Aging Enhances the Basal Production of IL-6 and CCL2 in Vascular Smooth Muscle Cells

Yang Song, Hua Shen, Dominik Schenten, Peiying Shan, Patty J. Lee, Daniel R. Goldstein

Objective—Increased circulating cytokine levels are a prominent feature of aging that may contribute to atherosclerosis. However, the role vascular cells play in chronic inflammation induced by aging is not clear. Here, we examined the role of aging on inflammatory responses of vascular cells.

Methods and Results—In an ex vivo culture system, we examined the inflammatory response of aortas from young (2–4 months) and aged (16–18 months) mice under nonstimulatory conditions. We found that basal levels of interleukin-6 were increased in aged aortas. Aged aortic vascular smooth muscle cells (VSMC) exhibited a higher basal secretion of interleukin-6 than young VSMC. Gene and protein expression analysis revealed that aged VSMC exhibited upregulation of chemokines (eg, CCL2), adhesion molecules (eg, intracellular adhesion molecule 1), and innate immune receptors (eg, Toll-like receptor [TLR] 4), which all contribute to atherosclerosis. Using VSMC from aged TLR4−/− and Myd88−/− mice, we demonstrate that signaling via TLR4 and its signal adaptor, MyD88, are in part responsible for the age-elevated basal interleukin-6 response.

Conclusion—Aging induces a proinflammatory phenotype in VSMC due in part to increased signaling of TLR4 and MyD88. Our results provide a potential explanation as to why aging leads to chronic inflammation and enhanced atherosclerosis. (Arterioscler Thromb Vasc Biol. 2012;32:103-109.)

Key Words: aging ■ atherosclerosis ■ inflammation mouse vascular smooth muscle cells

Advanced age is one of the strongest independent risk factors for the development of atherosclerosis and cardiovascular disease. One factor associated with both aging and atherosclerosis is inflammation. The inflammatory nature of atherosclerosis is underscored by epidemiological studies in patients with rheumatoid arthritis, systemic lupus, or psoriasis. Patients often exhibit low-grade inflammation in the form of elevated circulating cytokines, including interleukin (IL)-6 levels, and increased risk of atherosclerosis. However, the mechanisms by which aging induces increased circulating cytokine levels remain unclear.

Circulating IL-6 is a predictive biomarker for cardiovascular disease. Elevations in circulating cytokines, including IL-6, are a prominent feature of aging and may play a role in the development of atherosclerosis. Typically, elevated circulating IL-6 associated with aging is low-grade (ie, 2×) compared to IL-6 induction during an acute inflammatory insult (ie, 20×), such as septic shock. Why aging leads to higher circulating basal level of IL-6 is not clear. The cell types that contribute to the increase in circulating IL-6 have not been identified. Potential candidates include inflammatory cells present within atherosclerotic plaques, vascular cells in disease-free arteries, and circulating immune cells or adipocytes. Animal studies have shown increased production of proinflammatory cytokines such as IL-6 or CCL2 from disease-free arteries with aging. However, these studies neither determined which cell within the vasculature was responsible for the age-enhanced inflammatory response nor found the underlying mechanisms for the phenotype.

In the current study, we investigated the impact of aging on the basal inflammatory responses of arteries and vascular smooth muscle cells (VSMC). We found that in both arteries and VSMC, aging led to an increase in the basal secretion of IL-6. Additionally, we noted that without stimulation, VSMC from aged mice upregulated IL-6 and CCL2 production. Both of these markers have been implicated in atherosclerosis. We also found that aged VSMC expressed higher basal levels of the innate receptor Toll-like receptor (TLR) 4 than young VSMC and that signaling via TLR4 and its signal adaptor MyD88 were in part responsible for the age-elevated IL-6 basal secretion. Our results indicate that aged VSMC cells exhibit a proatherogenic phenotype under basal, nonstimulatory conditions, which may help to explain why aging leads to elevated circulating cytokine levels and accelerates the development of atherosclerosis.

