Histamine Deficiency Decreases Atherosclerosis and Inflammatory Response in Apolipoprotein E Knockout Mice Independently of Serum Cholesterol Level

Ke-Yong Wang, Akihide Tanimoto, Xin Guo, Sohsuke Yamada, Shohei Shimajiri, Yoshitaka Murata, Yan Ding, Masato Tsutsui, Seiya Kato, Teruo Watanabe, Hiroshi Ohtsu, Ken-Ichi Hirano, Kimitoshi Kohno, Yasuyuki Sasaguri

Objective—Histamine and histamine receptors are found in atherosclerotic lesions, and their signaling and subsequent proatherogenic or proinflammatory gene expression are involved in atherogenesis. In the present study, we generated apolipoprotein E (apoE) and histamine synthesizing histidine decarboxylase double knockout (DKO) mice on a C57BL/6J (wild-type mice) background to clarify the roles of histamine in atherosclerosis.

Methods and Results—Wild-type, apoE knockout (KO), and DKO mice were fed a high-cholesterol diet to analyze hyperlipidemia-induced atherosclerosis. Compared with wild-type mice, apoE-KO mice showed increased expression of histamine and its receptors, corresponding to increased atherosclerotic lesion areas and expression of inflammatory regulators, such as nuclear factor-κB, scavenger receptors, inflammatory cytokines, and matrix metalloproteinases. Histamine deficiency after deletion of histidine decarboxylase reduced atherosclerotic areas and expression of a range of the inflammation regulatory genes, but serum cholesterol levels of DKO mice were higher than those of apoE-KO mice.

Conclusion—These results indicate that histamine is involved in the development of atherosclerosis in apoE-KO mice by regulating gene expression of inflammatory modulators, an action that appears to be independent of serum cholesterol levels. In addition to acute inflammatory response, histamine participates in chronic inflammation, such as hyperlipidemia-induced atherosclerosis, and might be a novel therapeutic target for the treatment of atherosclerosis. (Arterioscler Thromb Vase Biol. 2011;31:800-807.)

Key Words: histamine ■ histidine decarboxylase ■ hyperlipidemia-induced atherosclerosis ■ inflammation ■ matrix metalloproteinase

Recently, evidence has emerged concerning inflammatory mechanisms of the initiation and progression of atherosclerosis. Histamine, one of the classical inflammatory mediators, is synthesized from L-histidine by a rate-limiting enzyme, histidine decarboxylase (HDC). Histamine is released from mast cells and mediates type I hypersensitivity via histamine receptor H1 (HH1R), and histamine produced by enterochromaffin-like cells induces gastric acid secretion from parietal cells via histamine receptor H2 (HH2R). In the field of cardiovascular pathology, accumulation of activated mast cells and histamine in the coronary adventitia has been implicated in progression of plaque rupture and acute coronary syndrome. Other, several epidemiological studies have reported an enhancement of atherosclerosis in the patients of allergy or increased blood histamine. Together, these suggest a possible involvement of histamine in the pathogenesis of atherosclerosis and related disorders.

Previously, we demonstrated that HDC-knockout (KO) mice showed reduced neointimal formation induced by ligation of the carotid artery or cuff replacement of the femoral artery. Because histamine stimulates smooth muscle cells (SMCs) to proliferate and SMCs predominantly express HH1R, the neointimal formation, which consists of SMCs, is suggested to be an HH1R-mediated response. Although ligation- or cuff-induced intimal hyperplasia mimics diffuse intimal thickening as a precursor lesion of atherosclerosis, it is quite different from established atherosclerosis, in which accumulation of lipid-laden macrophages has a unique his-
ology. Interestingly, infiltrating macrophages in the atherosclerotic lesions express HDC as a source of histamine in human carotid arteries and the aortas of apolipoprotein E (apoE)–KO mice.11,14,15 HDC expression in human monocytes is upregulated during macrophage differentiation, which corresponds to a switch of the histamine receptor profile from HH2R predominance in monocytes to HH1R dominance in macrophages.16,17 Together, these results indicate that both histamine production and response is present in the cells, constituting atherosclerotic lesions and that macrophage-derived histamine could regulate atherogenic response.18 However, the roles of histamine in the process of hyperlipidemia-induced atherosclerosis still remain unclear.

To further the examination, we generated HDC and apoE double-knockout (DKO) mice to investigate the roles of histamine in hyperlipidemia-induced atherosclerosis. The expression of inflammatory cytokines, scavenger receptors (SRs), matrix metalloproteinases (MMPs), and nuclear factor-κB (NF-κB), which regulate inflammatory response in the atherosclerotic lesions, was studied by reverse transcription–polymerase chain reaction (RT-PCR), Western blotting, and immunohistochemistry. In addition, we studied the effects of histamine on serum cholesterol.

