Activation of Aryl Hydrocarbon Receptor Induces Vascular Inflammation and Promotes Atherosclerosis in Apolipoprotein E−/− Mice

Dalei Wu, Noriko Nishimura, Victoria Kuo, Oliver Fiehn, Sevini Shahbaz, Laura Van Winkle, Fumio Matsumura, Christoph Franz Adam Vogel

Objective—Exposure to dioxins has been shown to contribute to the development of inflammatory diseases, such as atherosclerosis. Macrophage-mediated inflammation is a critical event in the initiation of atherosclerosis. Previously, we showed that treatment of macrophages with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) leads to aryl hydrocarbon receptor (AhR)–dependent activation of inflammatory mediators and the formation of cholesterol-laden foam cells. However, the mechanisms responsible for the formation of atherosclerotic lesions mediated through AhR have not been identified.

Methods and Results—An in vitro macrophage and an apolipoprotein E (ApoE)−/− mouse model were used to determine whether chemokines and their receptors are responsible for the AhR-mediated atherogenesis. Exposure of ApoE−/− mice to TCDD caused a time-dependent progression of atherosclerosis, which was associated with induction of inflammatory genes, including interleukin-8, as well as F4/80 and matrix metalloproteinase-12. A high-fat diet enhanced the TCDD-mediated inflammatory response and aggravated the formation of complex atheromas. Treatment with a CXCR2 inhibitor and an AhR antagonist reduced the TCDD-induced progression of early atherosclerotic lesions in ApoE−/− mice.

Conclusion—The results suggest that CXCR2 mediates the atherogenic activity of environmental pollutants, such as dioxins, and contributes to the development of atherosclerosis through the induction of a vascular inflammatory response by activating the AhR-signaling pathway. (Arterioscler Thromb Vasc Biol. 2011;31:1260-1267.)

Key Words: atherosclerosis • macrophages • AhR

Epidemiological studies on a population heavily exposed to dioxin in 1976 in Seveso, Italy, indicate that coronary and hypertensive diseases have been increasing in recent years among the exposed population.1 A more recent study confirms a higher incidence of hyperlipidemia, atherosclerotic plaques, increased intima-media thickness, and ischemic heart disease in a group of former dioxin workers.2 These observations agree well with the results of experimental animal studies,3,4 as well as other epidemiological evidence from factory workers exposed to chlorinated organic compounds,5 that these aryl hydrocarbon receptor (AhR) ligands indeed cause hyperlipidemia. Hyperlipidemia, particularly hypercholesterolemia, has been described to be associated with a significant reduction in binding of low-density lipoprotein (LDL) to its receptor on the hepatic plasma membrane observed in guinea pigs as a result of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) treatment.6 Dalton et al reported that TCDD promotes an earlier onset and greater severity of atherosclerotic lesions in apolipoprotein E (ApoE)−/− mice.7 Their study provides further evidence that atherogenesis is a major risk factor for ischemic heart diseases that are known to develop in ApoE−/− mice as an end result of TCDD exposure and AhR activation.

See accompanying article on page 1247

Atherosclerosis is considered a chronic inflammatory disease of the vessel wall characterized by chemokine-driven mononuclear cell recruitment into the subendothelial space, where the mononuclear cells differentiate into macrophages.8 These macrophages promote plaque development by secreting numerous inflammatory mediators, such as cytokines and chemokines, that sustain the inflammatory milieu, recruit leukocytes to the vascular wall, and regulate immune functions. All these functions make the plaque macrophage an interesting target for prevention and therapy of atherosclerotic disease.

Our previous studies have shown that air pollutants, such as urban dust particles or particles from diesel engine exhaust,
as well as the prototypical AhR ligand TCDD, activate an inflammatory response in macrophages and may lead to the formation of foam cells.9,10 Another major risk factor for cardiovascular diseases is cigarette smoke, which contains many compounds that activate the AhR, such as polycyclic aromatic hydrocarbon (PAH). Thus, it is important to understand how pathological stimuli such as air pollutants may affect macrophage phenotype and function and how these mechanisms lead to atherosclerosis.

