Trafficking of Endogenous Smooth Muscle Cell Cholesterol
A Role for Serum Amyloid A and Interleukin-1β

Lawrence G. Pessolano Jr,* Christopher P. Sullivan,* Stephanie E. Seidl, Celeste B. Rich, Laura Liscum, Phillip J. Stone, Jean D. Sipe, Barbara M. Schreiber

Objective—Intracellular cholesterol distribution impacts cell function; however, processes influencing endogenous cholesterol trafficking remain largely unknown. Atherosclerosis is associated with vascular inflammation and these studies address the role of inflammatory mediators on smooth muscle cell cholesterol trafficking.

Methods and Results—Interestingly, in the absence of an exogenous cholesterol source, serum amyloid A increased [14C] oleic acid incorporation into cholesteryl ester in rat smooth muscle cells, suggesting endogenous cholesterol trafficking to the endoplasmic reticulum. [3H] cholesteryl ester accumulated in cells prelabeled with [3H] cholesterol, confirming that serum amyloid A mediated the movement of endogenous cholesterol. Cholesterol movement was dependent upon functional endolysosomes. The cholesterol oxidase–sensitive pool of cholesterol decreased in serum amyloid A−treated cells. Furthermore, the mechanism whereby serum amyloid A induced cholesterol trafficking was determined to be via activation of expression of secretory phospholipase A₂, group IIA (sPLA₂) and sPLA₂–dependent activation of sphingomyelinase. Interestingly, although neither tumor necrosis factor-α nor interferon-γ induced cholesterol trafficking, interleukin-1β induced [14C] cholesteryl ester accumulation that was also dependent upon sPLA₂ and sphingomyelinase activities. Serum amyloid A activates smooth muscle cell interleukin-1β expression, and although the interleukin-1–receptor antagonist inhibited the interleukin-1β–induced cholesterol trafficking, it had no effect on the movement of cholesterol mediated by serum amyloid A.

Conclusion—These data support a role for inflammation in endogenous smooth muscle cell cholesterol trafficking from the plasma membrane to the endoplasmic reticulum. (Arterioscler Thromb Vasc Biol. 2012;32:2741-2750.)

Key Words: cholesterol trafficking ■ smooth muscle cells ■ serum amyloid A ■ interleukin-1β

The distribution of cholesterol varies widely among different cellular compartments such that the highest percentage (estimated to be >60%) of the total cell cholesterol is found in the plasma membrane of cultured cells and a relatively low percentage (estimated to be ≈5%) is found in the endoplasmic reticulum. Cholesterol moves between cellular compartments and both vesicular and nonvesicular-mediated trafficking of cholesterol between organelles have been described. In addition to cholesterol movement within intracellular compartments, uptake from exogenous sources and efflux to cholesterol acceptors contribute to cholesterol homeostasis. Importantly, the distribution of cell cholesterol in various compartments is known to have functional implications ranging from signaling initiated at plasma membrane lipid rafts and caveolae to regulation of gene transcription by cholesterol in the endoplasmic reticulum.

It is believed that the differential equilibrium of cholesterol in various membranes is maintained by differences in lipid composition. Thus, it has been noted that the sphingomyelin content of the membrane is critical for maintaining levels of cholesterol, and treatment with exogenous sphingomyelinase results in the liberation of plasma membrane cholesterol that moves to the endoplasmic reticulum. Little is known about what influences endogenous trafficking of cholesterol and, in particular, whether inflammatory processes associated with atherosclerosis affect intracellular cholesterol movement. Acute phase serum amyloid A (SAA) and interleukin-1β (IL-1β) are expressed in atherosclerotic lesions. Recently, we showed that SAA activates expression of another acute phase protein, secretory phospholipase A₂, group IIA (sPLA₂) in aortic smooth muscle cells. Likewise, IL-1β induces smooth muscle cell sPLA₂ gene expression. This report addresses the hypothesis that SAA- and IL-1β–induced sPLA₂ mediates cholesterol trafficking to the endoplasmic reticulum. The studies demonstrate that SAA and IL-1β induce the trafficking of endogenous cholesterol to the endoplasmic reticulum in aortic smooth muscle cells and that the trafficking of cholesterol is dependent on the activation of the sPLA₂ expression. This work demonstrates for the first time that inflammatory processes associated with atherosclerosis affect intracellular cholesterol movement.

Received on: August 1, 2012; final version accepted on: August 8, 2012.
From the Department of Biochemistry, Boston University School of Medicine, Boston, MA (L.G.P.J., C.P.S., S.E.S., C.B.R., P.J.S., J.D.S., B.M.S.); and Department of Physiology, Tufts University School of Medicine, Boston, MA (L.L.).
*These authors contributed equally to this work.
Correspondence to Barbara M. Schreiber, PhD, Department of Biochemistry, Boston University School of Medicine, K207, 72 East Concord Street, Boston, MA 02118. E-mail schreibe@bu.edu
© 2012 American Heart Association, Inc.
Arterioscler Thromb Vasc Biol is available at http://atvb.ahajournals.org
DOI: 10.1161/ATVBAHA.112.300243
2741
processes associated with atherosclerosis are likely to have an impact on vascular smooth muscle cell function because of changes in the distribution of intracellular cholesterol pools.

