Mean Platelet Volume May Represent a Predictive Parameter for Overall Vascular Mortality and Ischemic Heart Disease

Georg Slavka, Thomas Perkmann, Helmuth Haslacher, Stefan Greisenegger, Claudia Marsik, Oswald F. Wagner, Georg Endler

Objective—An increased mean platelet volume (MPV), as an indicator of larger, more reactive platelets resulting from an increased platelet turnover, may represent a risk factor for overall vascular mortality, including myocardial infarction. We intended to identify patients at higher risk of dying from vascular disease in a large, hospital-based cohort.

Methods and Results—A total of 206,554 first-ever admissions to the Allgemeines Krankenhaus Wien for determination of MPV between January 1996 and July 2003 were included. Primary end points were overall vascular mortality and death due to ischemic heart disease. Multivariate Cox regression adjusted for sex, age, and platelet count was applied for analysis. MPV values were categorized into quintiles, with the lowest quintile serving as the reference category. Compared with individuals with lower MPV (<8.7 fL), hazard ratios for overall vascular mortality gradually increased to 1.5 in the highest category (≥11.01 fL). The relationship of MPV to ischemic heart disease was even stronger and increased from 1.2 (8.71 to 9.60 fL category) to 1.8 in the highest category (≥11.01 fL).

Conclusion—Our results indicate that patients with an increased MPV (≥11.01 fL) are at higher risk of death due to ischemic heart disease, with hazard ratios comparable to those reported for obesity or smoking. (Arterioscler Thromb Vasc Biol. 2011;31:1215-1218.)

Key Words: cardiovascular disease prevention • ischemic heart disease • platelets • cardiovascular mortality • mean platelet volume

Platelets are known to have a major effect on the formation of atherosclerotic plaques and therefore play an essential role in the pathogenesis of atherothrombosis. Larger and hyperreactive platelets accelerate the formation of an intra-coronary thrombus, leading to a cascade of clinical events, such as acute coronary syndrome. An increase in platelet aggregability is associated with unstable angina and myocardial infarction. Platelet size and activity are correlated, and mean platelet volume (MPV) was found to be increased before acute myocardial infarction.

Also, patients with a severe stroke significantly more often have higher MPV levels on admission to the hospital. There is evidence that causal occlusion of the coronary artery in unstable angina is mediated by a platelet-rich thrombus. In stable conditions, it has been shown that MPV, which is the most accurate measure of the size of platelets, is inversely associated with platelet count, indicating the establishment of constant hemostasis. MPV is a simple and accurate marker of the functional status of platelets. As described previously, larger platelets are more reactive. Platelet size is determined at the level of the progenitor cell (ie, the megakaryocyte), and studies have reported that cytokines, such as interleukin-3 or interleukin-6, influence megakaryocyte ploidy and can lead to the production of more reactive, larger platelets. Thus, platelet volume has been proposed as an indirect marker of increased platelet reactivity. The majority of patients with suspected or known coronary artery disease are on aspirin. However, aspirin has no effect on platelet size.

An increased MPV, as an indicator of larger, more reactive platelets resulting from an increased platelet turnover, may therefore represent a risk factor for overall vascular mortality, including myocardial infarction. Our goal was to identify patients at high risk of dying from vascular disease in large, hospital-based cohort. All patient samples were collected and processed at admission of the patient at the Allgemeines Krankenhaus Wien. The role of high MPV as a potential risk factor for arterial thrombosis has been a matter of intense debate and the subject of several studies in the past. Because of the limited sample size of the studies, as well as variations of the chosen end points, several studies led to
rather less significant results. Until now, the impact of high MPV levels on all-cause cardiovascular mortality has not been evaluated a hospital-based cohort of this size; previously, smaller study sizes and the lack of objectively defined end points made it impossible to accurately estimate risk. We evaluated the relevance of MPV as a potential predictor for vascular mortality in a large-scale cohort, via record linkage with the Austrian death registry.

Methods
A total of 218 836 first-ever admissions to the Allgemeines Krankenhaus Wien for determination of MPV between January 1996 and July 2003 were analyzed, of whom 206 554 individuals fulfilled the inclusion criteria of our study. The median follow-up time was 4.7 years (interquartile range [IQR], 2.9 to 6.4 years), resulting in a total of 957 890 person-years at risk.

Patients
Inclusion criteria were a valid MPV, age >18 years, and complete patient data, including sex, name, and date of birth, required for successful record linkage. Exclusion criteria were incomplete patient data or admission from an intensive care unit, to exclude critical diseases that might influence MPV in total.