Interleukin (IL)-8 has been implicated as a contributing factor to atherosclerosis and has been considered to play a pivotal role in pathogenesis of vascular diseases.11 Thus, increased expression of IL-8 was found to be associated with the presence of macrophage-derived foam cells in human atheroma.12 Macrophages are considered a major source to contribute to overexpression of IL-8 in atherosclerotic tissue. Our previous studies show that the most consistently observed phenomenon accompanying induction of foam cell formation triggered by oxidized LDL, lipopolysaccharide, or TCDD in U937 macrophages is an early and sustained upregulation of IL-8.10,13 The discovery that IL-8 also acts as a mediator of cholesterol loading in macrophages makes IL-8 one of the most important players in atherogenesis. In this regard, it is interesting to learn that recently Gargalovic et al found that atherosclerosis induced by oxidized phospholipids in endothelial cells can be attenuated by silencing the IL-8 pathway through the use of small interfering RNA (siRNA) technology.14 CXCR2, a G protein-coupled receptor mediating chemotaxis in immune responses, is believed to play a key role in several inflammatory diseases, including atherosclerosis. CXCR2 is expressed in neutrophils, monocytes, and macrophages and binds several chemokines, including CXCL8 (IL-8), CXCL1 (GRO\textsubscript{α}), and CXCL5.15 CXCR2 has been shown to have a major impact on macrophage accumulation in advanced lesions.16 Activation of the chemokine receptor CXCR2 enhances monocyte-endothelial adhesion and promotes angiogenesis by increasing vascular endothelial growth factor (VEGF) expression.17,18 Thus, IL-8 and its receptor CXCR2 appear to be among the essential players in this cell model of atherogenesis. CCR2 is a receptor for monocyte chemoattractant protein-1 (MCP-1), a chemokine that specifically mediates monocyte chemotaxis. In the current study, we investigated how chemokine receptors CXCR2 and CCR2 contribute to the development of atherosclerotic plaques mediated by AhR activation.

Methods

Cell Differentiation, Treatment, and Transient Small Interfering RNA Transfection

U937 monocytic cells were treated with 12-O-tetradecanoylphorbol-13-acetate (3 μg/mL) and allowed to adhere for 48 hours in a 5% CO\textsubscript{2} tissue culture incubator at 37°C, after which they were fed with 12-O-tetradecanoylphorbol-13-acetate–free medium to promote differentiation into macrophages.

Cigarette smoke extract (CSE) was prepared as described earlier.19 Macrophages were treated for 24 hours with 10 nmol/L TCDD, 10% CSE, or 0.1% Me\textsubscript{2}SO as vehicle control in absence or presence of 10 μmol/L AhR antagonist 3'-methoxy-4'-nitroflavone (MNF). Transfection of small interfering RNA into U937 macrophages was performed via Nucleofector technology as previously described.13 Twenty-four hours after transfection, cells were treated with 10 nmol/L TCDD, 10% CSE, or 0.1% Me\textsubscript{2}SO (control) for another 24 hours. The reduction of the target RNA was detected by quantitative real-time reverse transcription–polymerase chain reaction (PCR).

Quantitative Real-Time Reverse Transcription–PCR

The RNA isolation from macrophage cells was carried out using a high-pure-RNA isolation kit (Qiagen, Valencia, CA) according to the manufacturer’s instructions. For preparation of total RNA from the aortas of ApoE−/− mice, the frozen tissue samples were homogenized first in Trizol using a TissueLyser instrument (Qiagen). The RNA was extracted with chloroform and further purified with the RNA isolation kit. cDNA synthesis was performed as previously described.13 Quantitative real-time PCR was run with a LightCycler instrument (Roche Diagnostics) using the Fast Real-Time SYBR Green PCR Kit (Qiagen). All PCR assays were performed in duplicate or triplicate. For quantification, data were analyzed with the LightCycler analysis software.

