H₂O₂ Regulation of Vascular Function Through sGC mRNA Stabilization by HuR

Abel Martín-Garrido, Marta González-Ramos, Mercedes Griera, Brenda Guijarro, Jorge Cannata-Andia, Diego Rodriguez-Puyol, Manuel Rodríguez-Puyol, Marta Saura

Objective—Hydrogen peroxide (H₂O₂) is an important mediator in the vasculature, but its role in the regulation of soluble guanylate cyclase (sGC) activity and expression is not completely understood. The aim of this study was to test the effect of H₂O₂ on sGC expression and function and to explore the molecular mechanism involved.

Methods and Results—H₂O₂ increased sGCβ1 protein steady-state levels in rat aorta and aortic smooth muscle cells (RASMCs) in a time- and dose-dependent manner, and this effect was blocked by catalase. sGCα2 expression increased along with β1 subunit, whereas α1 subunit remained unchanged. Vascular relaxation to an NO donor (sodium nitroprusside) was enhanced by H₂O₂, and it was prevented by ODQ (sGC inhibitor). cGMP production in both freshly isolated vessels and RASMCs exposed to H₂O₂ was greatly increased after sodium nitroprusside treatment. The H₂O₂-dependent sGCβ1 upregulation was attributable to sGCβ1 mRNA stabilization, conditioned by the translocation of the mRNA-binding protein HuR from the nucleus to the cytosol, and the increased mRNA binding of HuR to the sGCβ1 3' untranslated region. HuR silencing reversed the effects of H₂O₂ on sGCβ1 levels and cGMP synthesis.

Conclusion—Our results identify H₂O₂ as an endogenous mediator contributing to the regulation of vascular tone and point to a key role of HuR in sGCβ1 mRNA stabilization. (Arterioscler Thromb Vasc Biol. 2011;31:567-573.)

Key Words: antioxidants ■ cell physiology ■ endothelial function ■ reactive oxygen species ■ vascular biology ■ vascular muscle ■ vasodilation

Reactive oxygen species (ROS) play a role in the development of vascular damage in different pathophysiological conditions. It has been demonstrated that vascular production of ROS can increase substantially in diseases such as diabetes, hypertension or hypercholesterolemia, and these ROS may modulate the phenotype of vascular cells or even the deposit or composition of extracellular matrix (ECM) in the vessel wall.1-5 Hydrogen peroxide (H₂O₂), formed from superoxide (O₂⁻) as a result of the activity of various superoxide dismutases, is an important regulator of the function of the vascular wall.6,7 H₂O₂ has been detected in people under both physiological and pathophysiological conditions.8-10 In humans, H₂O₂ can be detected in normal controls, as well as in patients with cardiovascular or pulmonary disease. H₂O₂ may modulate the contraction, proliferation, and apoptosis rate and the synthesis of ECM proteins in endothelial or smooth muscle cells.11

H₂O₂ has been proposed to be an endothelium-derived hyperpolarizing factor in peripheral arteries.12,13 H₂O₂ may also dilate arteries by alternative mechanisms, such as the stimulation of the production of prostanoids14 or the activation of soluble guanylate cyclase (sGC).15 Moreover, under some circumstances, H₂O₂ may increase the vascular content of endothelial nitric oxide synthase and to stimulate its activity, with subsequently increased synthesis of nitric oxide (NO).16-18

Most of cellular effects of NO depend on the interaction with its main receptor, sGC, and ROS could interact with this receptor, thus modifying the cellular response to NO. In fact, several studies have shown that cGMP levels increase during ischemia, a pathological condition characterized by increased ROS synthesis.19,20 In addition, sGC can be modulated by ROS, modifying its activity after brief exposition to oxidants,21-23 and recent work suggests that sGC expression and activity may be attenuated by ROS in rat aortic smooth muscle cells (RASMCs)24 and ovine pulmonary artery smooth muscle cells.25 Moreover, Courtois et al26 proposed that a superoxide anion–dependent sGC downregulation may be involved in the genesis of the hypertension induced by chronic lead administration.

