Beyond Phosphorylation
Nuclear Export in Vascular Remodeling

Jane E.B. Reusch

The vasculature is composed of endothelial cells, vascular smooth muscle cells (VSMCs), fibroblasts, and immune cells with closely integrated functions. It is exposed to a variable environment of pulsatile flow and changing blood pressure, plus fluctuations in nutrient, oxidative, and cytokine stress. Adaptation to this changing environment is critical for sustained vascular health. VSMCs undergo a phenotype change in response to vascular injury, including migration, proliferation, and matrix production, also known as VSMC activation or phenotypic modulation. VSMC activation contributes to the progression of atherosclerosis and postangioplasty restenosis. Understanding the endogenous regulators of vascular plasticity and adaptation has revealed potential targets for pharmacological intervention to prevent vascular stenosis. For example, Ross established cAMP as a critical signaling pathway for the maintenance of VSMC quiescence.1 Since that time, agents that increase cAMP, such as phosphodiesterase inhibitors, have demonstrated usefulness as vasodilators, with clinical implications for pulmonary hypertension.2,3 Intracellular accumulation of cAMP signals to protein kinase A and the cAMP-responsive Rap1 guanine nucleotide exchange factor, Epac; simultaneous activation of both of these pathways by cAMP is essential for the antiproliferative impact on VSMCs.3,4

The article by Chen et al5 in this issue demonstrates that the phosphodiesterase inhibitor cilostazol increases VSMC differentiation via cAMP signaling to the transcription factor cAMP response element binding protein (CREB). This result is consistent with reports that active CREB prevents mitogen-stimulated migration and proliferation in VSMCs and that dominant-negative CREB or CREB silencing has the converse effect.6,7 Contradictions to the VSMC differentiating effect of CREB were suggested by an earlier report that balloon angioplasty increases CREB phosphorylation transiently and that adenoviral delivery of dominant-negative CREB at the time of balloon angioplasty decreases neointimal plaque formation.8 Consistent with Tokunou et al,8 Chen et al5 demonstrate that balloon injury leads to CREB phosphorylation. The data of Chen et al offer some new insights into how to interpret these apparently conflicting data. Chen et al demonstrate that cilostazol leads to CREB phosphorylation and nuclear localization, whereas balloon injury leads to CREB phosphorylation with exclusion from the nucleus. In vivo proliferation with CREB nuclear export is consistent with our original report demonstrating loss of pulmonary artery CREB overlapping with increased proliferation detected by Ki67 in the hypoxic neonatal calf model.9 We have previously reported nuclear exclusion of phosphorylated CREB in response to platelet-derived growth factor, oxidized low-density lipoprotein, and cytokine mixtures.6,9,10 Cellular localization, nuclear environment (redox state, activity of other transcription factors, and corepressor or coactivator proteins), and DNA context (acetylation, methylation) all contribute to the nuclear interpretation of CREB phosphorylation.11 Acute nuclear exclusion of CREB in response to balloon injury would be expected to acutely decrease the cAMP-dependent CREB gene expression that maintains VSMC differentiation. It remains enigmatic that adenoviral dominant-negative CREB also decreases neointimal formation, suggesting a difference between the CREB regulation by cilostazol and the transcriptional response to the dominant-negative CREB adenovirus.

VSMC plasticity is critical for vascular health and is acutely regulated by nuclear localization of transcription factors and cofactors. In response to injury, changes in VSMC proliferation, migration, and matrix production are essential for adaptive remodeling, such as wound healing. In restenosis or the neointimal phase of atherosclerosis progression, this remodeling response is exaggerated. Nuclear export of CREB is a robust response to VSMC mitogen or oxidant challenge and now balloon injury.6,10 Reports indicate that neuronal CREB is excluded from the nucleus in response to stress and can be targeted to the mitochondria to enhance mitochondrial oxidative gene expression.12,13 The report by Chen et al5 suggests CREB nuclear export in a regulatory mechanism that occurs in vivo and correlates with VSMC phenotype. Dynamic CREB nuclear export in the vascular remodeling is similar to other transcriptional responses leading to phenotypic modulation. For example, leupaxin is a LIM domain protein family member and cofactor for serum response factor. In response to focal adhesion kinase signaling (such as can be stimulated by fibronectin), leupaxin is sequestered in the cytosol, leading to decreased expression of the serum response factor-dependent contractile proteins α-smooth muscle actin and smooth muscle-myosin heavy chain.14 Myocardin and myocardin family members are critical serum response factor cofactors and determinants of VSMC differentiation. Myocardin is constitutively located in the nucleus, but other family members are translocated to the