Measurement of Cholesterol

Cellular cholesterol and protein determinations were performed as described previously.10 Free and esterified cholesterol (total cholesterol) was extracted directly from in situ macrophage monolayers in the cell culture dish. Cells were treated for 5 days with 10 nmol/L TCDD or 10% CSE in absence or presence of AhR antagonist MNF (10 μmol/L), CCR2 inhibitor INCB33434 (10 μmol/L), and CXCR2 inhibitor SB225002 (10 μmol/L) before cholesterol measurement. Cholesterol from mouse aortas was extracted by isopropyl alcohol:acetoniitrile:water treatment followed by a derivatization reaction and was measured by gas chromatography–mass spectrometry as previously described.20

Animal Treatment and Immunohistochemistry

The investigation conforms with the Guide for the Care and Use of Laboratory Animals published by the US National Institute of Health (publication no. 82-23, revised 1996) and was approved (Protocol #13165) by the University of California Davis Animal Use and Care committee.

Mice were fed a regular chow diet (diet no. 5001, LabDiet) or a high-fat diet (HFD) (diet no. D12079B, Research Diets, Inc.). ApoE−/− mice (Jackson Laboratory, Sacramento, CA) were pretreated with 5 mg/kg CXCR2 inhibitor SB220005 or AhR antagonist CH223191 for 24 hours before TCDD treatment and cotreatment with inhibitors plus TCDD. Control animals received an equal amount of corn oil (5 mL/kg) or inhibitor alone. Eight-week-old C57BL/6J and ApoE−/− mice received a single intraperitoneal injection of 15 μg/kg TCDD and a weekly maintenance dose of 1 μg/kg TCDD or 5 mg/kg SB225002/CH223191. If not otherwise stated, 8 animals from each group were killed at day 60, and organs were excised, weighed, quickly frozen in liquid nitrogen, and stored at −80°C for analysis. Aortas were cleaned and stripped of fat on the adventitia before being excised.

Aortas were processed in serial sections at 3 μm and stained with hematoxylin/eosin (H&E). Additional aortic sections were used for immunohistochemistry. Immunohistochemical stains were used to detect matrix metalloproteinase (MMP)-12 (Santa Cruz Biotechnology, Santa Cruz, CA) and identify macrophages and foam cells. Briefly, endogenous peroxidase was blocked with 3% hydrogen peroxidase/methanol. Slides were incubated in fresh citrate buffer, pH 6.0, at 25°C for antigen retrieval. The primary antibodies were diluted in 0.5% phosphate-buffered saline and ovalbumin and incubated at room temperature overnight. Detection was performed using a biotinylated secondary antibody followed by the Avidin-Biotin Peroxidase Complete ABC kit (Vector Laboratories, Burlington, CA) and developed with diaminobenzidine chromogen substrate.
Statistical Analysis

To detect fold differences in gene expression, all expression values were logarithm-transformed for analysis, with results expressed as backtransformed means ± standard deviations. Data were analyzed by 1-way ANOVA as appropriate. If statistical significance ($P < 0.05$) was determined by ANOVA, the data were further analyzed by the Student-Newman-Keuls procedure to detect specific differences between treatments.

Results

Effect of CSE and TCDD on Expression of Inflammatory Genes in Macrophages

A number of proinflammatory genes play important roles in vascular inflammation and the development of atherosclerosis. Here, we investigated the effect of 2 environmental pollutants, CSE and TCDD, on proinflammatory marker genes in macrophages derived from U937 cells. We selected CSE because it is well known to contain AhR-activating components and to cause cardiovascular diseases including atherosclerosis.21,22 As shown in Figure 1A, TCDD significantly increased the expression of IL-8, MCP-1, and MMP-12 by 13-fold, 6-fold, and 18-fold, respectively. The expression of the chemokine CXCL5, which is coregulated with IL-8, was increased approximately 3-fold by TCDD. Treatment with 10% CSE also increased the mRNA level of IL-8, CXCL5, MCP-1, and MMP-12, but the effect was less pronounced than after TCDD exposure. Increased expression of MMP-12 in atherosclerotic lesions has been shown to be associated with foam cell generation.23 CYP1A1 gene expression was induced 33- and 8-fold by TCDD- and CSE-treated U937 macrophages, respectively (Figure 1A). To test whether the effects of TCDD and CSE are mediated through AhR signaling, cells were cotreated with CSE or TCDD in the presence of MNF. CYP1A1 expression was induced 33- and 8-fold by TCDD- and CSE-treated cells, respectively (Figure 1A).