The present study was devoted to analyzing the ability of ROS, particularly H₂O₂, to modulate the cellular content of

Received on: February 17, 2010; final version accepted on: December 1, 2010.
From the Division of Cardiology (A.M.-G.), Department of Medicine, Emory University School of Medicine, Atlanta, GA; Department of Physiology (M.G.-R., M.G., B.G., M.R.-P., M.S.), University of Alcalá, Alcalá de Henares, Madrid, Spain; Division of Mineral and Bone Metabolism (J.C.-A.), Hospital Universitario Central de Asturias, Universidad de Oviedo, Spain; and Nephrology and Research Unit (D.R.-P.), Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain.
M.R.-P. and M.S. contributed equally to this work as cosenior authors.
Correspondence to Marta Saura, Dpto Fisiología, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain. E-mail Marta.Saura@uah.es
© 2011 American Heart Association, Inc.
Arterioscler Thromb Vasc Biol is available at http://atvb.ahajournals.org DOI: 10.1161/ATVBAHA.110.219725
567
sGC, as well as identifying the molecular mechanism involved and its biological consequences.

Methods

Details regarding materials, animal studies, RASMC isolation, and immunohistochemical studies; measurement of cGMP, RNA isolation, and RNA interference; RNA–electrophoretic mobility shift assay (RNA-EMSA); and statistics are provided in an expanded Methods section in the online Data Supplement, available at http://atvb.ahajournals.org.

Vascular Reactivity

The preparation of the aortic rings was essentially similar to that described.27 Aortas were cut into 3 mm segments. The aortic rings were suspended between 2 stirrups in a 5 mL of organ bath filled with prewarmed (37°C) oxygenated (95% O2/5% CO2) modified Krebs–Ringer bicarbonate solution at pH 7.4. The rings were set at an initial resting tension of 2 g, and changes in force were recorded with an isometric force transducer (AD Instruments, Panlab, BCN, Spain) connected to a computer equipped with a suitable software program. The tissues were allowed to equilibrate for 60 minutes before the experiments began. In that period, the resting tension was readjusted to 2 g, if required. The vessels were exposed to 75 mmol/L K\(^+\) to verify their functional integrity. After washing, the segments were first incubated for 2 hours with \(H_2O_2\) and then contracted with noradrenaline (100 \(\mu\)mol/L). After that, aortic rings were treated with different doses of sodium nitroprusside (SNP), and tension was recorded. Some experiments were performed in the presence of 1-(\(H\)-(1,2,4)-oxadiazolo-(4,3-a)-quinoxalin-1-one (ODQ) (1 \(\mu\)mol/L).

Results

H\(_2\)O\(_2\) Increases sGC\(\beta\)1 Subunit Protein Expression in Rat Aorta and in Cultured RASMCs

To assess the effect of H\(_2\)O\(_2\), freshly isolated rat aortic rings were incubated with increasing concentrations of H\(_2\)O\(_2\) (10\(^{-6}\) to 10\(^{-4}\) mol/L) for 4 hours, and the expression of the \(\beta\)1 subunit of sGC was analyzed by immunohistochemistry and immunoblot. Figure 1A shows an increased immunostaining of sGC in the media of the aorta in response to H\(_2\)O\(_2\) treatment. Figure 1B shows that H\(_2\)O\(_2\) increased sGC\(\beta\)1 levels in a dose-dependent manner. As observed in Figure 1C, H\(_2\)O\(_2\) treatment of cultured RASMCs induced an increase in sGC\(\beta\)1 expression over time, reaching a peak after 4 hours of treatment, and returning to basal levels after 8 hours. This effect was dose-dependent because the \(\beta\)1 subunit increased in response to increasing concentrations of H\(_2\)O\(_2\) (supplemental Figure I). In contrast, \(\alpha\)1 subunit protein levels were not affected by H\(_2\)O\(_2\) (supplemental Figure II). Because sGC functions as a heterodimer, we also tested \(\alpha\)2 subunit expression observing an increase in response to H\(_2\)O\(_2\) treatment, which was time- and concentration-dependent (supplemental Figure III). The effects of H\(_2\)O\(_2\) effects on sGC\(\beta\)1 expression were specific because catalase abolished the increase in sGC\(\beta\)1 levels in response to H\(_2\)O\(_2\) treatment of cultured RASMCs (Figure 1D).

H\(_2\)O\(_2\) Enhances sGC Function in Rat Aorta and RASMCs

To test the biological consequences of the enhanced sGC levels in the presence of H\(_2\)O\(_2\), the vascular reactivity to an
induced a 6-fold elevation in cGMP levels in control cells. Treatment with H$_2$O$_2$ produced an additional increase in cGMP levels compared to NO-treated cells.