Method

Animal Procedures
Female mice aged 16 to 18 months and 10 to 11 months as well as young (1.5–2 months of age) wild type C57BL/6 mice were...
Reagents
Penicillin/streptomycin solution, DMEM (low glucose content), M-199 (M199), collagenase II solution were purchased from Invitrogen (San Diego, CA). Fetal bovine serum was purchased from Sigma-Aldrich (St. Louis, MO). Amphotericin B was obtained from Invitrogen (San Diego, CA). Fetal bovine serum was purchased from the NIA rodent facility. C57BL/6 Rag-2−/− and LysM-Cre/MyD88-flox mice (all on the C57BL/6 background) were purchased from Jackson Laboratory (Bar Harbor, ME). CD11c-MyD88 Tg19 and LysM-Cre/MyD88-flox mice (all on the C57BL/6 background) were generously provided by Dr R. Medzhitov (Yale University). SM22α-Cre/MyD88-flox mice were created by interbreeding SM22α-Cre mice (Jackson Laboratory) with MyD88-flox mice. B6.129/SvJ-MyD88 tm1AKI (denoted as Myd88−/−) mice were a gift from Dr S. Akira (Osaka University, Osaka, Japan) and were backcrossed 10 times onto the C57BL/6 (H2b) background. C57BL/6 TLR4−/− and Myd88−/− mice were aged to 10 to 11 months in our colony under pathogen-free conditions. Mice were not included in this study if they exhibited signs of illness (reduced feeding, mobility, or grooming, or evidence of skin disease or lymphopenopathy) before artery procurement. Mice were euthanized by isoflurane administration. The institutional animal care and use committee at Yale University approved the use of animals in this study.

Aorta and Cell Culture
Murine aortas were collected after cardiac puncture with cold PBS. Under a dissecting microscope, thoracic aortas were harvested by removing the adipose tissue. Aortas were then cut into half, weighed, and placed in 1 mL culture medium (20% fetal bovine serum M199 containing 100 U/mL penicillin, 100 μg/mL streptomycin) at 37°C overnight. Medium was free of LPS as measured by E-Toxate assay (Sigma). After 16 hours, culture supernatants were collected and then stored at −20°C for further analysis. VSMC were enzymatically isolated as previously described. Briefly, freshly harvested thoracic aortas were washed in PBS and DMEM (low glucose content) containing 0.25 μg/mL amphotericin. After digestion in 1 mg/mL collagenase II solution at 37°C for 10 minutes, adventitia were removed with the aid of a dissecting microscope. The remaining aortas were cut into small pieces and further digested with 2 mg/mL collagenase II and 0.5 mg/mL elastase solution for 1 hour at 37°C, with gentle shaking every 10 minutes. The isolated cells were then washed and plated in complete medium (20% fetal bovine serum DMEM-low glucose containing 100 U/mL penicillin, 100 μg/mL streptomycin, and 0.25 μg/mL amphotericin). We found that VSMC yields from aged aortas were generally higher than those from young aortas, which may be due to a thickened arterial wall and increased VSMC proliferation associated with aging, as previously described. However, the plating efficacy of aged and young VSMC were similar since the RNA yield from 5×10⁴ aged and young VSMCs were 3.2±1.1 μg and 3.1±0.7 μg, respectively. Studies were performed using passage 3 to 5 cells.

ELISA
Supernatant levels of IL-6, CCL2, CCL5, CXCL2, and CXCL10 were determined via ELISA (data not shown). All data were analyzed using GraphPad prism software (San Diego, CA). Differences were considered significant at P<0.05.

Results
Aging Increases IL-6 Secretion by Murine Aortas Without Stimulation
When we measured cytokines from the culture supernatants of isolated murine aortas of aged and young mice, we found that the proinflammatory cytokine IL-6 but not CCL2 levels were increased in unstimulated aortas from aged mice compared to those of young mice (Figure 1A and 1B). We did not detect IL-1β, IL-10, IL-17, TNF-α, or IFN-γ cytokines in the supernatants of young or old aortas using ELISA (data not shown).