Induction of VEGF mRNA Expression in U937 Macrophages by TCDD Is AhR and IL-8 Dependent

VEGF has been described as a downstream target of CXCR2 activation.18 To test whether CXCR2 signaling is stimulated by TCDD, the expression of VEGF was analyzed. The results in Supplemental Figure I (available online at http://atvb.ahajournals.org) show that silencing of AhR and IL-8 decreased their mRNA level specifically by 70% and 75%, respectively. As shown in Figure 1B, suppression of AhR and IL-8 expression through gene silencing decreased the TCDD-stimulated induction of VEGF, indicating that this effect is AhR dependent and mediated through IL-8, which binds to and activates CXCR2. CSE-induced expression of VEGF was also inhibited by AhR antagonist MNF (data not shown). The expression of CYP1A1 was analyzed as a control and found to be suppressed after transient transfection with siRNA targeting the AhR (siAhR), but not after silencing IL-8 (Figure 1C).

Stimulation of Cholesterol Accumulation in U937 Macrophages by TCDD and CSE

Foam cells are primarily macrophages laden with cholesterol ester–rich cytoplasmic lipid inclusions. To quantify the total
amount of cholesterol in U937 macrophages, we used a colorimetric method in the presence of cholesterol oxidase and cholesterol esterase. Exposure of U937 macrophages for 5 days to 10% CSE or 10 nmol/L TCDD resulted in the accumulation of cholesterol by 1.8- and 2.1-fold, respectively (Figure 1D). To test whether the effect of CSE and TCDD exposure on cholesterol accumulation is AhR dependent and involves the chemokine receptors CCR2 or CXCR2, cells were treated with CSE and TCDD in the presence of MNF (10 μmol/L), INCB3344 (10 μmol/L), or SB225002 (10 μmol/L), respectively. INCB3344, kindly provided by Pfizer, is a potent and selective small molecule antagonist of the mouse CCR2 receptor. INCB3344 inhibits CCL2-mediated functional responses, such as extracellular signal regulated kinase phosphorylation and chemotaxis.24 SB225002 is a potent and selective CXCR2 chemokine receptor antagonist and prevents IL-8-induced neutrophil chemotaxis in vitro and sequestration in vivo.25 Results from a cholesterol assay show that AhR-antagonist MNF, as well as the CXCR2 antagonist SB225002, efficiently blocked CSE- and TCDD-stimulated cholesterol accumulation. On the other hand, the CCR2 antagonist INCB3344 did not decrease the accumulation of cholesterol in CSE- and TCDD-treated cells (Figure 1D). These data suggest that CXCR2 signaling is involved in CSE- and TCDD-stimulated cholesterol accumulation.

TCDD Promotes the Development of Atherosclerotic Lesions in ApoE−/− Mice

In vivo effects of TCDD on the formation of atherosclerotic plaques were studied in ApoE−/− mice. As expected, no lesions were observed in C57BL/6 wild-type control (Figure 2A and Supplemental Figure IIA) or TCDD-treated mice (Figure 2B and Supplemental Figure IIB). However, H&E-staining of aorta sections showed clear signs of atherosclerotic lesions with larger accumulation of lipid droplets in ApoE−/− mice treated with TCDD for 60 days (Figure 2D and Supplemental Figure IID) compared with untreated control ApoE−/− mice (Figure 2C and Supplemental Figure IIC). After 7 months of the initial treatment with TCDD, ApoE−/− developed a complex atheroma, with extensive accumulation of extracellular lipid particles forming a large lipid core (Figure 2F and Supplemental Figure IIIF), even without being fed an HFD. Activation of macrophages in atherosclerotic lesions and formation of foam cells has been shown to be associated with increased expression of MMP-12 in macrophages26 (Figure 1A) and aortas of ApoE−/− after TCDD treatment (Table). To examine whether macrophages are present in early atherosclerotic lesions, aorta sections were stained with a MMP-12 specific antibody. As shown in Figure 2G and Supplemental Figure IIIG, expression of MMP-12 was not detectable in 3-month-old ApoE−/− mice fed a regular diet. In contrast, treatment with TCDD for 40 days resulted in the expression of MMP-12 in macrophages and macrophage-derived foam cells appearing in early atherosclerotic lesions (Figure 2H and Supplemental Figure IIGH).

