Monocytes and Macrophage Dynamics During Atherogenesis

Klaus Ley, Yury I. Miller, Catherine C. Hedrick

Abstract—Vascular inflammation is associated with and in large part driven by changes in the leukocyte compartment of the vessel wall. Here, we focus on monocyte influx during atherosclerosis, the most common form of vascular inflammation. Although the arterial wall contains a large number of resident macrophages and some resident dendritic cells, atherosclerosis drives a rapid influx of inflammatory monocytes (Ly-6C⁺ in mice) and other monocytes (Ly-6C⁻ in mice, also known as patrolling monocytes). Once in the vessel wall, Ly-6C⁺ monocytes differentiate to a phenotype consistent with inflammatory macrophages and inflammatory dendritic cells. The phenotype of these cells is modulated by lipid uptake, Toll-like receptor ligands, hematopoietic growth factors, cytokines, and chemokines. In addition to newly recruited macrophages, it is likely that resident macrophages also change their phenotype. Monocyte-derived inflammatory macrophages have a short half-life. After undergoing apoptosis, they may be taken up by surrounding macrophages or, if the phagocytic capacity is overwhelmed, can undergo secondary necrosis, a key event in forming the necrotic core of atherosclerotic lesions. In this review, we discuss these and other processes associated with monocyctic cell dynamics in the vascular wall and their role in the initiation and progression of atherosclerosis. (Arterioscler Thromb Vasc Biol. 2011;31:1506-1516.)

Key Words: cytokines ■ immune system ■ lipids ■ macrophages

Monocytes, macrophages, and dendritic cells are key cells in the initiation and progression of atherosclerosis. Here, we review the available evidence on how monocytes reach atherosclerotic lesions, how they differentiate into inflammatory macrophages, the possible relationship between resident and inflammatory macrophages, and the fate of these cell types as the atherosclerotic lesions progress. We also refer the reader to several excellent previous reviews on the subject.1–6 Because of space constraints, we will consider resident and inflammatory macrophages, and the fate of these inflammatory macrophages, the possible relationship between cytox in mice, also known as patrolling monocytes). Once in the vessel wall, Ly-6C⁺ monocytes differentiate to a phenotype consistent with inflammatory macrophages and inflammatory dendritic cells. The phenotype of these cells is modulated by lipid uptake, Toll-like receptor ligands, hematopoietic growth factors, cytokines, and chemokines. In addition to newly recruited macrophages, it is likely that resident macrophages also change their phenotype. Monocyte-derived inflammatory macrophages have a short half-life. After undergoing apoptosis, they may be taken up by surrounding macrophages or, if the phagocytic capacity is overwhelmed, can undergo secondary necrosis, a key event in forming the necrotic core of atherosclerotic lesions. In this review, we discuss these and other processes associated with monocyctic cell dynamics in the vascular wall and their role in the initiation and progression of atherosclerosis. (Arterioscler Thromb Vasc Biol. 2011;31:1506-1516.)