MPV values were collected from our laboratory software, Molis. Record linkage was performed via database query of the Austrian death registry, resulting in date of death (if it occurred between January 1990 and December 2004) and cause of death, encoded according to either the International Code of Diseases, version 9 (ICD9) (before 2002) or ICD10. The Austrian death registry comprises all deaths within Austria and the deaths of Austrian citizens in foreign countries, if reported to Austrian officials. According to Austrian laws, all deaths have to undergo post mortem examination, if the final cause of death is not evident from the patients’ history, resulting in an overall post mortem frequency of 58% in our study. For statistical analysis, only anonymized data were used, containing no personal information except age in years and sex. The study was approved by the local ethics committee.

MPV Determination
EDTA blood samples drawn at admission of the patient were analyzed in an automated hematology analysis system (Sysmex NE 8000 autoanalyzer; Sysmex Europe GmbH, Norderstedt, Germany) measures platelet size using aperture-impedance technology. Daily quality controls showed an intraassay coefficient of variation of 2.5% and an interassay coefficient of variation of 3.0%.

All patient samples were processed within 2 hours after venipuncture as recommended in the literature to avoid bias due to excessive platelet swelling.

Previous studies reported that MPV values increase because of platelet swelling when EDTA is used as anticoagulant; however, a recent study demonstrated that this increase of platelet size amounts to approximately 0.5 fL when the analysis is performed within 2 hours after venipuncture. Probably, the reported platelet swelling in EDTA was due to different amounts of EDTA in the blood tubes. In our study, every participating hospital used the same standardized blood tubes, and all blood samples were analyzed within 2 hours after blood sampling. The range of expected values for MPV in our laboratory is 7 to 13 fL.

Determination of Outcome Variables and Statistical Analysis
The primary end points, determined by record linkage with the Austrian death registry, were overall vascular mortality and death due to ischemic heart disease. To facilitate analysis, MPV values were categorized into quintiles, with the lowest quintile serving as the reference category.

The main outcome variable was all-cause vascular mortality, defined as death occurring after MPV determination and before December 31, 2004, due to any vascular disease. All-cause vascular mortality was considered present in case of ICD9 codes 390 to 459, or the corresponding ICD10 codes of groups 100 to 199.

We intended to evaluate potential interactions of MPV with age and sex concerning the cardiovascular risk as secondary outcome variables. The influence of MPV levels on our main outcome variable, all-cause mortality, was assessed in a multivariate Cox regression, adjusting for sex, age, and platelet count as possible confounders. Regression diagnostics were performed according to standard recommendations. The logistic assumption was checked for continuous variables, an analysis of residuals was performed, and global goodness of fit testing was performed using the Hosmer Lemeshow test. A 2-sided probability value <0.05 was considered statistically significant.

Unless otherwise stated, all continuous variables are given as median and IQR, and categorical variables are given as counts and percentages.

Results
A total of 206 554 individuals were included in our study (43.4% men and 56.6% women). Median age was 50 years (ranging from 18 to 100 years) at the time of analysis, and the median observation period was 4.6 years, resulting in a total of 957 890 person-years at risk (Table 1). A total of 8188 deaths due to vascular disease were recorded, of which 49.1% were male and 50.9% were female. Median age at the time of death was 77 years. In a multivariate Cox regression adjusted for sex, age, and platelet count as possible confounders, MPV was significantly associated with vascular mortality. Compared with individuals with lower MPV (lowest quintile [MPV, <8.7 fL]), hazard ratios for overall vascular mortality gradually increased to 1.5 (95% CI, 1.3 to 1.8) in the highest category (≥11.01 fL; Table 2; Figure). Furthermore, MPV was associated with ischemic heart disease as the cause of death. The relationship of MPV to ischemic heart disease was even stronger and increased to 1.8 (95% CI: 1.4 to 2.3) in the highest category (≥11.01 fL). Interestingly, higher MPV

Table 1. Patient Characteristics of the Study Population

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value (n=206 554)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (male/female)</td>
<td>89 743/116 811 (43%/57%)</td>
</tr>
<tr>
<td>Median age, years (IQR)</td>
<td>50 (34 to 65)</td>
</tr>
<tr>
<td>Median MPV, fL (IQR)</td>
<td>10.5 (9.9 to 11.2)</td>
</tr>
<tr>
<td>Median platelet count, g/L (IQR)</td>
<td>233 (193 to 280)</td>
</tr>
<tr>
<td>Median observation period, years (IQR)</td>
<td>4.6 (2.8 to 6.4)</td>
</tr>
<tr>
<td>All cause vascular mortality, no. of cases (%)</td>
<td>8188 (4.0%)</td>
</tr>
<tr>
<td>Mortality due to ischemic heart disease, no. of cases (%)</td>
<td>3987 (1.9%)</td>
</tr>
<tr>
<td>Mortality due to cerebrovascular disease, no. of cases (%)</td>
<td>1207 (0.6%)</td>
</tr>
</tbody>
</table>
could not be associated with higher risk of death due to cerebrovascular disease, possibly as a result of a too-low number of cases (0.6%) (Table 2).