MyD88 Signaling Within VSMC is Critical to the TLR-Induced IL-6 Response by Young Aortas
Innate immune activation via TLRs leads to IL-6 production. Because MyD88 is a signal adaptor downstream of all the TLRs except TLR3, we examined the role of MyD88 in the basal production of IL-6 in young aortas. We found that...
Because TLRs are expressed in a variety of immune cells including macrophage, dendritic cells, B and T cells, which reside in disease-free arteries,25 we next employed a series of genetically manipulated mice to identify the MyD88 expressing cells that contribute to the basal interleukin (IL)-6 response. Aortas from young wild type and Myd88−/− mice and IL-6 measured in the culture supernatants (A). CD11c-Myd88 Tg mice are Myd88−/− except in CD11c+ cells and were compared to wild type controls (B). The aortas of LysM-Cre/Myd88-flo mice, which are Myd88−/− in Lysm+ cells, were compared to their LysM-Cre+/−/Myd88-flo Cre negative control (C). Rag−/− mice lack mature T cells and B cells and aortas of these mice were compared to wild type controls (D). SM22α-Cre/Myd88-flo mice are Myd88-deficient in smooth muscle cells and were compared with their Cre negative control (E). IL-6 levels were measured by ELISA. Differences between groups were analyzed using Student’s t-test. n=at least 4 mice/group/experiment. *P<0.05, **P<0.01. The data shown are representative of 3 independent experiments.

Figure 2. Vascular smooth muscle cells are major contributors to the basal IL-6 response of young murine aortas. Aortas from genetically altered young mice (6–8 weeks of age) were used to identify the MyD88 expressing cells that contribute to the basal IL-6 response. Aortas harvested from young Myd88−/− mice exhibited a reduced IL-6 response in comparison to young wild type aortas (Figure 2A), demonstrating that MyD88 signaling contributed to the basal secretion of IL-6 of young aortas.

Because TLRs are expressed in a variety of immune cells including macrophage, dendritic cells, B and T cells, which reside in disease-free arteries,25 we next employed a series of genetically manipulated mice to identify the MyD88 expressing cells responsible for the basal IL-6 response of young aortas. We first assessed the basal IL-6 response of young mice in which the only MyD88 competent cells are CD11c+ (a marker expressed on certain dendritic cells and macrophages). Aortas from these CD11c-Myd88 Tg mice exhibited a similar basal IL-6 response as wild type aortas (Figure 2B), indicating that Myd88 signaling within CD11c+ cells was not sufficient for the basal IL-6 response.

We next harvested aortas from LysM-Cre/Myd88-flo mice in which macrophages are selectively Myd88−/− to determine if macrophages were required for the basal IL-6 response. We found that aortas from these LysM-Cre/Myd88-flo mice exhibited a similar basal IL-6 response as their wild type controls (Figure 2C), indicating that MyD88 signaling within macrophages is not required for the basal IL-6 response. Moreover, we found that T cells and B cells were not critical for the basal IL-6 response, as aortas from Rag−/− mice, which lack T cells and B cells, produce basal levels of IL-6 similar to those of young wild type aortas (Figure 2D).

Given that VSMC express TLRs27 and that immune cells were not responsible for the basal IL-6 response of young aortas, we next examined whether Myd88 expression within VSMC is required for the basal IL-6 secretion of aortas. Hence, we harvested aortas in which Myd88 signaling was selectively deficient in smooth muscle cells (ie, SM22α-Cre/Myd88-flo mice). We found that the basal IL-6 response was reduced in the aortas of young SM22α-Cre/Myd88-flo mice compared to their Cre negative controls (Figure 2E), demonstrating that VSMC are major contributors for the basal IL-6 response.

Aging Increases IL-6 and CCL2 Production by VSMC Under Nonstimulatory Conditions

Our results demonstrate that Myd88 signaling within VSMC is important for the basal IL-6 secretion of young aortas. Hence, a potential explanation as to why aortas from aged mice exhibited a higher basal IL-6 response than young aortas is qualitative differences in the intrinsic function of VSMC with aging. Thus, we propagated VSMC from young and aged aortas and measured IL-6 and CCL2 levels under nonstimulatory conditions. Similar to the response of aortas, we found that aged VSMC exhibited an increased basal secretion of IL-6 and also an increased basal production of CCL2 in culture supernatants relative to VSMC from young mice (Figure 3). These results indicate that...
Aged VSMC exhibit increased basal secretion of IL-6 and CCL2.