Key Words: cytokines ■ immune system ■ lipids ■ macrophages

Monocytes

Under conditions of atherosclerosis, monocytes are rapidly recruited into the vessel wall. Mouse monocytes develop from a bone marrow precursor cell, the monocyte-dendritic cell precursor (MDP). MDPs give rise to all blood monocytes and the common dendritic cell precursor, but MDPs do not give rise to granulocytes. Under conditions of acute inflammation, hematopoietic progenitor cells can differentiate to dendritic cells outside the bone marrow.20 The growth factor macrophage colony stimulating factor (M-CSF) and its receptor CD115 are critical for MDP differentiation into monocytes.21,22 The cell fate decisions that occur in the bone marrow for monocyte differentiation require a number of specific transcription factors. Expression of PU.1, a member of the Ets transcription factor family, is induced during early myeloid differentiation and is high in mature monocytes and granulocytes.23,24 Studies of mice in which PU.1 has been deleted show a complete defect in production of monocytes, granulocytes, and B and T lymphocytes. These mice are either embryonic lethal or die from sepsis shortly after birth.25,26 PU.1 stimulates the Egr family of transcription factors that play a role in monocyte development.27,28 Interferon regulatory factor-8 (IRF-8), also known as interferon consensus sequence binding protein, is a member of the IRF family of transcription factors. Studies with IRF8 knockout mice (Ir8⁻/⁻) have demonstrated that IRF8 inhibits granu-
locyte differentiation while promoting monocyte proliferation from progenitor bone marrow cells.29,30 JunB is a component of the AP-1 transcriptional complex, and junB is highly expressed in granulocytes and in myeloid precursors.31,32 JunB is a negative regulator of cell proliferation through inhibition of cyclin D1 and activation of the Cdk inhibitor p16.33,34 Moreover, several studies have shown that mice lacking myeloid expression of junB develop a myeloproliferative disorder similar to chronic myeloid leukemia.35,36 JunB expression was reduced in bone marrow of \textit{Nr4a1} −/−–\textit{Nr4a3} −/− knockout mice.37 Taken together, these data suggest that junB is an essential component of myeloid differentiation and that the orphan nuclear receptors Nr4a1, Nr4a3, or both may regulate junB expression and monocyte differentiation in bone marrow. Other transcription factors, including KLF438 and the Maf family,39 have also been implicated in monocyte development and differentiation. Once mouse monocytes egress from the bone marrow, they circulate in the blood with a half-life of \textasciitilde17 hours.40–42 Many of these measurements were made before monocyte subsets were known, and the circulatory half-life may well differ for different monocyte subsets. Mature monocytes reside in the subcapsular red pulp of the spleen, where they are rapidly deployed in response to inflammatory signals.15 These spleen monocytes show a gene expression profile that is very similar to that of blood monocytes.

In mice and humans, several monocyte subsets have been described. Originally, Ly-6C+ monocytes were described as inflammatory and Ly-6C− as resident.43 The Ly-6C+ monocytes also express the monocyte chemoattractant protein-1 receptor CC chemokine receptor (CCR)-2, the adhesion molecule L-selectin, and low levels of the chemokine receptor CX3CR1. Conversely, Ly-6C− monocytes express high levels of CX3CR1 and of the \(\alpha_\text{IIb}\beta_3\) integrin lymphocyte function-associated antigen-1.43,44 In humans, CD14high and CD14+CD16+ monocytes have been described.45 More recently, a CD14dim human monocyte subset was found to be the subset containing the population that patrols blood vessels.46 Human CD14high monocytes also express CCR2, L-selectin, and the Fc receptor CD64. Among human monocytes, CD14+CD16− cells lack CCR2 but express CD32 and higher levels of major histocompatibility complex-II. The differential function of CD14+CD16− and CD14dim monocytes has recently been described.46 Because the definition of the monocyte subsets is currently based on surface markers, it is unclear whether these cells fully recapitulate the phenotype of classical M1 macrophages,47,48 which were originally defined based on human blood monocyte-derived macrophages grown in vitro in the presence of M-CSF, interferon-\(\gamma\) (IFN-\(\gamma\)), and LPS.49 It is at present unclear to what extent these cells differentiate (lineage commitment) or whether they show plasticity (phenotypic changes in response to their environment).50

Ly-6C− monocytes are known to give rise to CD11b−CD11c+ inflammatory macrophages in the intestinal lamina propria.50–60 In a model of \textit{Listeria monocytogenes} infection, monocyte-derived cells have been described as tumor necrosis factor and inducible nitric oxide synthase–producing Tip-DCs.61 These cells express high levels of major histocompatibility complex-II, CD80, and CD86 and are efficient at presenting antigens.62 They phagocytose microbes, promote inflammation by secreting cytokines, and degrade tissue by proteolytic enzymes including matrix metalloproteinases. Although Tip-DCs migrate to secondary lymphoid organs in listeria-infected mice,63 their migration in atherosclerosis has not been studied. These Ly-6C− monocyte-derived cells have been compared to M1 (see below) macrophages,1 but it is unclear whether these cells fully recapitulate the phenotype of classical M1 macrophages,65,66 which were originally defined based on human blood monocyte-derived macrophages grown in vitro in the presence of M-CSF, interferon-\(\gamma\), and LPS.67 It is at present not clear whether Tip-DCs and inflammatory macrophages are distinct or overlapping subsets among CD11b−CD11c+ cells.