Materials and Methods

Isolation, Culture and Treatment of Neonatal Rat Aortic Smooth Muscle Cells

In accordance with the practices approved by Boston University’s Institutional Animal Care and Use Committee, neonatal aortic smooth muscle cells were isolated and cultured as described previously. The cells were seeded in Dulbecco’s modified Eagle’s Medium supplemented with 100 units/mL penicillin, 100 μg/mL streptomycin, 0.1 mmol/mL MEM nonessential amino acids, and 1 mmol/mL MEM sodium pyruvate solution (DMEM; all from Mediatech, Inc, Manassas, VA) supplemented with 20% fetal bovine serum (FBS; Atlanta Biologicals, Lawrenceville, GA) and incubated at 37°C in a humidified atmosphere of 5% CO2/95% air. Cells maintained in primary stage for 1 week were then seeded into the first passage at a density of 2 × 10^3 cells/cm^2 in DMEM containing 10% FBS. Experiments were performed on cells in passages 1-3, at a density of 2 × 10^4 cells/cm^2. Before the addition of experimental reagents, the media were removed, the cells were washed twice, and media containing 10% lipoprotein-deficient serum (LDS), prepared as described previously, were added. β-Migrating very low density lipoprotein (βVLDL) was isolated as previously described by density gradient ultracentrifugation from the serum of male New Zealand white rabbits fed a diet rich in cholesterol and peanut oil. Recombinant SAA (PeproTech, Rocky Hill, NJ) was used at concentrations of 2-4 μg/mL as activity of various preparations differs somewhat. The reagents (βVLDL, SAA, IL-1β [eBioscience, San Diego, CA], murine tumor necrosis factor-α [TNFα; Peprotech], rat interferon-γ [IFNγ; eBioscience]) were then added unless inhibitors (chloroquine [MP Biomedical, Solon, OH], bafilomycin A1 [Sigma-Aldrich, St. Louis, MO], U18666A [Sigma-Aldrich], Ro23-9358 [Sigma-Aldrich], arachidonil trifluoromethyllate [AACOCF3; Enzo Life Sciences, Plymouth Meeting, PA], 3-O-methyl sphingomyelin [3-Ome sphingomyelin; Enzo Life Sciences], chicken egg yolk sphingomyelin [Sigma-Aldrich] and IL-1 receptor antagonist [IL-1Ra; R&D Systems, Minneapolis, MN]) were used, in which case they were added 1 hour before the addition of SAA or IL-1β. To study the effect of lipid-associated SAA, high-density lipoprotein– (HDL; Calbiochem, La Jolla, CA) associated SAA was prepared in DMEM-LDS by adding HDL (150 μg protein/mL) followed by SAA (2 μmol/L) and incubating first at room temperature for 15 minutes while shaking, followed by 15 minutes at 37°C. Samples were then added to the cells and comparisons were made to similarly treated samples containing SAA or HDL alone.

[3H] Cholesterol and [14C] Oleic Acid Incorporation into Cholesteryl Ester

[3H] cholesterol and [14C] oleic acid incorporation into cholesteryl ester was determined essentially as described. Briefly, cells were incubated with reagents in media containing 10% LDS in the presence of [3H] cholesterol (NEC-317; Perkin Elmer, Waltham, MA) complexed to albumin (0.43 μCi/mL). At the end of the indicated incubation, the lipids were extracted from the cell layer with hexane/isopropyl alcohol (3:2) and [14C] cholesteryl oleate accumulation determined by thin layer chromatography (either by liquid scintillation counting or autoradiographic imaging of cholesteryl ester spots; if the latter was used, the data were normalized to account for the difference in efficiency between the techniques). In addition, cell layer protein was solubilized with 0.2 N NaOH and total protein determined using the Pierce BCA Protein Assay Kit (ThermoFisher Scientific Inc., Rockford, IL) as per the manufacturer’s instructions. The data are expressed as [14C] cholesteryl oleate (cpm)/μg protein ± SD.

A double-label approach was also used to determine whether endogenous cholesterol trafficked to the endoplasmic reticulum. Cells were prelabeled with [3H] cholesterol (NET-139; Perkin Elmer) by removing media, washing twice and incubating overnight with [14C] oleic acid (2-3 μCi/mL) in DMEM containing LDS. Cells were washed 4-5 times, medium containing LDS was added, and cells were allowed to incubate overnight to equilibrate cellular cholesterol pools. Cells were treated with (or without) SAA and [14C] oleic acid as described above. At the end of the indicated incubation, lipids were extracted with hexane/isopropyl alcohol (3:2) and [14C] cholesteryl oleate accumulation and [3H] cholesterol ester determined by subjecting the extracts to thin layer chromatography. In addition, cell layer protein was solubilized with 0.2 N NaOH and total protein determined (BCA). The data are expressed as [14C] cholesteryl oleate or [3H] cholesteryl oleate (cpm)/μg protein ± SD.

Cell Proliferation Assay

Cell proliferation was determined using the MTT Cell Proliferation Assay (American Type Culture Collection, Manassas, VA) according to the manufacturer’s instructions.

