not significantly, reduced. Rats with fructose-induced hyperuricemia given allopurinol had reduced serum TG levels suggesting a weak TG-lowering effect in rodents. In contrast, allopurinol markedly reduced serum uric acid in ApoE KO mice to approximately one-third of normal.

While XOR activity is highest in the liver and intestines, a previous histological study revealed that XOR is also present in macrophages. In good agreement with that report, we observed XOR to be abundant in macrophages clustered at the aortic root (Supplemental Figure IA and IB). Importantly, using XOR overexpression as well as XOR siRNA or allopurinol treatment, we demonstrated XOR activity to be critical for the transformation of J774.1 cells and human macrophages into foam cells. The allopurinol concentration was essentially within physiological range, ie, the trough serum oxypurinol concentration approximated that achieved by a 100 to 200 mg single allopurinol administration to hyperuricemic patients. Thus, our in vitro results might be applicable to clinical practice. XO activation was induced by hypoxia, LPS, hypoxia-inducible factor 1, and inflammatory cytokines like IL-1β. We also found secretion of inflammatory cytokines to be accompanied by foam cell formation, which was blocked by XOR inhibition.

Inflammatory cytokines were induced via XOR when foam cells formed, although not via, at least not entirely, the XOR pathway when stimulated by LPS. These observations suggest a vicious cycle of lipid accumulation and XOR activation to be involved in foam cell formation, which might contribute to the mechanism of plaque development. Phagocytosis was not affected by XOR inhibition (Supplemental Figure II). Thus, phagocytic activity does not involve XOR.
There are reports describing XOR as an endogenous regulator of cyclooxygenase (Cox)-2 in the inflammatory system, and XOR appears to be central to innate immune function. In addition, XOR is critically involved in both differentiation and lipid metabolism of adipose tissue. Because XOR is a regulator of adipogenesis and peroxisome proliferator-activated receptor activity, XOR deficiency mice demonstrate a 50% reduction in adipose mass versus their littermates. PPARγ also plays roles in macrophage lipid efflux in a manner opposite that of lipid retention. Cox-2 has central roles in innate immunity and inflammation and is regulated by a negative feedback loop mediated by PPARγ. XOR is thought to be upstream from PPARγ in lipid retention and also to induce Cox-2, which then promotes inflammation, also possibly constituting a feedback loop.

In macrophages, cellular mechanisms of lipid metabolism such as lipid influx and efflux are mediated by lipoprotein receptors such as scavenger receptors and some ABC transporters. As to scavenger receptors, both class A, especially SR-A1, and class B, such as SR-B1 and -B2, receptors appear to be involved in this XOR system. Class A receptors include SR-A1, SR-A2, MARCO, and SRCL, receptors for oxidized LDL and AcLDL, whereas class B receptors include CD36, SR-B1, and mediators of MAPK or TLR signaling, leading to expressions of inflammatory cytokines and reactive oxygen species generation. Therefore, the SR-B receptor decrease with XOR inhibition observed herein might suppress cytokine expressions. Among proteins involved in lipid uptake, VLDL receptor was strongly induced by XOR overexpression. Although cholesterol efflux was not examined, according to our data, expressions of ABCA1 and ABCG1 were reduced by XOR overexpression. Inflammation reportedly inhibits expressions of these genes.

In ApoE KO mice, atherosclerotic plaque was predominantly derived from ApoE deficiency in HDL leading to impaired efflux of cholesterol. Influx of cholesterol in ApoE KO mice depends on high serum cholesterol levels, produced by serum ApoE deficiency, dysfunction of the normal, rapid catabolism of chylomicron remnants entering the liver via ApoE, and evident accumulation of VLDL containing cholesteryl esters. Allopurinol did not change serum cholesterol levels, although XOR expression changed amounts of lipid transporting proteins in macrophages. Thus, the antiatherosclerotic effect of allopurinol is independent of lipoprotein metabolism in the liver and might be directed to macrophages.