Materials and Methods

Animals

We generated DKO mice by crossing apoE-KO mice (Jackson Laboratory, Bar Harbor, ME) with previously generated HDC-KO mice.19 Male mice were weaned at 8 weeks of age onto a high-cholesterol diet (HcD) consisting of 1.25% cholesterol, 15% lard, and 0.5% sodium cholate (Oriental Yeast Co, Tokyo, Japan) and were maintained on this diet for 12 weeks. Another group was maintained to 23 weeks and 33 weeks of age on a normal chow diet (NcD). Wild-type (WT) C57BL/6J mice (Charles River, Yokohama, Japan) were used for control groups. Each experimental group included at least 10 mice. Animals were maintained on a 12-hour light/dark cycle. All protocols were approved by the Ethics Committee of Animal Care and Experimentation, University of Occupational and Environmental Health, and were performed according to the institutional guidelines for animal experiments and according to Law 105 and Notification 6 of the Japanese government.

Assessment of Atherosclerosis and Immunohistochemistry

The aortas were cut open longitudinally and fixed with 10% neutral buffered formalin for 24 hours. Then the aortas were stained with Oil Red O stain. En face images of the aortas were captured with a digital camera. Oil Red O–stained area relative to whole surface area was calculated using NIH Image software. For histological analysis, formalin-fixed and paraffin-embedded tissues were sectioned, and every 10-step sections of 1-cm length ascending aortas from the aortic valve (4-μm-thick step sections: 1500 sections/aorta) were stained with hematoxylin and eosin stain. After scanning using a virtual slide system (NanoZoomer Digital Pathology, Hamamatsu Photonics, Hamamatsu, Japan), the intima/media ratio and intimal plaque area were evaluated using NIH Image.11,20 Immunostaining was carried out (Envision kit, Dako, Tokyo, Japan) on the paraffin sections using antibodies EPOs anti-α-smooth muscle actin (clone 1A4, ×100, Dako, Carpinteria, CA), macrophages (Mac-3 clone M3/84, ×50, BD Bioscience Pharmingen, Tokyo, Japan), HDC (rabbit polyclonal, ×200; Progen Biotechnik, Heidelberg, Germany), and histamine (rabbit polyclonal, ×100; Progen Biotechnik) as previously described.15 Immunohistochemical analysis of NF-κB was also studied in the atherosclerotic lesions (rabbit polyclonal, ×2000, Abcam).

Lipoprotein Analysis

After mice were starved for 7 hours, blood was collected, and the serum was analyzed by high-performance liquid chromatography (Skylight Biotech, Akita, Japan).21

Real-Time Polymerase Chain Reaction

Expression of mRNA in the liver and aortas was quantified by real-time RT-PCR using TaqMan quantitative PCR analysis. The genes investigated and primers for PCR are listed in Table 1.

Measurement of Histamine and Monocyte Chemoattractant Protein-1 in Serum and Aortic Tissue

The aortic and serum levels of monocyte chemoattractant protein-1 (MCP-1) and histamine were measured by ELISA (R&D Systems and Immunotech, Marseille, France). The aortas were homogenized in 0.2 N HClO\textsubscript{4} buffer (100 μL/10 μg tissue), and the supernatants were collected by centrifugation (10,000g for 5 minutes at 4°C). After neutralization by addition of an equal volume of 1 mol/L potassium borate (pH 9.25) and measurement of protein concentration, the supernatants were subjected to ELISA.

Western Blotting

The aortic expression of class A SR (SR-A), CD36 (rabbit polyclonal, ×1000; Santa Cruz Biotechnology), and NF-κB (rabbit polyclonal, ×2000, Abcam) proteins was studied by Western blotting.

Statistical Analysis

ANOVA was applied to determine statistical differences, and a probability value of less than 0.05 was taken to be significant.

Results

General Phenotypes of DKO Mice

The body weight of apoE-KO mice was not increased, and that of WT and DKO mice was increased after NcD for 33 weeks (Supplemental Figure IA, available online at http://atvb.ahajournals.org). Both systolic and diastolic blood pressure was increased in apoE-KO mice compared with WT mice. In DKO mice, blood pressure was decreased to the level of WT mice (Supplemental Figure IB). White blood cell counts were not different among WT, apoE-KO, and DKO mice, but percentages of neutrophiles and lymphocytes were increased in apoE-KO mice. Very few basophiles were observed in the peripheral blood from WT, apoE-KO, and DKO mice (Supplemental Table I). No infectious diseases or other pathological conditions were observed during the experiments in the mice.

Serum Cholesterol Levels in DKO Mice

On feeding with NcD for 23 to 33 weeks or with HcD for 12 weeks from the age of 8 weeks, apoE-KO and DKO mice became hyperlipidemic, with increased total cholesterol (T-cho), very-low-density lipoprotein (VLDL) cholesterol, and...
low-density lipoprotein (LDL) cholesterol but decreased high-density lipoprotein (HDL) cholesterol compared with WT mice (Table 2). Furthermore, compared with apoE-KO mice, DKO mice showed higher cholesterol levels in all fractions, but HDL cholesterol was moderately increased in DKO mice.

Induction of Histamine and Histamine Receptors by Hyperlipidemia

Serum histamine levels were increased in apoE-KO mice compared with WT mice after HcD feeding, but not with NcD (Figure 1B). In DKO mice, serum histamine was not detected (Figure 1A and 1B). Real-time RT-PCR showed increased HDC expression in atherosclerotic aortas of apoE-KO mice fed HcD (Figure 1C). Expression of HH1R, HH2R, and HH3R but not HH4R in atherosclerotic aortas was increased in apoE-KO mice compared with WT mice after HcD feeding, whereas it was significantly decreased in DKO mice (Figure 1D and Supplemental Figure II).