Cholesterol Oxidase–Sensitive Pool of Cholesterol

Cells were labeled with [3H] cholesterol as described above. After equilibration, cells were treated with SAA for 7 days, at which time the cholesterol oxidase–sensitive pool of cholesterol was determined essentially as previously described. Briefly, media were removed, cells were washed with 1% fatty acid free bovine serum albumin in TRIS buffered saline (TBS; 50 mmol/L TRIS; pH 7.5; 150 mmol/L NaCl), then with phosphate buffered saline (PBS; 21–040, Mediatech, Inc), fixed with 1% glutaraldehyde in PBS, washed with PBS, and those cells to be treated received cholesterol oxidase (C6649; Sigma-Aldrich, 2 units/mL DMEM) for 30 minutes at 37°C. Cells were washed with PBS, lipids were extracted with hexane/isopropyl alcohol (3:2), and subjected to thin layer chromatography using a developing solution of hexane:ethyl ether:glacial acetic acid (130:30:2). Spots corresponding to cholesterol and cholestenone were measured by liquid scintillation counting. The data are expressed as [3H] cholestenone as a percentage of the total [3H] cholesterol ± SD calculated as follows: ([3H] cholestenone [cpm]/[3H] free cholesterol [cpm]+[3H] cholestenone [cpm]) ×100.

Enzyme Activity Assays

The activity of sPLA₂, in culture media harvested from cells treated in the presence or absence of SAA was determined using a commercially available Amplex Red Sphingomyelinase Assay Kit (Invitrogen, Grand Island, NY), cells treated in the presence or absence of SAA were washed twice with cold PBS on ice and then scraped in 1X reaction buffer supplied with the kit, frozen at –80°C overnight, then sonicated twice and centrifuged at 3000g for 10 minutes at 4°C. The supernatants were evaluated for enzyme activity according to the manufacturer’s instructions with fluorescence readings taken at 1 minute intervals for 1 hour, with an excitation wavelength of 530 nm and emission at 590 nm. Supernatants were also evaluated for total protein (BCA) and enzyme activity is expressed as the relative fluorescence emission units (mR FU)/minute during the linear range of enzyme activity, normalized to the total cell protein (mRFU/min/μg protein ± SD).

Real-Time Polymerase Chain Reaction

As previously described, total RNA was extracted, reverse transcribed, and the resultant cDNA used to determine mRNA expression levels of rat Pla2g2a by real-time polymerase chain reaction (PCR) analysis using SYBR Green primers synthesized by Eurofins MWG Operon (Huntsville, AL) (5′GTGACTCATGACGTTGTAC3′ and 3′AGACATGCACTGTCAGG3′) and 5′GTGACTCATGACGTTGTAC3′.
5’CAAAACATTCCAGCGCAGC3’). An 18S rRNA TaqMan primer set (Applied Biosystems, Grand Island, NY) was used for normalization. Calculations were carried out using the ΔΔCt method of relative quantitation (if expression levels were low such that there was no Ct value after 40 cycles, data were calculated using a Ct of 40. The data are expressed as relative mRNA levels ± SD (with expression in SAA- or IL-1β−treated cells set to a value of 1).

Statistical Analyses
The data, expressed as mean ± SD of samples from representative experiments, were analyzed by analysis of variance. Statistically significant differences of relevant comparisons were determined by Bonferroni post hoc analysis and reported when P<0.05.

Results
An acute phase protein, sPLA₂ is a member of the phospholipase family that cleaves fatty acids in the sn2 position of the phospholipid backbone. Its expression is stimulated by inflammatory cytokines, including IL-1β. Moreover, we showed that SAA activates smooth muscle cell expression of the Pla2g2a gene, resulting in an increase in sPLA₂ activity. It has been shown that arachidonic acid stimulates the activity of sphingomyelinase and that sphingomyelinase-mediated degradation of plasma membrane–associated sphingomyelin induces cholesterol movement to the endoplasmic reticulum. Thus, a hypothesis was formulated that SAA-induced smooth muscle cell sPLA₂ expression increases endogenous sphingomyelinase activity, thereby liberating plasma membrane–associated cholesterol that mobilizes to the endoplasmic reticulum. To test this hypothesis, rat smooth muscle cells were treated with SAA and cholesterol trafficking to the endoplasmic reticulum was monitored. Free cholesterol is esterified in the endoplasmic reticulum by acyl coenzyme A:cholesterol acyltransferase and measurements of cholesterol esterification reflect the accumulation of cholesterol in this compartment. Thus, to test the potential role of acute phase SAA on cholesterol movement to the endoplasmic reticulum, the incorporation of [14C] oleic acid into [14C] cholesteryl ester was measured in cultured aortic smooth muscle cells. Figure 1 shows that as expected, supplying the cells with an exogenous source of cholesterol from hypolipoproteinemic βVLDL (containing 0.4 or 2.0 µg protein/µL) increased cholesteryl esterification. Interestingly, the data show that SAA stimulated [14C] cholesteryl ester accumulation, supporting the notion that SAA induced the movement of cholesterol to the endoplasmic reticulum. It is noteworthy that although the higher concentration of βVLDL increased accumulation of [14C] cholesteryl ester in comparison with the lower dose, the increase did not reflect the 5-fold increase in lipoprotein concentration, suggesting that cholesterol mobilization by βVLDL in the endoplasmic reticulum was at or near maximum and that SAA was, therefore, quite efficient in inducing cholesterol movement.