To test the contribution of AhR activation by TCDD on the formation of atherosclerotic lesion induced through HFD, mice were fed a Western diet for a period of 60 days after treatment with a single injection of 15 μg/kg TCDD. The hearts and aortas were excised from the mice to examine the extent of atherosclerosis in the aortas. Representative examples of the aorta arches are shown in Figure 3A to 3D. The development of atherosclerotic lesions with mainly intracellular lipid accumulation occurred in ApoE−/− control mice fed an HFD (Figure 3A and 3B and Supplemental Figure IIIA and IIIB). Furthermore, the area of atherosclerotic lesion with extensive lipid accumulation and a large lipid core in the serial sections of the aortic arches was advanced in TCDD-treated ApoE−/− mice, which were also fed an HFD (Figure 3C and 3D and Supplemental Figure IIIC and IIID).

In accordance with the in vivo findings, we tested the effect of SB225002 for inhibition of CXCR2 in ApoE−/− mice that were fed a regular chow diet and treated with
Table. Induction of Inflammatory Marker Genes in Aortas of ApoE−/− Mice

<table>
<thead>
<tr>
<th>Gene</th>
<th>ApoE−/− (Regular Chow)</th>
<th>ApoE−/− (HFD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>TCDD</td>
</tr>
<tr>
<td>CYP1A1</td>
<td>1.2±0.5</td>
<td>207.7±6.5*</td>
</tr>
<tr>
<td>CXCL5</td>
<td>1.5±0.6</td>
<td>3.8±1.2*</td>
</tr>
<tr>
<td>CCR2†</td>
<td>1.1±0.3</td>
<td>1.2±0.4</td>
</tr>
<tr>
<td>MCP-1‡</td>
<td>1.1±0.4</td>
<td>8.3±0.6*</td>
</tr>
<tr>
<td>MMP-12</td>
<td>1.3±0.4</td>
<td>29.2±2.3*</td>
</tr>
<tr>
<td>F4/80§</td>
<td>1.0±0.2</td>
<td>3.6±0.4*</td>
</tr>
<tr>
<td>P-Selectin</td>
<td>1.2±0.3</td>
<td>2.7±0.3*</td>
</tr>
<tr>
<td>VEGF</td>
<td>1.2±0.5</td>
<td>2.9±0.4*</td>
</tr>
</tbody>
</table>

Mice were treated with a single intraperitoneal injection of 15 µg/kg TCDD for 60 days. ApoE−/− mice were fed regular chow or an HFD. mRNA levels of CYP1A1, CXCL5, CCR2, KC, MCP-1, MMP-12, F4/80, P-selectin, and VEGF were quantified using real-time PCR. Values represent means of 3 animals per group.

*Values are different from ApoE−/− control mice fed regular chow (P<0.01).
†Values are different from regular chow control mice fed regular chow (P<0.01).
‡KC is the orthologue of human IL-8.

TCDD as described in Figure 4 and Supplemental Figure IV. Small early atherosclerotic lesions were detectable in control ApoE−/− mice (Figure 4A and Supplemental Figure IVA). TCDD, as shown earlier, enhanced the development of the lesions (Figure 4B and 4F and Supplemental Figure IVB and IVF). Aorta sections of ApoE−/− mice treated with SB225002 showed less accumulation of lipid droplets and lesion formation induced by activation of AhR after treatment with TCDD (Figure 4D and Supplemental Figure IVD).