Suppression of Hyperlipidemia-Induced Atherosclerosis in DKO Mice

En face analysis demonstrated that atherosclerotic lesion area was markedly increased during the age of 23 to 33 weeks in DKO mice with HcD feeding compared with those fed NcD. Real-time RTPCR showed increased expression of a gene (e.g., HDC) in DKO mice compared with WT and apoE-KO mice. These results suggest that suppression of hyperlipidemia-induced atherosclerosis in DKO mice is mediated by histamine and histamine receptors.

Table 1. Primers Used for Real-Time PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
<th>TaqMan Probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD106 (VCAM-1)</td>
<td>CTGATCCGAGACTGCGATGAC</td>
<td>ATGTCAGCTGGATGGAATGA</td>
<td>TGAAGGGGCGCTTGCATGG</td>
</tr>
<tr>
<td>CD56</td>
<td>AGGTCCTACGAGCTGCGATGAC</td>
<td>ATGTCAGCTGGATGGAATGA</td>
<td>TGAAGGGGCGCTTGCATGG</td>
</tr>
<tr>
<td>CD54 (ICAM-1)</td>
<td>ACCGAGACGGACTGCGATGAC</td>
<td>ATGTCAGCTGGATGGAATGA</td>
<td>TGAAGGGGCGCTTGCATGG</td>
</tr>
<tr>
<td>MMP-9</td>
<td>CTGGATCCGAGACTGCGATGAC</td>
<td>ATGTCAGCTGGATGGAATGA</td>
<td>TGAAGGGGCGCTTGCATGG</td>
</tr>
<tr>
<td>MMP-3</td>
<td>CTGGATCCGAGACTGCGATGAC</td>
<td>ATGTCAGCTGGATGGAATGA</td>
<td>TGAAGGGGCGCTTGCATGG</td>
</tr>
<tr>
<td>MMP-12</td>
<td>CTGGATCCGAGACTGCGATGAC</td>
<td>ATGTCAGCTGGATGGAATGA</td>
<td>TGAAGGGGCGCTTGCATGG</td>
</tr>
<tr>
<td>PDGF-β</td>
<td>CTGGATCCGAGACTGCGATGAC</td>
<td>ATGTCAGCTGGATGGAATGA</td>
<td>TGAAGGGGCGCTTGCATGG</td>
</tr>
<tr>
<td>SR-A</td>
<td>CTGGATCCGAGACTGCGATGAC</td>
<td>ATGTCAGCTGGATGGAATGA</td>
<td>TGAAGGGGCGCTTGCATGG</td>
</tr>
<tr>
<td>TNFR2</td>
<td>CTGGATCCGAGACTGCGATGAC</td>
<td>ATGTCAGCTGGATGGAATGA</td>
<td>TGAAGGGGCGCTTGCATGG</td>
</tr>
</tbody>
</table>

Table 2. HPLC Analysis of Serum Lipoproteins

<table>
<thead>
<tr>
<th>Lipoprotein</th>
<th>Diet</th>
<th>Week</th>
<th>WT</th>
<th>ApoE-KO</th>
<th>DKO</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-cho (mg/dL)</td>
<td>NcD</td>
<td>23</td>
<td>68.3±2.7</td>
<td>325.0±35.4*</td>
<td>428.2±24.8†</td>
</tr>
<tr>
<td>NcD</td>
<td>33</td>
<td>78.3±3.7</td>
<td>365.5±52.0*</td>
<td>496.1±37.0†</td>
<td></td>
</tr>
<tr>
<td>HcD</td>
<td>12</td>
<td>166.5±8.4</td>
<td>470.1±61.1*</td>
<td>633.5±50.8†</td>
<td></td>
</tr>
<tr>
<td>VLDL (mg/dL)</td>
<td>NcD</td>
<td>23</td>
<td>3.9±0.6</td>
<td>137.7±22.8*</td>
<td>225.7±14.1†</td>
</tr>
<tr>
<td>NcD</td>
<td>33</td>
<td>6.1±0.8</td>
<td>208.5±34.4*</td>
<td>283.4±24.4†</td>
<td></td>
</tr>
<tr>
<td>HcD</td>
<td>12</td>
<td>63.7±6.1</td>
<td>284.8±39.1*</td>
<td>381.4±30.9†</td>
<td></td>
</tr>
<tr>
<td>LDL (mg/dL)</td>
<td>NcD</td>
<td>23</td>
<td>7.5±0.3</td>
<td>94.5±10.3*</td>
<td>153.6±10.5†</td>
</tr>
<tr>
<td>NcD</td>
<td>33</td>
<td>9.0±0.6</td>
<td>107.5±17.6*</td>
<td>161.7±10.5†</td>
<td></td>
</tr>
<tr>
<td>HcD</td>
<td>12</td>
<td>39.2±2.6</td>
<td>108.4±19.9*</td>
<td>165.3±10.7†</td>
<td></td>
</tr>
<tr>
<td>HDL (mg/dL)</td>
<td>NcD</td>
<td>23</td>
<td>56.9±2.0</td>
<td>26.2±2.8*</td>
<td>36.6±3.6†</td>
</tr>
<tr>
<td>NcD</td>
<td>33</td>
<td>63.7±2.8</td>
<td>28.3±1.4*</td>
<td>35.6±2.2†</td>
<td></td>
</tr>
<tr>
<td>HcD</td>
<td>12</td>
<td>60.9±3.1</td>
<td>23.0±2.1*</td>
<td>32.5±4.2†</td>
<td></td>
</tr>
</tbody>
</table>