To further verify the role of endogenous cholesterol movement by SAA, a double-label approach was taken. To study the movement of cell-associated cholesterol, smooth muscle cells were prelabeled with [3H] cholesterol. SAA was then added in the presence of [14C] oleic acid, and at 3, 6, and 24 hours, the cells were harvested and the accumulation of both [14C] cholesteryl ester and [3H] cholesteryl ester were studied. The data in Figure 2A and 2B show that there was a time-dependent accumulation of cholesteryl ester derived either from exogenous [14C] oleic acid or cell-associated [3H] cholesterol, respectively. These data confirm that SAA mediated the movement of endogenous cholesterol to the endoplasmic reticulum. It has been shown that both vesicular and nonvesicular pathways of cholesterol trafficking exist. To determine whether cholesterol movement by SAA is mediated by the endolysosomal system, its trafficking was measured in the presence of inhibitors of lysosomal function. As it is known that exogenous cholesterol delivered to the endoplasmic reticulum via βVLDL requires lysosomes, it was first determined whether cholesterol movement to the endoplasmic reticulum mediated by βVLDL could be inhibited in these cultures using known inhibitors. The data (not shown) demonstrated that pretreatment with either chloroquine (10 µmol/L), bafilomycin A1 (10 nmol/L), or the hydrophobic amine U18666A (5 µmol/L) inhibited βVLDL-induced cholesteryl esterification, so these conditions were used to determine whether lysosomal function is necessary for SAA-mediated cholesterol transport. Moreover, using the MTT assay, it was shown that inhibiting lysosomal function for 24 hours did not cause cell toxicity (data not shown). The data in Figure 3 show that the SAA-induced increase in cholesteryl ester accumulation was inhibited by treatment with chloroquine, bafilomycin A1 or U18666A.

To determine whether chronic SAA-mediated cholesterol trafficking resulted in a decrease in plasma membrane cholesterol, cells prelabeled with [3H] cholesterol were treated with (or without) SAA for 7 days, at which time the cholesterol oxidase–sensitive pool of cholesterol was determined. SAA-treated cells had less plasma membrane cholesterol as evidenced by a significant decrease of cholesterol oxidase–sensitive cholesterol when compared with control-treated cells (Figure 4).
The role of sPLA2 in SAA-induced trafficking of cholesterol to the endoplasmic reticulum was explored using an inhibitor of sPLA2 activity, Ro23–9358. Previously, we showed that Ro23–9358 inhibits the activity of SAA-induced sPLA2 in media harvested from smooth muscle cells that were treated with SAA.11 To determine its effectiveness when incubated directly with the cells, it was added to the cultures, and 24 hours later, media were collected and tested for sPLA2 activity.

The data in Figure 5A indicate that Ro23–9358 decreased the SAA-induced sPLA2 activity that accumulated during the time of incubation with SAA. Cholesterol esterification was measured in cells pretreated with Ro23–9358 before the addition of SAA and Ro23–9358 decreased the SAA-induced cholesterol trafficking, suggesting a role for sPLA2 in this process (Figure 5B). Likewise, the inhibition of SAA-mediated expression of sPLA2 in the presence of HDL as we previously reported11 (Figure 5C) also inhibited cholesterol trafficking to the endoplasmic reticulum (Figure 5D).

To determine whether cytosolic phospholipase A2, group IV (cPLA2) plays a role in SAA-induced cholesterol trafficking, [3H] cholesteryl ester accumulation was measured in cells treated with SAA in the presence of AACOCF3, an inhibitor of cPLA2.

![Figure 2](image_url)
Figure 2. Serum amyloid A (SAA) induces endogenous cholesterol trafficking to the endoplasmic reticulum. Smooth muscle cells were prelabeled with [3H] cholesterol as described in the Materials and Methods section. After an overnight equilibration, cells were treated in the absence (control [Ctl]) or presence of SAA (2 μmol/L) for 7 days, at which time the cholesterol oxidase–sensitive pool of cholesterol was determined as described in the Materials and Methods section. The data are expressed as [3H] cholesteryl oleate (cpm)/μg protein ± SD (n=3). [3H] cholesteryl ester accumulation was measured as described in the Materials and Methods section. The data are expressed as [3H] cholesteryl ester (dpm)/μg protein ± SD (n=3). A, [3H] cholesteryl oleate accumulation in SAA-treated cells at 24 hours (P<0.05) was significantly different from that in Ctl-treated cells. [3H] cholesteryl oleate accumulation in SAA plus Chl-treated (P<0.001), SAA plus U18-treated (P<0.001), and SAA plus U18-treated cells (P<0.001) was significantly different from that in SAA-treated cells.