To investigate the AhR-dependent effect in vivo, we cotreated mice with MNF, which antagonized the TCDD- and CSE-mediated effects in U937 macrophages (Figure 1). However, experiments with MNF in vivo were not successful to block TCDD-induced CYP1A1 expression or the development of atherosclerotic lesions in ApoE−/− mice (data not shown). This result was unexpected because a previous report showed the successful inhibition of AhR-mediated induction of CYP1A1 by MNF in vivo.26 One explanation is that MNF is metabolized more rapidly in vivo and not a suitable AhR antagonist for long-term treatment in vivo. On the other hand, CH223191 a structurally unrelated AhR antagonist was used, because it has been demonstrated to prevent toxic effects of TCDD in vivo.27 CH223191 inhibited the TCDD-mediated induction of CYP1A1 by ≈40% in liver of TCDD-treated ApoE−/− mice (data not shown). Furthermore, the development of atherosclerotic lesions was reduced by cotreatment with CH223191 (Figure 4H and Supplemental Figure IVH) compared with mice treated with TCDD alone (Figure 4F and Supplemental Figure IVF).

Assessment of Atherosclerosis
To quantitate the lesion of the atherosclerotic plaques, a quantitative analysis of the amount of cholesterol accumu-
Gene Expression Analysis in the Aorta Arch of ApoE−/− Mice

The effects of TCDD were first analyzed in ApoE−/− mice exposed to regular chow. Results from mRNA analysis of the aortas of ApoE−/− mice showed a distinct increase in CXC chemokines KC (mouse orthologue of human IL-8) and CXCL5; both of these chemokines bind to and activate the receptor CXCR2 (homolog of human IL-8R). An increased level of the CC chemokine MCP-1 was also found. Besides CYP1A1, the greatest gene expression increase was found for MMP-12, which is considered an indicator of activated macrophages and foam cells.23 Atherogenic marker genes P-selectin and F4/80 were also elevated. F4/80 is a specific cell surface marker of macrophages, and elevated levels of P-selectin imply the recruitment of macrophages/foam cells to the atherogenic site. In parallel, mRNA levels of the same marker genes were compared in ApoE−/− mice fed an HFD. The mRNA levels of all marker genes, except CYP1A1, of these mice were further increased by TCDD exposure. Interestingly, the expression of the examined genes, again with the exception of CYP1A1, was increased in control ApoE−/− mice on an HFD compared with the control group of ApoE−/− mice on regular chow (Table).

Discussion

Atherosclerosis is an inflammatory disease of the arterial wall characterized by monocytes entering the subendothelial space followed by differentiation into macrophages and the development of foam cells. We have shown previously that environmental pollutants, including TCDD, diesel engine exhaust, and urban dust, lead to an AhR-dependent elevated level of cholesterol in macrophages, which is associated with a dose-dependent increase in IL-8, as well as other inflammatory markers, including MCP-1 and COX-2, and the formation of foam cells.29,30 Here, we show that treatment of macrophages not only with TCDD but also with CSE led to increased expression of the chemokines IL-8, MCP-1, and foam cell markers, such as MMP-12, in an AhR-dependent manner. Treatment with CSE, similar to treatment with TCDD, led to an elevated level of cholesterol in macrophages, which could be suppressed by an AhR antagonist. Interestingly, an AhR-dependent lipid accumulation stimulated by TCDD and benzo(a)pyrene (B(a)P) has been shown to involve the induction of the Niemann-Pick type C1 protein in macrophages.28

The current study shows that inhibition of the chemokine receptor CXCR2 but not CCR2 abolished the enhanced accumulation of cholesterol by both TCDD and CSE. This result agrees with previous findings reporting that progression of early atherosclerotic lesions still occurred in ApoE and CCR2 double-knockout mice on an atherogenic diet.29 These data indicate that TCDD and CSE stimulate formation of foam cells in an AhR-dependent manner and that this effect is mediated by CXCR2 through an elevated level of IL-8. This hypothesis is supported by results showing that gene silencing of AhR and IL-8 suppressed the increase of VEGF, which is a downstream target of CXCR2 signaling. Furthermore, these data suggest that AhR is a critical mediator of activating macrophages and forming foam cells not only for TCDD but also for components of cigarette smoke. This supports a previous report showing that the increased risk of coronary heart disease induced by cigarette smoke does not correlate with the amount of tar, nicotine, or carbon monoxide but rather other components of CSE, such as B(a)P and other AhR-activating PAHs.30 Similar to B(a)P, PAHs such as B[el]P may increase inflammation and plaque formation independently from the AhR.31 This would explain the potency of cigarette smoke in promoting atherogenesis because cigarette smoke is a major source of exposure to PAHs. PAHs are also known to form DNA adducts, which must be considered as a contributing factor to the development of atherosclerotic plaques in humans.32,33