T-cho indicates total cholesterol; VLDL; very-low-density lipoprotein; LDL; low-density lipoprotein; HDL, high-density lipoprotein.

*P<0.05 vs WT.
†P<0.05 vs apoE-KO.
apoE-KO mice fed NcD, whereas it was much less in DKO mice (40% of apoE-KO mice) (Figure 2A). After mice were fed HcD for 9 or 12 weeks, atherosclerotic lesion area in DKO mice was also 40% of that of apoE-KO mice (Figure 2B). The atherosclerotic lesions of apoE-KO mice included Mac-3-positive macrophages (foam cells) and a lesser number of α-SMA–positive SMCs. The macrophages were positive for HDC and histamine in apoE-KO mice (Figure 2C). In addition to the Mac-3-positive macrophages, a few CD3-positive T lymphocytes infiltrated in the atherosclerotic intima (data not shown). The T cell counts were increased in apoE-KO and DKO mice compared with WT mice, but they were not different between apoE-KO and DKO mice (Supplemental Table II).

Figure 1. Serum histamine and HDC, HH1R, and HH2R expression in aortic tissue. A and B, Serum histamine was increased in apoE-KO mice but not in histamine-deficient DKO mice. From 23 to 33 weeks of age with NcD, serum histamine increased in apoE-KO mice (A), and HDC feeding for 12 weeks much increased serum histamine levels (B). C and D, Aortic expression of HDC, HH1R, and HH2R was increased in apoE-KO mice fed HcD for 12 weeks. The expression of HH1R and HH2R in DKO mice was decreased compared with apoE-KO mice. The values are presented as mean±SE. *P<0.05, **P<0.01, ***P<0.001 vs WT mice; #P<0.05, ##P<0.001.

Figure 2. Quantitative analysis of hyperlipidemia-induced atherosclerosis. A, Oil Red O–stained atherosclerotic lesions in NcD-fed (for 23 and 33 weeks) and HcD-fed (9 and 12 weeks) mice. B, The atherosclerotic areas stained with Oil Red O stain were decreased in DKO mice fed NcD and HcD. The values are presented as mean±SE. *P<0.05, **P<0.01 vs apoE-KO mice. C and D, Representative micrographs of the aortic lesions. E, Intima to media ratio (I/M ratio) in NcD-fed mice (33 weeks) evaluated from serial sections of the aorta. The values are presented as mean±SE. **P<0.01 vs apoE-KO mice. HE indicates hematoxylin and eosin; Mac, Mac-3; SMA, α-SMA; His, histamine.

Figure 3. Expression of LDLR, SR-BI, and SRs in atherosclerotic aortas. A, Expression of LDLR and SRs in the aortas was analyzed in WT and KO mice fed HcD for 12 weeks. The expression of these genes was downregulated in DKO mice compared with apoE-KO mice. B, SR-A and CD36 expression in protein levels was studied by Western blotting. The expression levels in protein were correlated with those in mRNA. C, In the liver, SR-BI expression was decreased in DKO mice, but that of LDLR was increased in DKO mice compared with apoE-KO mice. Values were normalized by 18S rRNA expression (RT-PCR) or β-actin (Western blotting) expression and are presented as mean±SE. *P<0.05, **P<0.01, ***P<0.001 vs WT mice; #P<0.05, ##P<0.01, ###P<0.001 vs apoE-KO mice.

HE indicates hematoxylin and eosin; Mac, Mac-3; SMA, α-SMA; His, histamine.
intercellular adhesion molecule-1 (ICAM-1) and vascular cell apoE-KO mice (Figure 4B and 4C). Expression of mRNAs of significantly decreased in DKO mice compared with WT mice and decreased in apoE-KO mice compared with apoE-KO mice. Serum and aortic tissue MCP-1 protein levels were increased in DKO mice (Figure 4A and Supplemental Figure III). In addition, serum and aortic tissue MCP-1 protein levels were increased in apoe-KO mice compared with WT mice. Values were normalized by 18S rRNA expression and are presented as mean±SE. *P<0.05, **P<0.01, ***P<0.001 vs WT; #P<0.05, ##P<0.01 vs apoe-KO mice.