No significant interactions of MPV and sex or age were observed in our study. Adjustment for platelet count in the Cox regression model did not alter the results.

Discussion

Several studies indicate that high MPV levels and high platelet reactivity are associated with overall vascular mortality, including myocardial infarction.11–14

Larger and hyperactive platelets accelerate the formation of an intracoronary thrombus and therefore represent a major risk factor for atherothrombosis. During the formation of an atherosclerotic plaque, eg, in a coronary artery, platelets play an essential role during the subsequent thrombus assembly, leading to myocardial infarction. MPV is a simple and accurate marker of the functional status of platelets. An increased MPV may represent a risk factor for overall vascular mortality, including myocardial infarction.

In our study, increased MPV, acting as a stand-alone risk factor, was associated with a high risk in patients experiencing an acute ischemic cardiovascular event. Patients within the highest quintile of MPV had a 1.5-fold higher hazard ratio for overall vascular mortality and an up to 1.8-fold higher risk in association with ischemic heart disease compared with patients within the lowest quintile. In comparison, the ranges of relative risks for cardiovascular disease, including coronary events, stroke, or both, are 1.4 (men) to 2.2 (women) in smokers and 1.2 (men) to 2.1 (women) in obese subjects.19

Knowledge regarding the effects of various drugs on platelet size is weak. Previous in vitro studies found no effect of aspirin on platelet size.20,21 However, it is known that clopidogrel significantly inhibits the ADP-induced increase in MPV in vitro.22 We have not found any clinical data that show an association of MPV with various platelet inhibitors.

Because patients with high MPV can easily be identified during routine hematologic analysis, early monitoring and control of all risk factors, including hypertension, hyperlipidemia, and smoking, could be initiated.

Strengths and Limitations of This Study

To our knowledge, this is the first study that has evaluated the association between MPV and vascular mortality in a large population. The chosen record linkage approach of linking laboratory data with the death registry offers the unique opportunity to evaluate the outcome of risk markers in a large population (n=206 554) over a long time period, yielding an observation period of 957 851 person-years. Because Austrian laws require that all deaths be recorded in the central death registry, this approach will allow an almost complete follow-up of all patients. The only losses might occur due to spelling errors in names, which result in faulty record linkage, or disappeared persons, who are not recorded as deaths until 50 years after the date of disappearance. Overall, we estimate that these losses affect less than 1% of the study population and are negligible for statistical analysis. In contrast to clinical diagnoses, which are subject to examiner bias and usually vary because of different diagnostic criteria, death is
usually reliably recorded, and misdiagnoses rarely occur. As
described by Schottenfeld et al, as well as by Karwinski and Hartz, clinical assessments of the cause of death in death
certificates lead to wrong diagnosis in 12% to 15% of all
cases. Because of the high autopsy frequency (58%) in our
study providing a correct diagnosis in the majority of all
cases, we estimate that diagnoses leading to death are
recorded correctly in ≈90% of the cases.

We have insufficient data regarding the reasons for which
the patients had been hospitalized. Furthermore, patients
admitted to MPV determination are not a representative
sample of the healthy Austrian population and might be
preselected to worse outcome. Thus, based on admissions to
the hospital, our study population may therefore be subject to
Berkson’s bias. Unfortunately, we have no further informa-
tion regarding comorbidities because all data collected from
our laboratory software were linked with the Austrian death
registry without individual survey of the 206 554 patients.
We are well aware that several comorbidities, such as
hypertension, heart failure, and atrial fibrillation, have been
associated with an increased MPV; however, these might as
well be independent risk factors for cardiovascular death.

Because clinical information is not available for our data set,
we cannot determine whether the increased MPV merely acts
as risk marker or is causally involved in atherogenesis.
Furthermore, information about possible previous intake of
aspirin is missing. However, aspirin does not affect platelet
size.24

The retrospective study design is prone to bias, and we are
unable to adjust for risk factors other than sex and age in the
Cox regression model. Furthermore, the association of MPV
with vascular mortality does not necessarily imply a causal
relationship. However, this is beyond the scope of our study,
because we aimed to evaluate whether MPV is a risk marker
for all-cause mortality.