Inhibition of CXCR2 in vitro as well as in vivo in the ApoE−/− mice by SB225002 prevented macrophages from accumulating cholesterol and reduced the formation of aortic plaque in TCDD-treated mice. Several CXC chemokines, including IL-8, KC, and CXCL5, can bind to and activate CXCR2. Thus, there is a possibility that besides KC or IL-8, other chemokines, such as CXCL5, are responsible for the development of early atherosclerotic lesions. However, the TCDD-mediated increase of CXCL5 in U937 macrophages was relatively low compared with the clear induction of IL-8 or the induction of KC in ApoE−/− mice. Therefore, the effect of enhanced lesions in vivo is more likely to be mediated through KC than through the elevated level of CXCL5 observed in aortas of ApoE−/− mice. Furthermore,
mice cotreated with the AhR antagonist CH223191 accumulated less cholesterol and had smaller atherosclerotic lesions compared with TCDD-treated mice, supporting the concept that this process is AhR dependent.

The expression of genes analyzed in the aortas of ApoE−/− mice revealed that the selected inflammatory genes, especially KC and MMP-12, were significantly increased in ApoE−/− mice fed an HFD compared with ApoE−/− mice on regular chow. Previous reports indicate that the TCDD- and B(a)P-induced profile of proinflammatory factors in macrophages might be more complex and may involve transforming growth factor-β, tumor necrosis factor-α, and CCL-1.31,34,35 The results from the current study indicate that activation of KC and MMP-12 is involved in the development of atherosclerosis mediated through an HFD. On the other hand, the mRNA level of CYP1A1 was not affected by the HFD in ApoE−/− mice compared with mice on regular chow, which suggests that CYP1A1 is unlikely to be a key player in the formation of early atherosclerotic lesions induced by an HFD. This is not a trivial point, because modified LDL has been found to bind to and activate the AhR followed by an AhR-mediated signaling such as CYP1A1 induction.36

Other investigators have found that TCDD binds and disrupts the secondary and tertiary lipoprotein structure, which leads to a significant reduction in its ability to bind lipoprotein lipase.37 The altered lipoprotein structure impairs the cellular uptake of LDL and very-low-density lipoprotein, leading to an increased accumulation of serum lipoproteins that could accelerate the development of coronary artery disease. The TCDD-induced changes in the structure of LDL and very-low-density lipoprotein were found to be different from other modified LDL or very-low-density lipoprotein, which may bind to and activate scavenger receptors.38 In this study, TCDD was found to be physically associated with LDL particles in TCDD-treated ApoE−/− mice fed an HFD.7 These findings suggest that LDL might also serve as a vehicle to deliver the compound to atherosclerotic lesions, which may lead to more severe atherosclerotic plaques when mice are fed an HFD. Although TCDD can physically associate with LDL, we found similar effects in vitro after treatment with CSE, which suggests that this mechanism is unlikely and that induction of proinflammatory stimuli is the more probable mechanism. CSE and components of CSE-like peroxynitrite38 have been reported to be involved in oxidative modification of LDL,39–41 which can induce proinflammatory responses and promotion of atherosclerosis.

Data from the current study support the assumption showing an earlier onset and greater severity of atherosclerotic lesions induced by TCDD in ApoE−/− mice fed an HFD compared with a regular chow diet. The fact that there was an earlier onset of atherosclerotic lesions after 2 months of TCDD exposure and the formation of severe atheroma after 7 months of TCDD exposure without feeding an HFD is noteworthy. Although the lesions induced by TCDD exposure alone were smaller compared with mice treated with TCDD and HFD, the current data suggest that induction of an inflammatory response by TCDD is sufficient to cause accumulation of cholesterol and the formation of atherosclerotic lesions in ApoE−/− mice.