A previous report revealed tungsten to prevent atherosclerosis development but did not focus on lipid accumulation in plaque areas or foam cell formation by macrophages. In addition, tungsten inhibits XDH transcription and also proteolytic processing of XDH protein. Thus, proteolytic involvement of tungsten in more proteins than just XDH cannot be ruled out.

A major limitation in applying our results to clinical practice appears to be the differences in XOR distributions among humans and other species, in both physiological and pathophysiological states. These differences are not yet well understood. However, macrophages express XOR and are known to play roles in such disorders as angina, congestive heart failure, and chronic kidney disease, and our results indicate allopurinol is directly and significantly involved in the transformation of macrophages into foam cells.

Although further investigation is needed, our results clearly suggest the importance of inhibiting XO activity for the prevention and treatment of atherosclerosis and may provide insights allowing the development of novel antiatherosclerotic drugs.

Acknowledgments

Akifumi Kushiyama, Hirofumi Okubo, and Tomaichoiro Asano designed research; Akifumi Kushiyama, Hirofumi Okubo, Hideyuki Sakoda, Takako Kikuchi, Midori Fujishiro, Hirokazu Sato, Sakura Kushiyama, Misaki Iwashita Yusuke Nakatsu, Fusamori Nishimura, Toshiaki Fukushima, Yukihito Higashi, and Hiroki Kurihara performed research; S.K., Yukihito Higashi, and Hiroki Kurihara analyzed data; and Akifumi Kushiyama and Tomaichoiro Asano wrote the paper.

Disclosures

None.

References

32. Nicholas SA, Bubnov VV, Yasinska IM, Sunbayev VV. Involvement of xanthine oxidase and hypoxia-inducible factor 1 in toll-like receptor 7/8-mediated activation of caspase 3 and interleukin-1beta. *Cell Mol Life Sci.*

34. Vorbach C, Harrison R, Capecci MR. Xanthine oxidoreductase is central to the evolution and function of the innate immune system. *Trends Immunol.* 2003;24:512–517.

Xanthine Oxidoreductase Is Involved in Macrophage Foam Cell Formation and Atherosclerosis Development

Akifumi Kushiyama, Hiroyuki Okubo, Hideyuki Sakoda, Takako Kikuchi, Midori Fujishiro, Hirokazu Sato, Sakura Kushiyama, Misaki Iwashita, Fusanori Nishimura, Toshiaki Fukushima, Yusuke Nakatsu, Hideaki Kamata, Shoji Kawazu, Yukihito Higashi, Hiroki Kurihara and Tomoichiro Asano

Arterioscler Thromb Vasc Biol. 2012;32:291-298; originally published online November 17, 2011;
doi: 10.1161/ATVBAHA.111.234559
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/32/2/291

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/
Supplemental Materials and Methods

Reagents

Primary Ab for western blotting were purchased from Santa Cruz: anti-VCAM1 (#sc-8304), anti-ICAM1 (#sc-1511), anti-MCP-1 (#sc-1784), anti-MMP2 (#sc-10736) and anti-MMP9 (#sc-6840).

Assay of phagocytic activity

The indicated concentration of allopurinol was added to the medium 2h prior to additional incubation with 10ng/ml LPS or 1% WHHL rabbit serum for 24h. The phagocytic activity of J774.1 cells, treated as described above, was assayed using a phagocytosis assay kit (IgG FITC, Cayman Chemicals) according to the manufacturer’s instructions. In brief, latex beads coated with fluorescently-labeled rabbit-IgG served as a probe for quantification of the phagocytic process in vitro. The engulfed fluorescent-beads were detectable using a Leica DMIRB microscope, with excitation and emission at 485 and 535 nm.

Supplemental Figure Legends

Supplemental Figure I

XOR expression. a. XOR expression in the aortic root. Macrophages and XOR
expression were visualized as green and red, respectively. b. Magnified view within the gray square in supplemental figure Ia.

Supplemental Figure II

The phagocytic capability of J774.1 cells was accelerated by stimulation with 1% WHHL serum or 10ng/ml LPS, but neither effect was diminished by allopurinol administration.