![Figure 3](image_url)
Figure 3. Serum amyloid A (SAA)–mediated cholesterol trafficking is lysosome-dependent. Smooth muscle cells were treated in the absence or presence of SAA (4 μmol/L) and either no inhibitor (control [Ctl]), chloroquine (Ctl; 10 μmol/L), bafilomycin A1 (Baf; 10 nmol/L), or U18666A (U18; 5 μmol/L) with [14C] oleic acid for 24 hours, at which time [14C] cholesteryl oleate accumulation was measured as described in the Materials and Methods section. The data are expressed as [14C] cholesteryl oleate (cpm)/μg protein ± SD (n=3). [14C] cholesteryl oleate accumulation in Chl-treated (P<0.05), Baf-treated (P<0.05), and SAA-treated cells (P<0.001) was significantly different from that in Ctl-treated cells. [14C] cholesteryl oleate accumulation in SAA plus Chl-treated (P<0.001), SAA plus Baf-treated (P<0.001), and SAA plus U18-treated cells (P<0.001) was significantly different from that in SAA-treated cells.

![Figure 4](image_url)
Figure 4. Serum amyloid A (SAA) decreases plasma membrane cholesterol. Smooth muscle cells were prelabeled with [3H] cholesterol and then treated in the absence (control [Ctl]) or presence of SAA (2 μmol/L) for 7 days, at which time the cholesterol oxidase–sensitive pool of cholesterol was determined as described in the Materials and Methods section. The data are expressed as [3H] cholesteneone as a percentage of the total [3H] cholesterol ± SD (n=3) calculated as follows: ([3H] cholesteneone [cpm]/[3H] free cholesterol [cpm]+[3H] cholesteneone [cpm])×100 ± SD (n=3). The percentage of [3H] cholesteneone in SAA-treated cells (P<0.001) was significantly different from that in control (Ctl)-treated cells in the samples treated with cholesterol oxidase.
accumulation increased in cells treated with IL-1β. As we and others showed previously,11–14 sphingomyelin prevented SAA-induced cholesterol trafficking (Figure 7B). Moreover, replenishing the cells with sphingomyelin completely reversed the IL-1β-induced cholesterol trafficking (Figure 7C).

Jayadev et al20 showed that free arachidonic acid, a product of PLA2 activity, stimulates the activity of sphingomyelinase. Previous studies have shown that sphingomyelinase stimulates energy-independent transport of cholesterol to the endoplasmic reticulum.25 A role for sphingomyelinase in SAA-mediated cholesterol trafficking was explored; neutral sphingomyelinase activity was measured and SAA induced a chronic increase in activity (Figure 7A). To determine whether the increase in sphingomyelinase activity contributed to the SAA-mediated cholesterol trafficking, cells were treated with 3-OMe sphingomyelin to inhibit sphingomyelinase activity26 and it completely inhibited SAA-induced cholesterol trafficking (Figure 7B). Moreover, replenishing the cells with sphingomyelin prevented SAA-induced cholesterol trafficking (Figure 7C).

Other inflammatory mediators were evaluated for their ability to traffic cholesterol. As we and others showed previously,11–14 IL-1β activated the expression of sPLA2 mRNA but neither TNFα nor IFNγ activated sPLA2 mRNA expression (Figure 8A). Interestingly, consistent with our hypothesis on the role of sPLA2 in cholesterol trafficking, neither TNFα nor IFNγ induced cholesterol esterification but cholesterol ester accumulation increased in cells treated with IL-1β (Figure 8B).

Moreover, inhibiting sPLA2 activity with Ro23–9358 blocked the IL-1β–induced cholesterol esterification (Figure 8C). Likewise, inhibiting sphingomyelinase activity with 3-OMe sphingomyelin completely reversed the IL-1β–mediated movement of cholesterol (Figure 8D).

We previously showed that SAA activates smooth muscle cell IL-1β gene expression,11 so the possibility that the effect of SAA on cholesterol trafficking was mediated by IL-1β signaling was explored. IL-1Ra inhibited the IL-1β–induced cholesterol esterification, but SAA-induced trafficking was unaffected by IL-1Ra (Figure 9).

Discussion

It is well known that cholesterol entering the cell from extracellular sources (ie, from plasma-derived lipoprotein), traffics to the endoplasmic reticulum, thereby contributing to stringent regulation of cellular lipid metabolism.5 However, the influences of endogenous cholesterol trafficking remain largely unexplored. Moreover, although it is known that the distribution of cholesterol influences cell function, the role of inflammation on cholesterol repositioning has not been addressed. Smooth muscle cells are critical to proper vascular function; however, functional changes induce a phenotype that contributes to lesion formation in atherosclerosis.27 Therefore, the mechanisms inducing cholesterol movement in this cell type are of considerable interest. Recently, we reported that SAA activates smooth muscle cell expression of the sPLA2 gene.11
and it has been shown that IL-1β activates smooth muscle cell sPLA2 gene expression.11–13 This report examines the hypothesis that SAA induces the trafficking of endogenous plasma membrane cholesterol to the endoplasmic reticulum in aortic smooth muscle cells and that the trafficking is dependent on sPLA2 and sphingomyelinase activities. Moreover, the hypothesis that sPLA2 induced by IL-1β also mobilizes cholesterol to the endoplasmic reticulum was studied. The data show that smooth muscle cell cholesterol esterification was stimulated by SAA, as well as by IL-1β, and that the accumulation of cholesterol in the endoplasmic reticulum was cPLA2-, sPLA2-, and sphingomyelinase-dependent. The data support the hypothesis that the activation of sPLA2 expression results in the liberation of free fatty acids that activate endogenous sphingomyelinase, which degrades plasma membrane sphingomyelin, resulting in the release of plasma membrane cholesterol and its trafficking to the endoplasmic reticulum.