The Ly-6C− monocytes patrol the inside of blood vessels in mice.68 Their interaction with the vascular endothelium requires lymphocyte function-associated antigen-1 (\(\alpha_\text{IIb}\beta_3\) integrin) and the chemokine receptor CX3CR1.69 CX3CR1 has been shown to be critical for the survival of the Ly-6C− subset.40 Human CD14dim monocytes also show this patrolling behavior when infused into mice.40 Although the patrolling behavior is well described to cover long distances and large areas of the endothelial surface of blood vessels, the kinetics of recruitment, migration into the extravascular space, and survival of Ly-6C− cells in the tissue have not been investigated yet. The Ly-6C− macrophages can differentiate into macrophages that produce chemokines, such as CXC chemokine ligands (CXCL)-9 and CXCL10; produce
proangiogenic factors, such as vascular endothelial growth factor; and participate in tissue remodeling and phagocytosis. The relationship between the monocyte subsets and M1, M2, and other macrophages (see below) remains unclear.

Monocyte Recruitment

Monocytes are thought to reach the arterial wall by transmigrating through the luminal endothelium. However, the evidence for this is circumstantial and monocyte transmigration into atherosclerotic lesions has not been observed directly. Morphological studies show that monocytes can be found adherent to the luminal endothelium.10 Ex vivo perfusion studies show that monocytes can roll and adhere to the luminal endothelium of atherosclerotic arteries but not normal arteries, but in these experiments, the wall shear stress was lower than in vivo and did not follow the normal cardiac cycle. In vivo observations of leukocyte adhesion in mouse abdominal aorta have been reported, but the nature of the leukocytes (monocytes or granulocytes) was not identified. In a recent intravital microscopic study, the chemokine receptor requirement for neutrophil but not monocyte recruitment into the carotid artery was reported.

The traditional leukocyte adhesion cascade involves capture, selectin-dependent rolling, activation by an endothelial surface-bound chemokine, integrin-mediated adhesion, and transendothelial migration. The selectin responsible for monocyte rolling in atherosclerotic mouse arteries appears to be P-selectin. L-selectin appears to be involved in lymphocyte homing to mouse aorta but not in monocyte recruitment. Most monocyte firm adhesion is dependent on the integrin, also known as very late antigen-4, which can bind to certain isoforms of fibronectin and to vascular cell adhesion molecule-1, an immunoglobulin family molecule highly expressed in endothelial cells near atherosclerotic lesions. Although monocytes express other integrins, including selectins, including CD11b (lymphocyte function-associated antigen-1) and CD99. However, these molecules are also used by other cells, including T cells, and F4/80, a classical macrophage marker.

Among the monocyte subsets, Ly-6C⁺ monocytes express significantly more functional P-selectin glycoprotein ligand-1 than Ly-6C⁻ cells. Consistent with this observation, flow chamber assays showed that Ly-6C⁺ monocytes adhere more avidly to P-selectin and E-selectin. This would suggest that Ly-6C⁺ monocytes may preferentially enter into atherosclerotic lesions, perhaps through a platelet-dependent mechanism. In vivo, Ly-6C⁺ monocytes were indeed shown to bind to activated endothelium and infiltrate atherosclerotic lesions better than Ly-6C⁻ monocytes. Moreover, Ly-6C⁺ monocytes accumulate in the blood of mice fed a high-fat, high-cholesterol Western diet. Ex vivo imaging showed that Ly-6C⁺ monocytes preferentially localized to lesion-prone sites such as the lesser curvature of the aortic arch and arterial branch points. Because Ly-6C⁺ monocytes are known to give rise to CD11b⁺CD11c⁺ inflammatory macrophages and Tip-DCs in other models, it is tempting to speculate that many of the “macrophages” accumulating in atherosclerotic lesions may actually be Tip-DCs. Interestingly, most CD11b⁺CD11c⁺ cells in the atherosclerotic mouse aorta coexpress high levels of major histocompatibility complex-II, which is responsible for peptide antigen presentation to CD4 T cells, and F4/80, a classical macrophage marker. Similar cells have recently been called resident intimal dendritic cells. However, unlike dendritic cells in lymphoid organs, these cells are probably monocyte derived.