Aged Nonstimulated VSMC Display Proatherogenic Features and Increased TLR4 Expression

Chemokines such as CCL2, CCL5, and CXCL10 and adhesion molecules such as the VCAM1 and the ICAM1 are important for immune cell migration from the circulation to the arterial wall and contribute to the development of atherosclerosis.28 We found that aged VSMC exhibited gene upregulation of CCL2, CCL5, CXCL2, and CXCL10, but not of CCL3 compared to young VSMC (Figure 4A). We also determined that CCL2 (Figure 3), CCL5, CXCL2, and CXCL10 (Figure 4B) protein levels were elevated with aging, whereby the increases in CCL2 (Figure 3), CCL5, and CXCL2 protein levels reached statistical significance (Figure 4B). ICAM1 and VCAM1 gene expression were also increased in nonstimulated aged VSMC in comparison to young VSMC (Figure 4A). In addition, ICAM1 and VCAM1 protein levels were augmented in aged VSMC in comparison to young VSMC (Figure 4C). The increase in ICAM1 was statistically significant (Figure 4C).

As TLRs have also been implicated in the development of atherosclerosis,29–31 we examined the TLR gene expression profiles of young and aged VSMC under nonstimulatory conditions. In both aged and young VSMC, the most highly expressed among all 9 measured TLRs were the TLR2, TLR3, and TLR4 genes. TLR4 mRNA expression and protein levels were significantly higher in aged VSMC than in young VSMC (Figure 5A and 5C). Together, these results indicate that aging upregulates several chemokines, adhesion molecules, and innate immune receptors that have been implicated in atherosclerotic disease pathogenesis.

Basal IL-6 Production is Reduced in Aged VSMC and Aortas Deficient in MyD88

MyD88 is a key intracellular adaptor protein involved in TLR signaling.32 To examine whether the increased TLR4 expression on VSMC is linked to the elevated basal secretion of
IL-6, we isolated VSMC from either aged (ie, 10–11 months of age) TL4<sup>−/−</sup> or Myd88<sup>−/−</sup> mice and from their wild type counterparts, and measured IL-6 production under nonstimulatory conditions. Similar to what we noted in VSMC from mice 16 to 18 months of age (Figure 3), we found that VSMC from mice aged 10 to 11 months exhibited higher basal secretion of IL-6 than young counterparts (Figure 6A and 6B). We found that IL-6 production in aged TL4<sup>−/−</sup> VSMC was significantly reduced compared to that found in aged wild type VSMC (Figure 6A). Similar results were noted in aged Myd88<sup>−/−</sup> VSMC compared to that found in aged wild type counterparts (Figure 6B). Neither TL4R nor MyD88 deficiency entirely abolished the effects of aging on basal IL-6 production as aged TL4<sup>−/−</sup> and Myd88<sup>−/−</sup> VSMC still produced higher basal IL-6 levels than the young TL4<sup>−/−</sup> and Myd88<sup>−/−</sup> VSMC (Figure 6A and 6B). These results indicate that TL4R and MyD88 signaling are an important mechanism by which aging leads to increased basal IL-6 production by VSMC.

**Discussion**

In this study, we demonstrated that disease-free aortas from aged mice exhibit increased basal IL-6 production compared to young aortas. We also found that VSMC, which are known to produce inflammatory mediators, exhibit elevated IL-6 and CCL2 basal production with aging. Increased signaling via TL4R and MyD88, a signal adaptor downstream of most TLRs, was in part responsible for this elevated IL-6 VSMC response. As MyD88 signaling within VSMC was critical for the basal IL-6 in young aortas, it is possible that qualitative changes occur in aged aortas and that, as a consequence, other cells contribute to the IL-6 response with aging. Further studies with aged mutant mice are required to determine what cells within aged aortas are responsible for the basal IL-6 response.

Prior work has indicated that VSMC plays a role in arterial wall remodeling with aging. For instance, aging increases proliferation and migration of VSMC and accelerates replicative senescence of these cells. Prior work has also shown that VSMC isolated from rat aortas exhibit increased CCL2 expression. All of these properties of VSMCs have been associated with atherosclerosis. We found that under nonstimulatory conditions, aged VSMC exhibited increased levels of several chemokines (eg, CCL2) and adhesion molecules (eg, ICAM1) compared to young VSMC. These chemokines and adhesions molecules have been previously shown to contribute to atherosclerosis disease pathogenesis. Hence, aged VSMC display a phenotype that may predispose or enhance the progression of atherosclerosis. As hypomethylation of genomic DNA increases with aging, and similar epigenetic changes are associated with atherosclerosis, it is possible that hypomethylation of chemokine, adhesion molecule, and the IL-6 gene loci may explain the findings of our study. Further mechanistic studies will be required to confirm this hypothesis and to determine whether the aged “atherosclerotic prone” phenotype of VSMC is related to atherosclerosis development. Such studies may require aging atherosclerotic mice (eg, Ldlr<sup>−/−</sup>) that are specifically deleted in one or more of these chemokines or adhesion molecules in VSMC.