Evidence that supports a role for sPLA2 in SAA-induced cholesterol trafficking to the endoplasmic reticulum includes the finding that the pharmacological inhibitor of sPLA2 activity, Ro23–9358, decreased the SAA-induced cholesterol trafficking. Ro23–9358 did not fully inhibit the SAA-mediated

Figure 6. Serum amyloid A (SAA)-mediated cholesterol trafficking is cyclic phospholipase (cPLA2) dependent. A. Smooth muscle cells were treated in the absence or presence of AACOCF3 (10 μmol/L) and either in the absence (Ctl) or presence of SAA (2 μmol/L) for 24 hours, at which time total RNA was extracted and analyzed for secretory phospholipase A2, group IIA (sPLA2) mRNA as described in the Materials and Methods section. The data are expressed as relative sPLA2 mRNA levels ± SD (n=3; with SAA-treated cells set to a value of 1). The level of sPLA2 mRNA in SAA-treated cells was significantly different from that in Ctl-treated cells. [14C] cholesteryl oleate accumulation was measured as described in the Materials and Methods section. The data are expressed as [14C] cholesteryl oleate (cpm)/μg protein ± SD (n=3; with SAA-treated cells set to a value of 1). The level of sPLA2 mRNA in SAA-treated cells was significantly different from that in Ctl-treated cells.

Figure 7. Serum amyloid A (SAA)-mediated cholesterol trafficking is sphingomyelinase-dependent. A. Smooth muscle cells were treated in the absence (control [Ctl]) or presence of SAA (2 μmol/L) for 3 days and 7 days, at which time sphingomyelinase activity was measured as described in the Materials and Methods section. The data are expressed as relative fluorescence emission units (mRFU)/min/μg protein ± SD (n=3). Enzyme activity in SAA-treated cells was significantly different from that in Ctl-treated cells at both time points (P<0.001). B. Smooth muscle cells were treated in the absence or presence of 3-O-methyl sphingomyelin (3-OMe sphingomyelin 75 μmol/L) and either in the absence (Ctl) or presence of SAA (4 μmol/L) with [14C] oleic acid for 24 hours, at which time [14C] cholesteryl oleate accumulation was measured as described in the Materials and Methods section. The data are expressed as [14C] cholesteryl oleate (cpm)/μg protein ± SD (n=3; with SAA-treated cells set to a value of 1). [14C] cholesteryl oleate accumulation in SAA plus 3-OMe sphingomyelin–treated cells (P<0.0001) was significantly different from that in Ctl-treated cells. C. Smooth muscle cells were treated in the absence or presence of sphingomyelin (at the indicated dose) and either in the absence (Ctl) or presence of SAA (4 μmol/L) with [14C] oleic acid for 24 hours, at which time [14C] cholesteryl oleate accumulation was measured as described in the Materials and Methods section. The data are expressed as [14C] cholesteryl oleate (cpm)/μg protein ± SD (n=3; with SAA-treated cells set to a value of 1). [14C] cholesteryl oleate accumulation in SAA plus sphingomyelin–treated cells (5 μg/mL; P<0.05) was significantly different from that in sphingomyelin–treated cells (5 μg/mL). [14C] cholesteryl oleate accumulation in SAA plus sphingomyelin–treated cells at both doses (5 μg/mL, P<0.05; 10 μg/mL, P<0.001) was significantly different from that in SAA-treated cells.
trafficking of cholesterol, but it was noted that the inhibition of SAA-induced sPLA₂ activity was not complete under these experimental conditions. In our previous report, the inhibitor was added directly to the media after it was harvested from SAA-treated cultures, and even in lower doses than reported here, it was more effective in reducing enzyme activity than what is shown in Figure 5A. This discrepancy between the efficacy of Ro23–9358 added to the cell cultures before the incubation of SAA versus its efficacy when added to the enzyme containing media samples just before assaying activity is presumably because of a loss of activity of the inhibitor during the 24-hour incubation. It is likely that the lack of an even more robust reduction in SAA-induced cholesterol trafficking by Ro23–9358 was because of this loss of activity with time in culture (i.e., the role of sPLA₂ in this process is likely more profound than the pharmacological inhibitor studies indicated).