Like other blood cells, monocytes must transmigrate through the endothelium to reach their destination. In vitro systems in the absence of flow show a prominent role of the endothelial cell surface immunoglobulin-like adhesion molecule CD31 in monocyte transendothelial migration. Genetic absence of CD31 reduces monocyte transmigration in most mouse strains, but not in C57BL/6 mice, which are most commonly used in atherosclerosis studies. Other molecules that have been implicated in monocyte transendothelial migration include intercellular adhesion molecule-1, vascular cell adhesion molecule-1, junctional adhesion molecule-A, junctional adhesion molecule-C, endothelial selective adhesion molecule, intercellular adhesion molecule-2, and CD99. However, these molecules are also used by other leukocytes, and no direct in vivo evidence exists that these mechanisms specifically regulate monocyte recruitment to atherosclerotic lesions in vivo. With the exception of vascular cell adhesion molecule-1, which is also a key adhesion molecule for monocytes, the differential effect of blocking or knocking out these molecules on the recruitment of monocyte subsets has not been studied.

Role of Platelets

Platelets have long been known to participate in atherogenesis, and atherosclerotic lesions express detectable levels of CCL5.
platelet antigens such as CD41 and P-selectin. Although it is unlikely that intact platelets survive in lesions, platelets greatly facilitate and accelerate monocyte accumulation. Platelets form bridges between monocytes and endothelial cells. Consistent with this role, infusing activated platelets accelerates atherosclerotic lesion formation. Platelet-monocyte adhesion is often dependent on platelet P-selectin and monocyte P-selectin glycoprotein ligand-1. Indeed, selectively eliminating P-selectin expression from platelets only (and not from endothelial cells) strongly protects mice from atherosclerosis. Also, removing platelet factor 4 (PF4), the gene encoding the platelet chemokine CXCL4, from the growth factor-phenotype. An important modifier of macrophage phenotype also secrete factors that influence the monocyte-macrophage recruitment to atherosclerotic lesions.

In addition to facilitating monocyte recruitment, platelets also secrete factors that influence the macrophage-macrophage phenotype. An important modifier of macrophage phenotype is PF4 (CXCL4), which induces a unique transcriptome in human blood monocyte-derived macrophages devoid of the hemoglobin-haptoglobin receptor CD163. Consistent with a proatherosclerotic role of PF4, Pf4−/− mice show reduced atherosclerotic lesion sizes.

Atherosclerotic Lesion Macrophages

Macrophages are a major cell type of early atherosclerotic lesions and play important roles at all stages of lesion progression. As we noted earlier, macrophage phenotypes in atherosclerotic lesions are likely the result of both lineage commitment and phenotypic changes in response to their environment. Because current technology for interrogating macrophage lineages and functions in atherosclerotic lesions has serious limitations, most studies addressed mechanisms of macrophage differentiation in vitro.