Our findings further indicate that TL4R and its adaptor protein MyD88 were in part responsible for the increased basal IL-6 production by aged VSMC. MyD88 is downstream of multiple TLRs and the IL-1β and IL-18 receptors. This may explain why the differences between aged Myd88<sup>−/−</sup> and Myd88<sup>−/−</sup> mice, and VSMC were isolated from these aortas. VSMC were cultured in fresh medium for 16 hours without stimulation, and IL-6 was measured in the supernatants by ELISA. Aged TL4R<sup>−/−</sup> (denoted as OTL4R<sup>−/−</sup>) (A) and Myd88<sup>−/−</sup> (denoted as OMyd88<sup>−/−</sup>) (B) VSMC exhibited a significant reduction in IL-6 production in comparison with the aged WT counterparts. This was also evident in the young VSMC. Results are presented as means±SD, n=3 mice/group for both panels A and B. Differences between groups were analyzed using one-way ANOVA with Bonferroni’s post-hoc test. **P<0.01, ***P<0.001. All comparisons between young and aged groups were paired and performed contemporaneously.
VSMC and wild type VSMC were larger than the differences between aged TLR4+/− VSMC and wild type cells. Clearly, other receptors besides TLR4 contribute to the increased basal IL-6 response of VSMC with aging, an issue that warrants future investigation.

It is not clear why TLR4 expression on VSMC increases with aging. TLRs are not only activated by microbial motifs but also by endogenous ligands, such as hyaluronic and oxidized LDL. The increased TLR4 expression and the IL-6 production may reflect chronic sensing of innate ligands over time. Hence, in aged mice chronic sensing of innate ligands, either derived from pathogens or endogenously derived, may alter the basal state of VSMC compared to VSMC in young mice.

TLRs are involved in atherosclerosis development as MyD88 deficiency—as well as TLR4 or TLR2 deficiency—results in reduced lesion size in experimental murine models. Thus, TLRs are involved in atherosclerosis development as MyD88 deficiency—as well as TLR4 or TLR2 deficiency—results in reduced lesion size in experimental murine models. Although these studies indicate the possible involvement of TLR and MyD88 signaling from nonbone marrow derived cells in the development of atherosclerosis, the specific role of MyD88 signaling within VSMC will require additional studies with conditional mutant atherosclerotic prone mice in which MyD88 is deleted within VSMC.

In conclusion, our study provides evidence that with aging, VSMC may contribute to the heightened basal IL-6 response. Signaling via a TLR4 and its adaptor protein MyD88 are in part responsible for the increased basal IL-6 production by aged VSMC. Taken together, our results provide a possible explanation as to why circulating IL-6 levels increase with aging. Furthermore, our study suggests that the altered inflammatory profile of VSMC with aging may be athero-sclerotic prone, an issue that will require future mechanistic examination.

Source of Funding
Work supported by NIH grants AG028082 and AG033049 and in part by Al064660, and American Heart Association Established Investigator Award to Daniel R. Goldstein.

Disclosures
None.

References


Aging Enhances the Basal Production of IL-6 and CCL2 in Vascular Smooth Muscle Cells
Yang Song, Hua Shen, Dominik Schenten, Peiying Shan, Patty J. Lee and Daniel R. Goldstein

Arterioscler Thromb Vasc Biol. 2012;32:103-109; originally published online October 27, 2011;
doi: 10.1161/ATVBAHA.111.236349
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272
Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://atvb.ahajournals.org/content/32/1/103

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2011/10/27/ATVBAHA.111.236349.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the
Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for
which permission is being requested is located, click Request Permissions in the middle column of the Web
page under Services. Further information about this process is available in the Permissions and Rights
Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online
at:
http://atvb.ahajournals.org//subscriptions/
**Supplemental Table** Primers of genes analyzed by qRT-PCR.