Slotte and Bierman²⁷ first demonstrated that neutral sphingomyelinase treatment of skin fibroblasts results in the movement of cholesterol to the acyl coenzyme A:cholesterol acyltransferase–sensitive pool as measured by cholesterol esterification. Moreover, arachidonic acid, a product of PLA₂ enzymes, was shown to stimulate the activity of sphingomyelinase.²⁰ These studies show that SAA activated neutral sphingomyelinase activity and that inhibition of neutral sphingomyelinase or exogenous addition of sphingomyelin prevented the SAA-mediated trafficking of cholesterol. Chatterjee²⁸ showed that TNFα activates neutral sphingomyelinase and induces cholesterol ester accumulation in human skin fibroblasts and it is interesting to speculate that this too was an sPLA₂-mediated response.37 In another study, TNF α increased sPLA₂ expression in human airway epithelial cells, whereas TNF α isolated from Naja Naja caused, if anything, a small decrease in cholesterol ester accumulation in isolated renal tubules,²⁹ and this could represent the difference in the source of PLA₂ such that the endogenous enzyme might be effective because of parameters including proper localization of the reaction products, making them available to activate the endogenous sphingomyelinase. It has been shown by others that TNFα and IFNγ activate the expression of sPLA₂. TNFα-mediated expression of sPLA₂ was shown in endothelial cells,³⁰ HepG2 cells,³¹ rat mesangial cells,³² astrocytes,^{33,34} and fetal rat calvarial bone-forming cells.³⁵ Lindbom et al³⁶ showed that IFNγ induced sPLA₂ expression in human airway epithelial cells, whereas TNFα did not. Of particular interest is the study using human smooth muscle cells in which IFNγ induced sPLA₂ expression, whereas TNFα only caused a transient increase in expression and in fact, it antagonized the IFNγ–mediated response.³⁷ In another study, TNF increased sPLA₂ expression in rat smooth muscle cells.³⁸ In the current report however, neither IFNγ nor TNFα induced cholesterol trafficking to the endoplasmic reticulum (Figure 8A), consistent with the lack of induction of sPLA₂ expression (Figure 8A).

It has been suggested that sphingomyelin and cholesterol form complexes of higher affinity than those formed between

![Figure 8. Interleukin-1β (IL-1β) induces cholesterol trafficking to the endoplasmic reticulum.](http://atvb.ahajournals.org/)

Figure 8. Interleukin-1β (IL-1β) induces cholesterol trafficking to the endoplasmic reticulum. **A**, Smooth muscle cells were treated in the absence (control [Ctl]) or presence of IL-1β (100 ng/mL), tumor necrosis factor-α (TNFα; 10 ng/mL) or interferon-γ (IFNγ; 50 U/mL) for 24 hours, at which time total RNA was extracted and analyzed for secretory phospholipase A₂, group IIA (sPLA₂) mRNA as described in the Materials and Methods section. The data are expressed as relative sPLA₂ mRNA levels ± SD (n=3; with IL-1β–treated cells set to a value of 1). The levels of sPLA₂ mRNA in IL-1β–treated cells (P<0.01) were significantly different from that in Ctl-treated cells. **B**, Smooth muscle cells were treated in the absence (Ctl) or presence of IL-1β (100 ng/mL), TNFα (10 ng/mL) or IFNγ (50 U/mL) with [14C] oleic acid for 24 hours, at which time [14C] cholesteryl oleate accumulation was measured as described in the Materials and Methods section. The data are expressed as [14C] cholesteryl oleate (cpm/µg protein ± SD (n=3). [14C] cholesteryl oleate accumulation in IL-1β–treated cells (P<0.0001) was significantly different from that in Ctl-treated cells. **C**, Smooth muscle cells were treated in the absence or presence of 3-O-methyl sphingomyelin (75 µmol/L) and either in the absence (Ctl) or presence of IL-1β (100 ng/mL) with [14C] oleic acid for 24 hours, at which time [14C] cholesteryl oleate accumulation was measured as described in the Materials and Methods section. The data are expressed as [14C] cholesteryl oleate (cpm/µg protein ± SD (n=3). [14C] cholesteryl oleate accumulation in IL-1β–treated cells (P<0.0001) was significantly different from that in Ctl-treated cells. **D**, [14C] cholesteryl oleate accumulation in IL-1β plus 3-OMe sphingomyelin–treated cells (P<0.0001) was significantly different from that in IL-1β–treated cells.
phosphatidylcholine and cholesterol. Recently however, the nature of the physical interaction between sphingomyelin and cholesterol has been questioned and an alternative explanation for sphingomyelinase-induced cholesterol trafficking has been suggested, which is that ceramide generated by sphingomyelinase might displace cholesterol from the membrane. \(^1\) In any case, degradation of sphingomyelin in the plasma membrane leads to a liberation of cholesterol from that pool and in inflammatory conditions, circulating plasma levels of the acute phase isoforms can be quite high, exceeding 1 mg/mL. \(^48\) Elevated plasma SAA has been shown to be an indicator of an increased risk for heart disease. \(^49\)–\(^51\) SAA is expressed in human and mouse atherosclerotic lesions,\(^52\)–\(^55\) suggesting that it may play a role in atherosclerosis, although whether SAA is proatherogenic or antiatherogenic is controversial. \(^9\) Our previous work demonstrated that IL-1β induces synthesis of SAA in cultured aortic smooth muscle cells\(^56\) and that SAA downregulates endogenous lipid biosynthesis. \(^57\) It is intriguing to speculate that because of an inflammatory process in the developing plaque, available IL-1β induces local synthesis of SAA by smooth muscle cells and that the SAA then acts in an autocrine fashion to induce intracellular movement of smooth muscle cell plasma membrane cholesterol to the endoplasmic reticulum. Likewise, IL-1β, which accumulates in atherosclerotic lesions and is known to activate smooth muscle cell sPLA\(_2\) expression, may contribute to functional changes because of the redistribution of intracellular cholesterol pools.