In vitro, human monocytes can differentiate into various macrophage subsets. The most common growth factor used to grow macrophages in vitro is M-CSF, generating unpolarized (M0) macrophages. If these macrophages are treated with IFN-γ followed by LPS, they polarize to an M1 phenotype with characteristic expression of tumor necrosis factor-α and IL-12. M2 macrophages were originally described as human blood monocyte-derived macrophages differentiated in the presence of M-CSF and IL-4 or IL-13 (M2α); immune complexes and IL-1β or LPS (M2b); or IL-10, transforming growth factor-β, or glucocorticoids (M2c). M2c cells produce the proangiogenic growth factor vascular endothelial growth factor. Monocyte-derived macrophages can also be grown with PF4 without the requirement of M-CSF, resulting in M4 macrophages. M4 macrophages have a unique transcriptome that is closer to M2 than M1. In the presence of the oxidized phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine, mouse bone marrow-derived macrophages express a small and unique transcriptome (119 characteristic genes) that includes the Hox1 gene encoding the antiinflammatory enzyme heme oxygenase-1. This macrophage phenotype has been called Mox and shares poor phagocytic capacity with M4 macrophages. However, Mox cells are clearly different from M4 cells in many other aspects. The sphingolipid sphingosine-1-phosphate has also been shown to generate a macrophage phenotype closer to a M2 than M1, with increased expression of arginase-1 and reduced expression of tumor necrosis factor-α. Taken together, it is likely that modified LDL and inflammatory mediators such as IFN-γ, tumor necrosis factor-α, transforming growth factor-β, and IL-10 can trigger phenotypic modulation of macrophages in the artery wall during atherogenesis.

Macrophages can be isolated from the peritoneal cavity of mice or grown from bone marrow precursor cells. It is not known whether resident peritoneal macrophages are macrophage-derivered. Among other features, resident peritoneal macrophages express high levels of 12/15-lipoxygenase (12/15-LO) and are extremely efficient efferocytes that take up apoptotic cells. By contrast, bone marrow harbors monocyte precursors, including MDPs and common dendritic cell precursors, which can give rise to various lineages. Mouse bone marrow-derived macrophages proliferate in vitro and can be differentiated to M1, M2, and a regulatory Mreg phenotype, which is phenotypically similar to the human M2c phenotype.

Atherosclerotic lesions contain macrophages with M1, M2, M4, and Mox markers, but it is unlikely that the in vitro phenotypes in their pure form exist in diseased arteries in vivo. Flow cytometric analysis of aortas from Ldlr−/− mice fed an atherogenic diet for 30 weeks revealed that 39% of the aortic macrophages expressed the M1 marker CD86, 21% expressed the M2 marker CD206 (mannose receptor), 45% expressed the Mox marker heme oxygenase-1, and 10% coexpressed CD86. M4 macrophages were not investigated in this mouse study, but in human atherosclerotic coronary arteries, many macrophages are CD163−, a hallmark of the M4 phenotype.

The phenotype of lesional macrophages is incompletely understood. Laser capture microdissection has yielded limited numbers of cells and small amounts of mRNA, which has been interrogated for a few gene products. Genome-wide analysis of lesional macrophages has not been reported, although the transcriptome of the mixed cell populations contained in atherosclerotic human coronary artery segments has been analyzed. Many lesional cells express the macrophage marker F4/80 and the integrins αβ2 (CD11b CD18) and αβ2 (CD11c CD18). Because CD11c is also expressed on many dendritic cells, lesional macrophages, likely derived from recently immigrated monocytes, have been called DCs. Under atherogenic conditions, these inflammatory conditions...
Macrophages accumulate in the aorta and show reduced emigration from lesions. During atherosclerosis progression, these cells appear not only in the neointima but also in the adventitia, where they may participate in antigen presentation and cytokine production.

Foam Cell Formation

An initiating event in the formation of atherosclerotic plaques is excessive lipid accumulation in vascular wall macrophages. Macrophages in atherosclerotic arteries eventually become lipid-laden foam cells through a process regulated by the balance between the uptake of modified LDL and efflux of cholesterol and other lipids. In 1913, Nikolai Anitchkov described these cells as *Cholesterinesterphagozyten*, observed in the aorta of cholesterol-fed rabbits. In the early 1980s, Ross Gerrity was the first to document the early entry of monocytes into the susceptible areas of the vessel wall in cholesterol-fed animals. Gerrity described a monocyte clearance system in which large numbers of circulating monocytes invade the intima of lesion-prone areas in arteries, become phagocytic, and accumulate lipid. It is indeed likely that most of the foam cells differentiate from newly recruited monocytes, but the details of this process are not known. In addition, resident intimal DCs may accumulate lipid and become foam cells. Foam cells can migrate back into the circulation by crossing the aortic endothelium in reverse direction. It is not known whether this is a major clearance pathway for foam cells.