Figure 4. Expression of inflammatory factors in atherosclerotic aortas. A, Expression of inflammatory factors in the aorta was analyzed in WT, apoe-KO, and DKO mice fed HcD for 12 weeks. These genes expression were increased in apoe-KO mice but decreased in DKO mice. B, Aortic MCP-1 content in DKO mice was lower than that in apoe-KO mice in 12 weeks of HcD. C, Serum MCP-1 was increased in apoe-KO and DKO mice fed NcD from 23 to 33 weeks of age. After HcD feeding for 9 and 12 weeks, serum MCP-1 of both apoe-KO and DKO mice were increased compared with that of WT mice. Tissue MCP-1 was normalized by tissue weight. The mRNA expression was normalized by 18S rRNA expression and is presented as mean±SE. *P<0.05, **P<0.01, ***P<0.001 vs WT; #P<0.05, ##P<0.01 vs apoe-KO mice.

Expression of SRs and LDL Receptor in the Liver and Aortas in DKO Mice
Real-time RT-PCR revealed that expression of LDL receptor (LDLR) was decreased in both apoe-KO and DKO compared with WT mice but was further decreased in DKO mice compared with apoe-KO mice. SRs, including SR-A,22 SR-BI,23 CD36,24 and lectin-like oxidized LDLR-1 (LOX-1)25 were increased in apoe-KO mice fed HcD for 12 weeks. The expression of these SRs genes was significantly downregulated in DKO mice compared with apoe-KO (Figure 3A and Supplemental Figure III). The levels of protein expression of SR-A and CD36 were correlated to those of mRNA expression (Figure 3B). In the liver, mRNA expression of SR-BI was moderately decreased in DKO mice, but that of LDLR was increased in DKO mice compared with apoe-KO mice (Figure 3C).

Suppression of Inflammatory Response in Atherosclerotic Aortas of DKO Mice
Expression of inflammatory cytokines or growth factors and their receptors, such as tumor necrosis factor receptor, interleukin-1 receptor (IL1R), IL-1β, IL-6, platelet-derived growth factor β chain, and MCP-1, was increased in apoe-KO mice compared with WT mice and decreased in DKO mice (Figure 4A and Supplemental Figure III). In addition, serum and aortic tissue MCP-1 protein levels were significantly decreased in DKO mice compared with apoe-KO mice (Figure 4B and 4C). Expression of mRNAs of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) was increased in atherosclerotic aortas of apoe-KO mice but significantly decreased in DKO mice (Figure 5A). Inducible nitric oxide synthase, expression of which is regulated by HH1R signaling in vascular SMCs,26 was enhanced in apoe-KO mice and reduced in DKO mice (Supplemental Figure III).

Decreased Expression of MMPs in Atherosclerotic Aortas in DKO Mice
Expression of MMPs, which participate in the remodeling of atherosclerotic intima,20,27,28 was increased in atherosclerotic plaques of apoe-KO mice, except for MMP-9, and was decreased in DKO mice. The expression of NF-κB was studied by Western blotting (B) and immunohistochemistry (C). In apoe-KO mice, NF-κB expression was increased and localized in the nuclei of the macrophages. Both expression and nuclear localization were decreased in DKO mice. *P<0.05, **P<0.01, ***P<0.001 vs WT mice; #P<0.05, ##P<0.01 vs apoe-KO mice.

Figure 5. Expression of adhesion molecules, MMPs, and NF-κB. Expression of ICAM-1, VCAM-1, and MMPs in the aorta in WT, apoe-KO, and DKO mice fed HcD for 12 weeks. Values were normalized by 18S rRNA expression and are presented as mean±SE. A, ICAM-1 and VCAM-1 expression was increased in atherosclerotic aortas in apoe-KO mice and decreased in DKO mice. MMP expression was also increased in atherosclerotic plaques of apoe-KO mice, except for MMP-9, and was decreased in DKO mice. Expression of NF-κB was studied by Western blotting (B) and immunohistochemistry (C). In apoe-KO mice, NF-κB expression was increased and localized in the nuclei of the macrophages. Both expression and nuclear localization were decreased in DKO mice. *P<0.05, **P<0.01, ***P<0.001 vs WT mice; #P<0.05, ##P<0.01 vs apoe-KO mice.

Decreased Expression and Nuclear Localization of NF-κB in Atherosclerotic Aortas in DKO Mice
One of the key regulators of inflammation, transcriptional factor NF-κB expression in the aortas, was evaluated by Western blotting and immunohistochemistry. In the atherosclerotic aortas of mice fed HcD for 12 weeks, expression was markedly increased in apoe-KO mice and decreased in DKO mice. As shown by immunostaining, nuclear localization of NF-κB in the infiltrated macrophages, detected in apoe-KO mice, was decreased in DKO mice (Figure 5C).
Discussion
In the present study, we demonstrated that serum and aortic histamine contents and histamine receptor expression increased as hyperlipidemia-induced atherosclerosis developed in apoE-KO mice. In histamine-deficient DKO mice, atherosclerotic lesion was significantly attenuated despite the higher cholesterol levels. The expression of a range of proatherogenic cytokines, SRS, adhesion molecules, and MMPs in the aortas was reduced in DKO mice. Expression and activation of NF-kB, one of the key inflammatory regulators, was also decreased in DKO mice. Therefore, these results indicate that histamine promotes atherosclerosis independently of serum cholesterol levels but depending on gene regulation of inflammatory response.