Acknowledgments
We thank Peter Bayer (Statistik Austria) for providing data from
the Austrian death registry. We also thank WISPIN for inspiring
discussions.

Sources of Funding
This work is part of the Allgemeines Krankenhaus Biobank project,
with the aim of identifying new biomarkers within the Austrian
population (http://www.biobank.at).

Disclosures
None.

References
HJ, Verheugt FW, Berg JM, Hackeng CM. The influence of clinical
characteristics, laboratory and inflammatory markers on ‘high
on-treatment platelet reactivity’ as measured with different platelet
2. Pereg D, Berlin T, Mosseri M. Mean platelet volume on admission
 correlates with impaired response to thrombolysis in patients with
Lalouschek W. Is elevated mean platelet volume associated with a worse
outcome in patients with acute ischemic cerebrovascular events? Stroke.
4. Thompson CB, Jakubowski JA. The pathophysiology and clinical rel-
5. Levin J, Bessman JD. The inverse relation between platelet volume and
platelet number: abnormalities in hematologic disease and evidence that
platelet size does not correlate with platelet age. J Lab Clin Med. 1983;
B, Gries FA. Large platelets circulate in an activated state in diabetes
7. Burstein SA, Downs T, Friese P, Lymann S, Anderson S, Henthorn J,
Epstein RB, Savage K. Thrombocytopenia in normal and subtherapeutically
420–428.
W. Effects of the recombinant hematopoietic growth factors
interleukin-3, interleukin-6, stem cell factor, and leukemia inhibitory
factor on megakaryocytic differentiation of CD34+ cells. Blood.
1993;82:84–95.
9. Kishik YT, Trowbridge EA, Martin JF. Platelet volume subpopulations in
acute myocardial infarction: an investigation of their homogeneity for
10. Martin JP, Trowbridge EA, Salmon G, Plumb J. The biological signif-
icance of platelet volume: its relationship to bleeding time, platelet
thromboxane B2 production and megakaryocyte nuclear DNA concen-
11. Boos CJ, Balakrishnan B, Lip GY. The effects of coronary artery disease
severity on time-dependent changes in platelet activation indices in stored
12. Mathur A, Robinson MS, Cotton J, Martin JF, Erusalimsky JD. Platelet
reactivity in acute coronary syndromes: evidence for differences in plate-
let behaviour between unstable angina and myocardial infarction. Thromb
13. Pizzuli L, Yang A, Martin JF, Luderitz B. Changes in platelet size and
count in unstable angina compared to stable angina or non-cardiac chest
Korkmaz S. Role of mean platelet volume in triaging acute coronary
15. Smyth DW, Martin JF, Michalis L, Bucknall CA, Jewett DE. Influence of
platelet size before coronary angioplasty on subsequent restenosis. Eur J
16. Bath PM. The routine measurement of platelet size using sodium citrate
17. Endler G, Klimesch A, Sunder-Plassmann H, Schillinger M, Exner M,
Mannhalter C, Jordanova N, Christ G, Thalhammer R, Huber K, Sunder-
Plassmann R. Mean platelet volume is an independent risk factor for
W. Effects of the recombinant hematopoietic growth factors
interleukin-3, interleukin-6, stem cell factor, and leukemia inhibitory
factor on megakaryocytic differentiation of CD34+ cells. Blood.
19. Padwal R, Straus SE, McAlister FA. Evidence based management of
hypertension: cardiovascular risk factors and their effects on the decision
20. Jagroop IA, Tsira S, Mikhailidis DP. Mean platelet volume as an
indicator of platelet activation: methodological issues. Platelets. 2003;14:
335–336.
21. Sharpe PC, Desai ZR, Morris TC. Increase in mean platelet volume in
patients with chronic renal failure treated with erythropoietin. J Clin
22. Jagroop IA, Mikhailidis DP. Mean platelet volume is an independent risk
factor for myocardial infarction but not for coronary artery disease. Br J
autopsy as a measure of accuracy of the death certificate. Bull NY Acad
24. Karwinski B, Hartzveit F. Death certification: increased clinical con-
idence in diagnosis and lack of interest in confirmation by necropsy is
25. Boos CJ, Lip GY. Assessment of mean platelet volume in coronary artery
Mean Platelet Volume May Represent a Predictive Parameter for Overall Vascular Mortality and Ischemic Heart Disease

Georg Slavka, Thomas Perkmann, Helmuth Haslacher, Stefan Greisenegger, Claudia Marsik, Oswald F. Wagner and Georg Endler

Arterioscler Thromb Vasc Biol. 2011;31:1215-1218; originally published online February 17, 2011; doi: 10.1161/ATVBAHA.110.221788

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/31/5/1215

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/