On differentiation, macrophages display high levels of surface expression of scavenger receptors (scavenger receptor A, LOX-1, CXCL16, and CD36), which have the ability to take up modified lipoproteins, such as copper-oxidized, cholesterol and other modified lipoproteins, including oxidized LDL (oxLDL), minimally modified LDL (mmLDL), acetylated LDL (acLDL), or otherwise modified LDL. This uptake is mediated by scavenger receptor type A (SRA), oxidized LDL receptor-1 (LOX-1), CX3CL1, TLR4/MD-2, and a number of other receptors. Unmodified LDL also enters macrophages by micro- and macropinocytosis. The ABC transporters ABCA1, ABCG1, and ABCA4/7 mediate reverse transport (efflux) of cholesterol, oxysterols, and phospholipids, but the presence of foam cells in the lesions indicates that the efflux mechanisms become eventually overwhelmed by unregulated LDL uptake. Lipid accumulation has profound effects on the macrophage gene expression, adhesion, apoptosis, efferocytosis, and other characteristics and functions.
acetylated, and malondialdehyde-modified LDL \cite{112-119} (Figure 2). Atherosclerosis studies with CD36 (and scavenger receptor A) knockout mice performed in different laboratories have been contradictory. The Febbraio/Silverstein group demonstrated that CD36 deficiency reduced atherosclerosis, \cite{116,120} but the Moore/Freeman group reported that knocking out CD36 had no effect on atherosclerotic lesion size or even increased aortic root lesions. \cite{121} It is possible that scavenger receptors have a differential effect early and late in atherosclerosis, which could reconcile these different findings. \cite{116,117,121,122}

Fluid-phase uptake of native and modified LDL is another endocytic pathway that generates macrophage foam cells during atherogenesis. \cite{123} Macropinocytosis occurs constitutively in human monocyte-derived macrophages differentiated in vitro with M-CSF. Further studies from the same group recognized that both macropinocytosis and micropinocytosis occur in human macrophages lead to foam cell formation. \cite{124} In mouse macrophages, minimally oxidized LDL is recognized by the TLR4/MD-2 complex and induces Syk-dependent membrane ruffling and robust macropinocytosis, resulting in uptake of native and modified LDL and foam cell formation. \cite{125,126} Fluid-phase pinocytosis of fluorescent nanoparticles has been demonstrated in macrophages of mouse atherosclerotic lesions, \cite{127} and lipid accumulation and foam cell formation in early lesions of Tlr4+/− apoE−/− mice was reduced by 70\% to 80\% compared with apoE−/− controls. \cite{128} Under certain dietary conditions, whole body and macrophage TLR4-deficient mice have less atherosclerosis than their Tlr4+/+ counterparts. \cite{129,130} Carotid atherosclerotic plaques dissected from symptomatic patients have higher levels of TLR4 expression compared with the lesions from asymptomatic patients, \cite{131} and individuals with inactivating single-nucleotide polymorphisms in the Tlr4 gene have lower risk of atherosclerosis and cardiovascular events, although not all studies agree (reviewed in \cite{132}).

Excess cholesterol accumulated in macrophages via scavenger receptor-mediated or fluid-phase uptake is removed from macrophages by ATP-binding cassette (ABC) transporters. ABCA1 and ABCG1 are upregulated during macrophage differentiation, and these transporters function to regulate cholesterol efflux and reverse cholesterol transport. \cite{133-137} Peroxisome proliferator–activated receptor–\(\gamma\) and liver X receptor agonists function in part to regulate macrophage foam cell formation in atherosclerosis. \cite{138-142} Peroxisome proliferator–activated receptor–\(\gamma\) agonists can inhibit foam-cell formation in vivo through ABCA1-dependent \cite{141} and ABCA1-independent pathways. \cite{143,144} Activation of peroxisome proliferator–activated receptor–\(\gamma\) reduces cholesterol esterification and induces expression of ABCG1. \cite{145} LXR activation in macrophages reduces foam cell formation via induction of both ABCA1 \cite{145} and ABCG1. \cite{146,147} Feig et al recently found that both LXR isoforms were important in atherosclerosis regression. These investigators transplanted aortic arches from atherosclerotic Apo\textsuperscript{e−/−} mice with or without LXR\(\alpha\) or LXR\(\beta\) deficiency into WT recipients. Plaques from both LXR\(\alpha\) and LXR\(\beta\)-deficient Apo\textsuperscript{e−/−} mice exhibited impaired regression and reduced emigration of macrophages from plaques. \cite{148} Thus, both LXR and peroxisome proliferator–activated receptor–\(\gamma\) signaling inhibit macrophage foam cell formation in atherosclerotic plaques.