Previous work has suggested cross talk between sPLA\(_2\) and cPLA\(_2\) enzymes in that cPLA\(_2\) activity impacts IL-1β/TNFα–induced sPLA\(_2\) expression in rat fibroblastic 3Y1 cells\(^42\) and IL-1β/TNFα–induced expression of cPLA\(_2\) increases by introducing sPLA\(_2\) either by exogenous addition or by transfection in the sPLA\(_2\)–deficient mouse MC3T3-E1 cell line.\(^44\) Likewise, sPLA\(_2\) activates rat glomerular mesangial cell cPLA\(_2\).\(^45\) Moreover, studies in P388D1 macrophages and overexpression of sPLA\(_2\) and cPLA\(_2\) in HEK293 cells indicate functional cross-talk such that the activity of sPLA\(_2\) is dependent on the action of cPLA\(_2\).\(^43\) The data shown here support a role for cPLA\(_2\) in the sPLA\(_2\)–mediated cholesterol trafficking induced by SAA because of a cPLA\(_2\)–stimulated increase in expression of sPLA\(_2\). The functions of the SAA family, the members of which are the products of 4 genes, remain uncertain.\(^9\) In inflammatory conditions, circulating plasma levels of the acute phase isoforms can be quite high, exceeding 1 mg/mL. \(^48\) Elevated plasma SAA has been shown to be an indicator of an increased risk for heart disease. \(^49\)–\(^51\) SAA is expressed in human and mouse atherosclerotic lesions,\(^52\)–\(^55\) suggesting that it may play a role in atherosclerosis, although whether SAA is proatherogenic or antiatherogenic is controversial. \(^9\) Our previous work demonstrated that IL-1α induces synthesis of SAA in cultured aortic smooth muscle cells\(^56\) and that SAA downregulates endogenous lipid biosynthesis. \(^57\) It is intriguing to speculate that because of an inflammatory process in the developing plaque, available IL-1α induces local synthesis of SAA by smooth muscle cells and that the SAA then acts in an autocrine fashion to induce intracellular movement of smooth muscle cell plasma membrane cholesterol to the endoplasmic reticulum. Likewise, IL-1β, which accumulates in atherosclerotic lesions and is known to activate smooth muscle cell sPLA\(_2\) expression, may contribute to functional changes because of the redistribution of intracellular cholesterol pools.

Figure 9. Serum amyloid A (SAA)–induced cholesterol trafficking is interleukin-1 (IL-1) receptor independent. Smooth muscle cells were treated in the absence or presence of IL-1 receptor antagonist (IL-1Ra; 1 μg/mL) and either in the absence (Ctl) or presence of SAA (4 μg/mL) or IL-1β (100 ng/mL) with \(^{14}\text{C}\) oleic acid for 24 hours, at which time \(^{14}\text{C}\) cholesteryl oleate accumulation was measured as described in the Materials and Methods section. The data are expressed as \(^{14}\text{C}\) cholesteryl oleate (cpm)/μg protein ± SD (n=3). \(^{14}\text{C}\) cholesteryl oleate accumulation in SAA-treated (P<0.0001) and IL-1β–treated cells (P<0.0001) was significantly different from that in Ctl–treated cells. \(^{14}\text{C}\) cholesteryl oleate accumulation in IL-1β plus IL-1Ra–treated cells (P<0.0001) was significantly different from that in IL-1β–treated cells.

Figure 10. Schema depicting serum amyloid A (SAA)– and interleukin-1β (IL-1β)–mediated smooth muscle cell cholesterol trafficking to the endoplasmic reticulum. SAA and IL-1β induce expression of secretory phospholipase A\(_2\), group IIA (sPLA\(_2\)), the activity of which liberates free fatty acids from phospholipids. The fatty acids increase the activity of sphingomyelinase, which liberates cholesterol associated with sphingomyelin in the plasma membrane and the cholesterol trafficking to the endoplasmic reticulum. Note that small vertical arrows indicate an increased enzyme activity and larger arrows point to a critical product of the pathway described but they are not meant to imply a specific enzyme reaction.
In summary, this study suggests that SAA and IL-1β induce aortic smooth muscle cell trafficking of endogenous cholesterol via cPLA₂-dependent induction of expression of sPLA₂, the products of which in turn activate sphingomyelinase, which then cleaves plasma membrane sphingomyelin leading to the liberation of cholesterol that then traffics to the endoplasmic reticulum (Figure 10). To our knowledge, this is the first demonstration of regulation of intracellular trafficking of endogenous smooth muscle cell cholesterol by the inflammatory mediators SAA and IL-1β. This represents a novel mechanism for regulation of smooth muscle cell cholesterol trafficking with potential for a role in inflammation-induced changes in cell function during atherosclerosis.

Sources of Funding

This work was supported by National Institutes of Health Grant HL079201 and the American Heart Association Grants 0256215T and 0455846T.

Disclosures

None.

References

Trafficking of Endogenous Smooth Muscle Cell Cholesterol: A Role for Serum Amyloid A and Interleukin-1β

Lawrence G. Pessolano, Jr, Christopher P. Sullivan, Stephanie E. Seidl, Celeste B. Rich, Laura Liscum, Phillip J. Stone, Jean D. Sipe and Barbara M. Schreiber

Arterioscler Thromb Vasc Biol. 2012;32:2741-2750; originally published online September 20, 2012;
doi: 10.1161/ATVBAHA.112.300243

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/32/11/2741

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org/subscriptions/