In summary, the results reported in this study suggest that activation of macrophage-mediated inflammation followed by accumulation of cholesterol is a potential target of AhR-activating pollutants, such as dioxin and cigarette smoke. Findings also include the identification of the important role that CXCRII ligands KC and IL-8 play in atherogenesis induced by AhR activation and support the possibility that environmental pollutants like TCDD may trigger vascular inflammation by activating signaling pathways involved in inflammatory responses and atherosclerosis. Although the toxicity of AhR-activating environmental pollutants in regard to cardiovascular disease warrants further study, the implications of CXC chemokines and their receptors for human health could be significant.

Acknowledgments

We thank Dr Phillip Fujisaki for helping with statistical analysis of the data and Anna Lollies and Shannon Murphy for technical assistance. We also thank Jane Qian Chen and Katie Bell from the Center for Comparative Medicine at the University of California, Davis, for technical support. We thank Monika Heitmeier and Pfeifer for providing INCB3344.

Sources of Funding

This work was supported by American Heart Association Western Affiliate Grants 0765056Y and R21ES15846 from the National Institute of Environmental Health Sciences, Research Triangle Park, NC.

Disclosures

None.

References

CXR2 Mediates Atherogenic Activity of AhR

Wu et al

Activation of Aryl Hydrocarbon Receptor Induces Vascular Inflammation and Promotes Atherosclerosis in Apolipoprotein E−/− Mice
Dalei Wu, Noriko Nishimura, Victoria Kuo, Oliver Fiehn, Sevini Shahbaz, Laura Van Winkle, Fumio Matsumura and Christoph Franz Adam Vogel

Arterioscler Thromb Vasc Biol. 2011;31:1260-1267; originally published online March 24, 2011;
doi: 10.1161/ATVBAHA.110.220202

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/31/6/1260

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2011/03/24/ATVBAHA.110.220202.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/
Activation of aryl hydrocarbon receptor induces vascular inflammation and promotes atherosclerosis in ApoE--/-- mice

Dalei Wu, Noriko Nishimura, Victoria Kuo, Oliver Fiehn, Sevini Shahbaz, Laura Van Winkle, Fumio Matsumura, and Christoph Vogel

Figure SI. Analysis of AhR and IL-8 mRNA expression in U937 macrophages after gene silencing. Total RNA was prepared 48 h post-transfection with either a scrambled siRNA or a specific siRNA targeted against AhR or IL-8. Level of mRNA expression was analyzed as described in Material and methods for AHR (shaded bars) and IL-8 (striped bars). *, significantly lower than control ($p<0.01$)
Figure SII. Development of atherosclerotic lesions in ApoE-/ mice fed on regular chow after treatment with TCDD. (A-B) C57BL/6 and (C-D) ApoE-/ mice received (A&C) corn oil (Ctrl) or (B&D) TCDD for 60 days. (E-F) ApoE-/ mice received (E) corn oil or (F) TCDD for 7 months. Shown are representative cross sections from serial sections of aorta arches visualized by H&E staining. (G-H) Expression of foam cell marker MMP-12 in aorta of (G) control and (H) 40-day TCDD treated ApoE-/ mice. Arrows indicate staining of MMP-12.
Figure SIII. Development of atherosclerotic lesions in ApoE-/- mice fed a high fat diet. (A-B) ApoE-/- mice received coin oil (Ctrl) or (C-D) a single injection of 15 μg/kg TCDD. Representative images of 8 mice are shown of serial tissue sections of aorta arches prepared 60 days after treatment with TCDD and stained with H&E.
Figure SIV. Inhibition of CXCR2 and AhR decreases plaque formation in ApoE-/ mice. Mice fed regular chow and received (A&E) corn oil (Ctrl) or (B&F) TCDD for 60 days. ApoE-/ mice were treated with (C) SB225002 in absence or (D) presence of TCDD, or treated with (G) CH223191 in absence or (H) presence of TCDD. Serial cross sections of representative aorta arches from 6 mice were visualized by H&E staining. Arrows indicate formation of early atherosclerotic lesions.