Regulation of Atherosclerosis and Serum Lipid by Histamine
In both liver and atherosclerotic aortas, SR-BI expression were reduced in DKO compared with apoE-KO mice. HDL cholesterol receptor SR-BI regulates reverse cholesterol transport from peripheral atherosclerotic lesions to the liver, and deletion of SR-BI in apoE-KO mice accelerates proatherogenic hypercholesterolemia and atherosclerosis.17,29 Therefore, decreased expression of SR-BI is responsible in part for the increased cholesterol levels in DKO mice. In contrast, LDLR expression in the liver was moderately increased and that in the aortas was decreased in DKO mice. Because LDLR is expressed predominantly in the liver and LDLR-deficient mice show proatherogenic lipid profile because of reduced hepatic clearance of LDL and very-low-density lipoprotein,30 it is probable that LDLR-mediated clearance of serum cholesterol would not, at least, be impaired in DKO mice.

In contrast, HDL cholesterol levels in DKO mice were higher than those in apoE-KO mice. The higher serum HDL cholesterol levels might partly participate in the reduction of atherosclerosis in DKO mice. Although the net effect of histamine deficiency on apoE-KO mice is attenuation of atherosclerosis with increased very-low-density lipoprotein, LDL, and HDL cholesterol, the exact mechanism(s) by which histamine regulates cholesterol metabolism is still unknown. Recently, however, we suggested that hepatic cholesterol accumulation is regulated by histamine signaling in the liver,32 and therefore histamine actions mediated through histamine receptors expressed in tissues, including the artery and liver, probably regulate cholesterol metabolism.

On the other hand, SR-A, CD36, LOX-1, and SR-BI, which are the receptors for oxidized LDL and mainly expressed in atherosclerotic lesions to promote atherosclerosis,23–25 were decreased in DKO mice. Partially supporting the present results, LOX-1 expression in monocytes is upregulated by histamine-mediated signal through HH2R.17 Therefore, suppressed influx of modified LDL in aortas by histamine deficiency is implicated in reduced atherosclerosis progression in DKO mice in spite of increased serum cholesterol levels. In fact, atherosclerosis, which is enhanced in LDLR-KO or apoE-KO mice, is reduced by deficiency of LOX-1, SR-A, and CD36 expression.33,34 Histamine is able to enhance cholesterol influx in peripheral tissues, resulting in the accumulation of cholesterol in lipid-laden cells in the aortas to accelerate atherosclerosis.

Regulation of Inflammatory Response by Histamine
Our study showed that proatherogenic cytokines and other molecules (such as IL-1β, IL-6, platelet-derived growth factor-BB, inducible nitric oxide synthase, and MCP-1) which regulate inflammatory response in the atherosclerotic lesions, were markedly decreased along with attenuation of hyperlipidemia-induced atherosclerosis in DKO mice. Because influx of modified LDL into the atherosclerotic lesions also accelerates the inflammatory responses to the progress of atherosclerosis,35,36 the decreased cholesterol influx contributes to the decreased inflammation to reduce atherosclerotic lesions in DKO mice.

Among those inflammatory factors, our previous studies showed histamine regulation of MCP-1 in relation to atherogenesis.15,37,38 Histamine stimulates monocytes to express MCP-1 and its receptor chemokine (c-c motif) receptor 2 (CCR2), and it stimulates endothelial cells to upregulate ICAM-1 and VCAM-1 expression,37 which are upregulated at atherosclerosis-prone sites in apoE-KO mice.38 The expression of MCP-1 is also upregulated by granulocyte-macrophage colony-stimulating factor, which enhances the production of histamine via HDC expression of monocytes.15,38 These data suggest that histamine modulates monocyte migration from peripheral blood via upregulation of MCP-1/CCR2 and adhesion molecules and that histamine is involved in an inflammatory network in the atherosclerotic lesion.18 Actually, in the present study, the serum and aortic MCP-1 expression in DKO mice was significantly lower than that in apoE-KO mice. In addition, the aortic expression of endothelial and monocyte adhesion molecules, including ICAM-1 and VCAM-1, was induced in apoE-KO mice but significantly reduced in DKO mice. Because the increased expression of MCP-1 and adhesion molecules plays a central role in the progression and destabilization of established atherosclerosis in apoE-KO mice,40 these data indicate that the proatherogenic nature of DKO mice could, at least partially, be attributed to the downregulation of histamine-induced expression of MCP-1 and adhesion molecules.

Regulation of MMP Expression and Intimal Remodeling by Histamine
Transgenic expression or KO of MMP genes has been very often introduced in apoE-KO mice or another animal to investigate the relation between atherosclerosis and arterial matrix degradation.41–43 Of special interest, the effects of MMP-9 and MMP-12 are well studied because of its elastolytic activity to destroy the arterial media for the progression of atherosclerosis. Indeed, we previously reported that MMP-12 plays an essential role in the invasion of macrophages into hypercholesterolemia-induced atherosclerotic foci in MMP-12 transgenic rabbits by disruption of elastic fibers.20 The current data concerning MMPs indicate that
histamine participates in tissue remodeling in hyperlipidemia-induced atherosclerosis via the expression of MMP-2, -3, -9, and -12. Although histamine is not able to directly induce these expression of these MMPs in cultured macrophages and SMCs (data not shown), the expression of MMPs is regulated by a complicated inflammation network including histamine in the atherosclerotic lesions.18 It is of note that oxidized LDL–induced expression of MMP-2 and -9 in atherosclerotic lesions of LDLR-KO mice is mediated though activation of LOX-1,44 because our previous study showed that histamine upregulates LOX-1 expression in monocytes.17 The histamine-LOX-1-MMP axis may be present in atherosclerotic lesions to modulate extracellular matrix metabolism.