<table>
<thead>
<tr>
<th>Gene</th>
<th>FOR primer</th>
<th>REV primer</th>
<th>Annealing temp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCL2</td>
<td>AGGTCCCTGTCATGCTTCTG</td>
<td>TCTGGACCCCATCCTTCTTG</td>
<td>60</td>
</tr>
<tr>
<td>CCL3</td>
<td>ATGAAGGTCTCCACCAGTCCTTG</td>
<td>GGCATTAGTTCAGGGCTAGGAT</td>
<td>60</td>
</tr>
<tr>
<td>CCL5</td>
<td>GAAGATCTCAGCATCCTCGCTCCCT</td>
<td>GCTCATCTCCAAATAGTTGA</td>
<td>60</td>
</tr>
<tr>
<td>CXCL2</td>
<td>TCCAGAGCTTGAGTGTGACG</td>
<td>TTTAGGTCAGGCAACTTTT</td>
<td>60</td>
</tr>
<tr>
<td>CXCL9</td>
<td>GAGTTGAGGAAACTCTAGTGATAAGGAA</td>
<td>AGGTTTGTATCTCCCTTGATCTTGATG</td>
<td>60</td>
</tr>
<tr>
<td>CXCL10</td>
<td>GCCGTCATTTCCTGCCTCAT</td>
<td>GCTTCCCATGCGCCCTCATTT</td>
<td>60</td>
</tr>
<tr>
<td>SELE</td>
<td>GGT AGT TGC ACT TTC TGC GG</td>
<td>GCA GCA TGT TCT TCA TAC TG</td>
<td>60</td>
</tr>
<tr>
<td>VCAM1</td>
<td>CAA GGG TGA CCA GCT CAT GAA</td>
<td>TGT GCA GCC ACC TGA GAT CC</td>
<td>60</td>
</tr>
<tr>
<td>ICAM1</td>
<td>GCT CGG AGG ATC ACA AAC G</td>
<td>GAG TGG TAC AGT ACT GTC AG</td>
<td>60</td>
</tr>
<tr>
<td>TLR1</td>
<td>ACCTACCTCTGCAAACAA</td>
<td>GTGCCCAAGATCACCTTT</td>
<td>60</td>
</tr>
<tr>
<td>TLR2</td>
<td>TTGTCTCTGCGAATCTCAT</td>
<td>GCTTCCCTTGGCTTCTTCTT</td>
<td>60</td>
</tr>
<tr>
<td>TLR3</td>
<td>TTGTCTCTCAGCAGAACTTG</td>
<td>CGCAACGCAAGGATTTTATT</td>
<td>60</td>
</tr>
<tr>
<td>TLR4</td>
<td>CAGCAAGTCCCTGTAGACAA</td>
<td>AGAGGTGTGTAGAAGCCATGC</td>
<td>60</td>
</tr>
<tr>
<td>TLR5</td>
<td>ACAGCAACACTCCAGCA</td>
<td>TTAGGAGATCCAGGAAATCTG</td>
<td>60</td>
</tr>
<tr>
<td>TLR6</td>
<td>ACACAATCCGTTGCAAAACA</td>
<td>GGAGGTGATCTTGCAGCAG</td>
<td>60</td>
</tr>
<tr>
<td>TLR7</td>
<td>TGGAAATTTGGAGCTCAGGC</td>
<td>TTAGAAGAAAGCGATTGTG</td>
<td>60</td>
</tr>
<tr>
<td>TLR8</td>
<td>GCACAACCCTCCTGATGATT</td>
<td>CATTCTGTAGTGTTTTT</td>
<td>60</td>
</tr>
<tr>
<td>TLR9</td>
<td>TGCTTTGTTGAGCTTGCAG</td>
<td>GGCTAGGCTAAGCACCTGG</td>
<td>60</td>
</tr>
<tr>
<td>18s</td>
<td>GGACCAGAGGCAGACATGGT</td>
<td>CCGCAGTCCGCTCTGTTAT</td>
<td>60</td>
</tr>
</tbody>
</table>