During atherogenesis, several eicosanoid-generating enzymatic pathways are induced in macrophages, including 5-LO and 12/15-LO. \cite{149-154} Both enzymes have been linked to atherogenesis. \cite{151,155-157} Oxidized fatty acids produced in macrophages contribute to formation of minimally modified and oxidized LDLs. IL-13, an important cytokine for the alternative activation of macrophages, induces 12/15-LO and CD36 in macrophages. \cite{158-160} Engagement of the \(\alpha_\text{v}\beta_\text{3}\) integrin significantly inhibited IL-13-mediated foam cell formation. \cite{161} There is some controversy as to whether the 12/15-LO pathway is proatherogenic. Although 12/15-LO can clearly generate oxidized lipids in LDL and is proatherogenic in mice, \cite{156,157,162} human 15-LO has been reported to be atheroprotective in rabbits. \cite{163-165} This may relate to the concept that the 12/15-LO enzyme can also generate lipoxins and resolvins, \cite{166-168} which are important for the resolution of inflammatory responses. Thus, depending on the artery microenvironment, the 12/15-LO enzyme may confer either an atheroprotective or proatherogenic role.

Fatty acids and eicosanoids regulate expression of both the ABCA1 and ABCG1 transporters. \cite{169-171} Arachidonic acid and 12-\(S\)-hydroxyeicosatetraenoic acid, produced by 12/15-LO, cause reduced ABCA1 and ABCG1 protein expression in macrophages. Both mice \cite{172} and humans \cite{169} with type 2 diabetes have reduced expression and functional activity of ABCG1 in macrophages. As it is known that subjects with type 2 diabetes have increased 12-\(S\)-hydroxyeicosatetraenoic acid production through an induction in 12/15LO activity, \cite{173} it is plausible to speculate that these elevated levels of eicosanoids in type 2 diabetic subjects contribute to loss of ABCG1.

Recently, important links have been made between ABC transporters and vascular inflammation. The interaction of apoA-I with ABCA1 activates signaling molecules, such as Janus kinase 2. \cite{174} ABCA1-mediated activation of Janus kinase 2 activates STAT3 independently of the lipid transport function of ABCA1. ABCA1-expressing macrophages suppressed the induction of inflammatory genes in macrophages in response to LPS. LPS-treated macrophages from macrophage-specific ABCA1-deficient mice exhibited enhanced expression of proinflammatory cytokines and increased activation of nuclear factor-\(\kappa\)B, which could be inhibited by silencing MyD88. \cite{175} This was normalized when excess free cholesterol was removed from macrophages with cyclohexatin, which suggests that increased inflammatory TLR signaling through lipid rafts occurs when ABCA1 is absent. Similar findings have been reported for ABCG1, where macrophages deficient in ABCG1 showed increased cholesterol accumulation and enhanced TLR signaling in response to LPS. \cite{176} ABC transporters may also play a role in myeloid proliferation. Yvan-Charvet et al recently reported that proliferation of hematopoietic stem cell precursors is regulated by cholesterol efflux mechanisms involving high-density lipoprotein, ABCG1, and ABCA1. Mice deficient in both ABCA1 and ABCG1 displayed leukocytosis and an expansion of the Lin−Sca1−Kit+ hematopoietic progenitor cell population in the bone marrow. \cite{177} Thus, new evidence is emerging that...
strongly links cholesterol efflux mechanisms with inflammatory processes in macrophages.