Regulation of NF-κB Signaling in Inflammatory Responses by Histamine

NF-κB signaling is critical for atherogenesis because it regulates vascular inflammatory responses, and activated NF-κB has demonstrated in atherosclerotic lesions.45,46 Importantly, all the genes whose expression was decreased in DKO mice are targets of the transcriptional factor NF-κB.45 Because the expression and nuclear localization of NF-κB were decreased in DKO mice, these data indicate that histamine regulates NF-κB signaling in atherogenesis.

In conclusion, the present study indicates that the inflammatory response induced by histamine is an important regulator of atherosclerosis induced by high serum cholesterol. Therefore, histamine could be a relevant therapeutic target in the treatment of atherosclerosis.

Acknowledgments

The authors thank Dr Masao Kimoto in the Faculty of Medicine, Saga University, for his critical suggestions and also to thank Hiroko Isakai, Hana Nishimura, Naoko Une, and Tomoko Shima for their technical assistance.

Sources of Funding

This work was supported in part by research grants from the Smoking Research Foundation (to A.T.) and by Grant-in-Aid 20590416 from the Japanese Ministry of Education, Science and Culture, Tokyo, Japan (to A.T. and Y.S.).

Disclosures

No competing financial interests exist.

References

Histamine Deficiency Decreases Atherosclerosis and Inflammatory Response in Apolipoprotein E Knockout Mice Independently of Serum Cholesterol Level
Ke-Yong Wang, Akihide Tanimoto, Xin Guo, Sohsuke Yamada, Shohei Shimajiri, Yoshitaka Murata, Yan Ding, Masato Tsutsui, Seiya Kato, Teruo Watanabe, Hiroshi Ohtsu, Ken-Ichi Hirano, Kimitoshi Kohno and Yasuyuki Sasaguri

Arterioscler Thromb Vasc Biol. 2011;31:800-807; originally published online January 27, 2011;
doi: 10.1161/ATVBAHA.110.215228
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/31/4/800

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2011/01/27/ATVBAHA.110.215228.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/
Supplemental Fig. I.

A

Body weight

- - - - WT
- - - apoE-KO
- - - DKO

p<0.05 vs. WT

B

Blood pressure

mmHg

0 20 40 60 80 100 120

WT apoE-KO DKO

* p<0.05 vs. WT
p<0.05, ## p<0.001
Supplemental Fig. II.

* p<0.05 vs. WT
p<0.05
Supplemental Fig. III.
Table I.

Peripheral Blood Cell Count

<table>
<thead>
<tr>
<th></th>
<th>WBC (counts/μL)</th>
<th>NEU(%)</th>
<th>EOS(%)</th>
<th>BASO(%)</th>
<th>MONO(%)</th>
<th>LY(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>10992±1599</td>
<td>12.00±2.10</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>1.75±0.75</td>
<td>86.25±2.13</td>
</tr>
<tr>
<td>ApoE-KO</td>
<td>9125±1099</td>
<td>35.83±5.46*</td>
<td>0.16±0.16</td>
<td>0.00±0.00</td>
<td>2.66±0.98</td>
<td>61.33±5.80*</td>
</tr>
<tr>
<td>DKO</td>
<td>10296±1839</td>
<td>25.60±7.58</td>
<td>0.40±0.40</td>
<td>0.00±0.00</td>
<td>3.00±1.05</td>
<td>71.00±8.29</td>
</tr>
</tbody>
</table>

NEU, Neutrophile; EOS, eosinophile; BASO, Basophile; MONO, monocyte; LY, Lymphocyte
* p<0.05 vs. WT n=5

Femoral Bone Marrow Cell Counts

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>apoE-KO</th>
<th>DKO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cell counts (x10^7/femur)</td>
<td>1.1±0.1</td>
<td>1.4±0.1</td>
<td>1.3±0.1</td>
</tr>
<tr>
<td>Erythroids(%)</td>
<td>32.1±6.5</td>
<td>25.3±4.8</td>
<td>28.9±6.3</td>
</tr>
<tr>
<td>Granuloids(%)</td>
<td>43.8±2.8</td>
<td>47.3±4.4*</td>
<td>44.2±3.6</td>
</tr>
<tr>
<td>Lymphocytes(%)</td>
<td>18.5±3.9</td>
<td>21.4±1.2</td>
<td>20.4±3.2</td>
</tr>
<tr>
<td>Monocytes(%)</td>
<td>5.2±1.5</td>
<td>4.9±0.8</td>
<td>5.9±2.5</td>
</tr>
<tr>
<td>Megakaryocytes(%)</td>
<td>0.1±0.1</td>
<td>0.2±0.2</td>
<td>0.2±0.2</td>
</tr>
</tbody>
</table>

* p<0.05 VS WT n=4
Table II.