See accompanying article on page 2106

The article by Chen et al5 in this issue demonstrates that the phosphodiesterase inhibitor cilostazol increases VSMC differentiation via cAMP signaling to the transcription factor cAMP response element binding protein (CREB). This result is consistent with reports that active CREB prevents mitogen-stimulated migration and proliferation in VSMCs and that dominant-negative CREB or CREB silencing has the converse effect.6,7 Contradictions to the VSMC differentiating effect of CREB were suggested by an earlier report that balloon angioplasty increases CREB phosphorylation transiently and that adenoviral delivery of dominant-negative CREB at the time of balloon angioplasty decreases neointimal plaque formation.8 Consistent with Tokunou et al,8 Chen et al5 demonstrate that balloon injury leads to CREB phosphorylation. The data of Chen et al offer some new insights into how to interpret these apparently conflicting data. Chen et al demonstrate that cilostazol leads to CREB phosphorylation and nuclear localization, whereas balloon injury leads to CREB phosphorylation with exclusion from the nucleus. In vivo proliferation with CREB nuclear export is consistent with our original report demonstrating loss of pulmonary artery CREB overlapping with increased proliferation detected by Ki67 in the hypoxic neonatal calf model.9 We have previously reported nuclear exclusion of phosphorylated CREB in response to platelet-derived growth factor, oxidized low-density lipoprotein, and cytokine mixtures.6,9,10 Cellular localization, nuclear environment (redox state, activity of other transcription factors, and corepressor or coactivator proteins), and DNA context (acetylation, methylation) all contribute to the nuclear interpretation of CREB phosphorylation.11 Acute nuclear exclusion of CREB in response to balloon injury would be expected to acutely decrease the cAMP-dependent CREB gene expression that maintains VSMC differentiation. It remains enigmatic that adenoviral dominant-negative CREB also decreases neointimal formation, suggesting a difference between the CREB regulation by cilostazol and the transcriptional response to the dominant-negative CREB adenovirus.

VSMC plasticity is critical for vascular health and is acutely regulated by nuclear localization of transcription factors and cofactors. In response to injury, changes in VSMC proliferation, migration, and matrix production are essential for adaptive remodeling, such as wound healing. In restenosis or the neointimal phase of atherosclerosis progression, this remodeling response is exaggerated. Nuclear export of CREB is a robust response to VSMC mitogen or oxidant challenge and now balloon injury.6,10 Reports indicate that neuronal CREB is excluded from the nucleus in response to stress and can be targeted to the mitochondria to enhance mitochondrial oxidative gene expression.12,13 The report by Chen et al5 suggests CREB nuclear export in a regulatory mechanism that occurs in vivo and correlates with VSMC phenotype. Dynamic CREB nuclear export in the vascular remodeling is similar to other transcriptional responses leading to phenotypic modulation. For example, leupaxin is a LIM domain protein family member and cofactor for serum response factor. In response to focal adhesion kinase signaling (such as can be stimulated by fibronectin), leupaxin is sequestered in the cytosol, leading to decreased expression of the serum response factor-dependent contractile proteins α-smooth muscle actin and smooth muscle-myosin heavy chain.14 Myocardin and myocardin family members are critical serum response factor cofactors and determinants of VSMC differentiation. Myocardin is constitutively located in the nucleus, but other family members are translocated to the
nucleus in response to activation of Rho kinase on bone morphogenic protein 4 signaling, leading to increased VSMC contractile protein expression.15,16 Thus, control of VSMC phenotype via the exchange protein activated by cAMP (Epac) and protein kinase A. **Br J Pharmacol.** 2011;162:193–209.

Sources of Funding

Dr Reusch is supported by grants from the Department of Veterans Affairs Merit Review, UL1 RR025780, 1PO1HL014985, DK 57516, and DK064741.

Disclosures

None.

References

Key Words: hypertrophy signal transduction vascular biology CREB nuclear localization
Beyond Phosphorylation: Nuclear Export in Vascular Remodeling
Jane E.B. Reusch

doi: 10.1161/ATVBAHA.111.232645
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/31/9/1955

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/