Apoptosis and Efferocytosis

As atherosclerosis has been deemed an inflammatory disease, inflammatory factors are expected to be involved in both the progression and resolution of atherosclerosis. One important function of macrophages is the clearance of apoptotic cells by phagocytes (a process called efferocytosis). Efferocytosis is a function of alternatively activated (M2) macrophages (discussed above). As macrophages engulf oxidized lipids and other cellular debris in the arterial wall during early stages of atherogenesis, many of these macrophages undergo apoptosis. In early atherogenesis, macrophage apoptosis is associated with reduced atherosclerosis progression. This is most likely due to the possible effects of defective efferocytosis are detailed in a recent review. One possibility, among many, may be a change in macrophage phenotype that occurs in the artery wall during atherogenesis, leading to an accumulation of poorly phagocytic macrophages. Secondary necrosis amplifies the inflammatory response and leads to the development of a necrotic core in the plaque. The possible effects of defective efferocytosis are detailed in a recent review. One possibility, among many, may be a change in macrophage phenotype that occurs in the artery wall during atherogenesis, leading to an accumulation of poorly phagocytic macrophages. Secondary necrosis amplifies the inflammatory response and leads to the development of a necrotic core in the plaque. Thus, the balance between apoptosis, efferocytosis, and secondary necrosis determines atherosclerosis progression and severity.

In summary, monocytes play important roles in the initiation, progression, and complications of atherosclerosis. Their recruitment to the artery wall, their differentiation to macrophages, and their phenotypes can be modulated by factors present within the microenvironment of the artery wall, including oxidized lipids, TLR ligands, hematopoietic growth factors, cytokines, and chemokines. Within atherosclerotic plaques, the dynamic modulation of macrophage phenotypes affects atherosclerosis progression by modulating ongoing inflammatory responses within the vessel wall, by regulating apoptotic cell clearance within the developing plaque, and by egress mechanisms. Thus, the dynamic roles that macrophages play in early and advanced atherosclerotic plaques make macrophage phenotype modulation an attractive therapeutic target for the prevention and treatment of cardiovascular disease.

Acknowledgments

The authors thank Dr E.K. Koltsova for generating the figures.

Sources of Funding

The investigators were supported by grants from the National Institutes of Health, HL58108 to K.L., HL55798 to C.H., and HL081862 to Y.M.

Disclosures

None.

References

67. Ramos CL, Huo Y, Jung U, Ghosh S, Manka DR, Sarembock IJ, Ley K. Direct demonstration of P-selectin and VCAM-1-dependent mono-
68. Huo Y, Hafezi-Moghadam A, Ley K. Role of vascular adhesion molecule-1 (VCAM-1) and fibronectin connecting segment-1 (CS-1) in mono-
69. Eriksson EE, Wen J, Guo Y, Thoren P, Lindbom L. Direct observations in vivo on the role of endothelial-selectins and α4 integrin in cytokine-
70. Drechsler M, Menges RT, van ZE, Weber C, Soehnel O. Hyperlipid-
81. Swirski FK, Libby P, Aikawa E, Isakson BE, Wamhoff BR, Leitinger N. Identification of a novel macrophage phenotype that develops in response to atherogenic phospho-
82. Swirski FK, Libby P, Kircher MI, Aikawa E, Jaffer FA, Libby P, Weissleder R. Monocyte accumulation in mouse atherogenesis is pro-
83. Swirski FK, Libby P, Kircher MI, Aikawa E, Jaffer FA, Libby P, Weissleder R. Monocyte accumulation in mouse atherogenesis is pro-
84. Swirski FK, Libby P, Kircher MI, Aikawa E, Jaffer FA, Libby P, Weissleder R. Monocyte accumulation in mouse atherogenesis is pro-

Monocyte and Macrophage Dynamics During Atherogenesis
Klaus Ley, Yury I. Miller and Catherine C. Hedrick

Arterioscler Thromb Vasc Biol. 2011;31:1506-1516
doi: 10.1161/ATVBAHA.110.221127
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/31/7/1506

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org/subscriptions/