CD3-positive T-Cell in aorta

<table>
<thead>
<tr>
<th>counts/section</th>
<th>intima</th>
<th>media</th>
<th>adventitia</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>0.00 ± 0.00</td>
<td>0.00 ± 0.00</td>
<td>0.69 ± 0.23</td>
</tr>
<tr>
<td>apoE-KO</td>
<td>1.00 ± 0.27*</td>
<td>0.00 ± 0.00</td>
<td>1.75 ± 0.39*</td>
</tr>
<tr>
<td>DKO</td>
<td>0.64 ± 0.17*</td>
<td>0.00 ± 0.00</td>
<td>1.57 ± 0.27*</td>
</tr>
</tbody>
</table>

* p<0.05 vs. WT
Supplemental Text

Histamine Deficiency Decreases Atherosclerosis and Inflammatory Response in ApoE-KO Mice Independently on Serum Cholesterol Level

Ke-Yong Wang, 1 Akihide Tanimoto,1, 2 Xin Guo, 1 Sohsuke Yamada, 1 Shohei Shimajiri, 1 Yoshitaka Murata, 3 Yan Ding, 1 Masato Tsutsui, 4 Seiya Kato, 5 Teruo Watanabe, 6 Hiroshi Ohtsu, 7 Ken-Ichi Hirano, 8 Kimitoshi Kohno, 9 and Yasuyuki Sasaguri 1*

Departments of 1 Pathology and Cell Biology, and 9 Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan; 2 Department of Molecular and Cellular Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan; 3 Kyurin Omtest Laboratory Department, Kyurin Corp., Kitakyushu 806-0046, Japan; Departments of 4 Pharmacology, and 5 Pathology and Cell Biology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan; 6 Laboratory of Pathology, Fukuoka Wajiro Hospital, Fukuoka 811-0213, Japan; 7 Department of Applied Quantum Medical Engineering, Tohoku University, Sendai 980-8579, Japan; 8 Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.

*Corresponding author: Yasuyuki Sasaguri, MD, PhD, Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan.
Materials and Methods

Measurement of blood pressure

The systolic and diastolic blood pressures were measured by tail-cuff method in 33-week-old mice fed NeD under conscious conditions (Model MK-2000, Muromachi Kikai Co., Ltd., Tokyo, Japan).

Hematopoietic cell counts in peripheral blood and bone marrow

The mice aged 33 wk fed NeD were used for the hematopoietic cell counts. Total white blood cell counts in the peripheral blood were calculated (counts/μL) and the leukocyte fractions (% to total count) were classified into neutrophiles, eosinophiles, basophiles, monocytes and lymphocytes. Total nucleated cells of the bone marrow (femur) were counted (counts/femur) and the fractions (% to total count) were classified into erythroids, granuloids, lymphocytes and megakaryocytes.

Mast cell counts in atherosclerotic lesions

The paraffin sections from the aortic lesions from 12-wk-HcD fed mice were stained by toluidine blue stain and mast cells were counted.

T lymphocyte counts in atherosclerotic lesions

The T lymphocytes in the atherosclerotic lesion from 12-wk-HcD fed mice were detected by immunohistochemistry using anti-CD3 antibody (rabbit polyclonal, x1; Dako) and positive cells were counted per section on a light microscope.

RT-PCR for HH3R and HH4R

The mRNA expression in the atherosclerotic lesions of 12-wk-HcD fed mice was
detected by RT-PCR using the primers listed below. For HH3R mRNA detection, the forward primer was 5’-AGCGCATGAAGATGGTATCC-3’ and the reverse primer was 5’-AGCTTGGTGAAAGCTCTACG-3’. For HH4R mRNA detection, the forward primer was 5’-ATGGTAGCAATGCTGTTGG-3’ and the reverse primer was 5’-TGTGTTCGTGCTGTTCTTCC-3’. As an internal control β-actin expression was monitored using the forward (FP) and reverse (RP) primers: FP 5’-TACATGGCAGGGGTTGGA-3’ and RP 5’-AAGAGAGGCATCCTCACCC-3’.

Figure Legends

Supplemental Fig. I. Body weight and blood pressure in mice fed NcD.

A) Body weight curve of WT, apoE-KO and DKO mice up to 33-wk old. B) Blood pressure of the mice was measure at the age of 33 wk. Both systolic and diastolic blood pressures were lower in DKO mice than in apoE-KO mice.

Supplemental Fig. II. HH3R and HH4R expression in atherosclerotic lesions.

After feeding with HcD for 12 wk, HH3R mRNA but not HH4R expression was increased in apoE-KO mice, which was decreased in DKO mice.

Supplemental Fig. III. Expression of various inflammatory factors in atherosclerotic lesion.

After feeding with HcD for 12 wk, mRNA expression was monitored by real time RT-PCR. A) LOX-1 B) IL1R1 C) TNFR2 D) MMP2 E) MMP3 F) iNOS

All the expression was increased in apoE-KO mice than in WT mice and decreased in
DKO mice.