Supplemental Figure III

Quantification of lipoprotein receptors and ABC transporters involved in lipid transport in J774.1 cells incubated with 30μM allopurinol. Western blotting was performed using specific antibodies for lipoprotein receptors and ABCA1 and ABCG1. Representative bands and quantified band intensities are presented as means±SE. * indicates statistical significance at p<0.05. Lipoprotein receptors were suppressed, while ABCA1 and G1 were up-regulated, by allopurinol.

Supplemental Figure IV

Allopurinol effects on secretions of inflammatory cytokines from J774.1 cells induced by 1% WHHL rabbit serum and 10ng/ml LPS. 5a-d, incubation with 1% WHHL rabbit serum, 5e-h, incubation with 10ng/ml LPS. IL indicates interleukin, TNF, tumor necrosis factor. Inflammatory cytokines such as IL-1β, IL-6, IL-12 and TNFα, were dose-dependently inhibited by allopurinol when foam cell formation was triggered by
WHHL serum (IVa-d), while secretions of LPS-induced cytokines, other than IL-6 (IVg), were unaffected by allopurinol (IVe, IVf, and IVh).

Supplemental Figure V

Quantification of key cytokines and molecules which can induce cell migration or contribute to the development of unstable plaques. Monocyte chemoattractant protein (MCP)-1, VCAM-1, ICAM-1 and metalloprotenase (MMP)-2, 9 in J774.1 cells were investigated. J774.1 cells were incubated with 1% WHHL serum or 10ng/ml LPS, with 2 hr prior incubation with 30μg/ml allopurinol. Western blotting was performed using specific antibodies for these proteins. Quantified band intensities are presented as means±SE. * indicates statistical significance at p<0.05. Incubation with 1% WHHL serum induced VCAM1, MCP-1 and MMP2, but not ICAM1 or MMP9, expression under these conditions. Allopurinol suppressed the inductions and inhibited MMP9. LPS induced MCP-1 and MMP2, and these inductions were slightly blunted by allopurinol. VCAM1 and MMP9 were suppressed by 10ng/ml LPS, and addition of allopurinol further suppressed both.
Supplement material

Supplemental Figure I

a.

b.

Macrophage
XOR
Nucleus

—— 100µm
Supplemental Figure II.

1% WHHL serum
Allopurinol (μM)
- - 5 10 20

LPS 10ng/ml
Allopurinol (μM)
- - 5 10 20
Supplement material
Supplemental Figure III.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Control</th>
<th>Allopurinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDLR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLDLR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRA1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRB1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRB2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCA1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCG1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A.U.

expression/β-actin

Control
Allopurinol

* p < 0.05

Legend:
Supplemental Figure IV.

(a) IL-1β
(b) IL-6
(c) IL-12
(d) TNF-α

Fold of the control

<table>
<thead>
<tr>
<th>WHHL</th>
<th>Allopurinol (µM)</th>
<th>Fold of the control</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>+</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>+</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>+</td>
<td>20</td>
<td>4</td>
</tr>
</tbody>
</table>

(e) IL-1β
(f) IL-6
(g) IL-12
(h) TNF-α

Fold of the control

<table>
<thead>
<tr>
<th>LPS</th>
<th>Allopurinol (µM)</th>
<th>Fold of the control</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>+</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>+</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>+</td>
<td>20</td>
<td>4</td>
</tr>
</tbody>
</table>
Supplemental Figure V.

VCAM1

- A.U. expression/β-actin
- Control - WHHL - WHHL + LPS - LPS +
- 30μM Allopurinol

ICAM1

- A.U. expression/β-actin
- Control - WHHL - WHHL + LPS - LPS +
- 30μM Allopurinol

MMP2

- A.U. expression/β-actin
- Control - WHHL - WHHL + LPS - LPS +
- 30μM Allopurinol

MMP9

- A.U. expression/β-actin
- Control - WHHL - WHHL + LPS - LPS +
- 30μM Allopurinol

MCP-1

- A.U. expression/β-actin
- Control - WHHL - WHHL + LPS - LPS +
- 30μM Allopurinol