H$_2$O$_2$ Induces sGCβ1 mRNA Expression by Increasing Its mRNA Stability

Northern blot analysis for specific sGCβ1 mRNA was next performed to determine whether the stimulatory effect of H$_2$O$_2$ was attributable to differences in mRNA expression. As shown in Figure 3A, sGCβ1 mRNA steady-state levels increased after 4 hours of exposure to increasing concentrations of H$_2$O$_2$ in a dose-dependent manner.

The effect of H$_2$O$_2$ on the activity of the sGC promoter was studied by transfecting RASMCs with the full-length sGCβ1 promoter luciferase construct (p3.0-Luc) followed by treatment with H$_2$O$_2$ (10$^{-5}$ mol/L) for 24 hours. Human sGCβ1 promoter transactivation was measured as firefly luciferase activity normalized to Renilla luciferase activity. H$_2$O$_2$ did not produce any significant change in promoter activity, thus suggesting that a transcriptional induction was not involved in the observed effects (Figure 3B).

To determine whether changes in mRNA stability contributed to the H$_2$O$_2$-dependent increase in sGCβ1 mRNA levels, RASMCs were exposed to H$_2$O$_2$ (10$^{-5}$ mol/L) for 4 hours, transcription was stopped by addition of DRB (5,6-dichloro-1-β-D-ribofuranosylbenzimidazole) (10$^{-5}$ mol/L), and mRNA expression was followed for 6 hours. As shown in Figure 3C, DRB-treated cells show a progressive decline in sGCβ1 mRNA levels. In contrast, H$_2$O$_2$ prolonged the half-life of sGC mRNA for more than 4 hours.

H$_2$O$_2$ Induces HuR Cytoplasmic Translocation and HuR Binding to the 3’ Untranslated Region of sGCβ1 mRNA

The adenylate- and uridylate-rich elements (AREs) located in the 3’ untranslated regions (UTRs) of many genes are targets for rapid mRNA turnover. HuR, a RNA-binding protein, has been described to regulate the stability of ARE-containing mRNAs. To test whether HuR could bind and stabilize sGCβ1 mRNA, a biotin-labeled ARE-containing oligoribonucleotide probe from the 3’UTR of sGCβ1 mRNA was incubated for 30 minutes with nuclear extracts from control or H$_2$O$_2$-treated RASMCs. The protein–riboprobe complex formation was detected by RNA-EMSA. As observed in Figure 4B, a protein–riboprobe complex consisting of 4 distinct bands was formed in the H$_2$O$_2$-treated cells (lane 2) compared to controls (lane 1). The specificity of these bands was con-
firmed by a competition assay with a 100-fold excess of unlabeled oligonucleotide riboprobe (lane 4). Preincubation of the nuclear extracts from H2O2-treated cells with an antibody against HuR prevented the formation of the protein–riboprobe complex, whereas incubation with a nonspecific IgG had no effect (lanes 5 and 3).

To further study the involvement of HuR in H2O2 stabilization of sGC, HuR was silenced by means of small interfering (si)RNA nucleofection of RASMCs. As shown in Figure 5A, siHuR prevents the H2O2-induced upregulation of sGCβ1 in RASMCs compared to cells nucleotransfected with siNeg (as a control). In addition, we performed studies using SiHuR-nucleofected RASMCs to measure cGMP release in response to H2O2 treatment. Results shown in Figure 5B show that the increased cGMP release in response to H2O2 is completely prevented by HuR downregulation compared to siNeg-transfected cells.

Endogenously Produced H2O2 Increases sGCβ1 Protein Expression, mRNA Stability, and HuR Translocation to Cytosol

We had previously demonstrated that angiotensin II (Ang II) increases intracellular H2O2 levels. To study whether endogenous H2O2 can regulate sGC expression, RASMCs were treated with Ang II or catalase. As observed in Figure 6A, Ang II mimicked the effects of exogenously added H2O2 on sGCβ1 protein expression, and this increase was abolished by catalase. Ang II also increased sGCβ1 mRNA stability, and catalase treatment blocked this effect (Figure 6B). Additionally, Ang II modified HuR localization, inducing an increased cytosolic and a decreased nuclear HuR content, an effect that was also reversed by catalase (Figure 6C). These experiments support that H2O2 could act as an endogenous regulator of sGCβ1 expression, under certain pathophysiological conditions.
The main finding of our study is that \(\text{H}_2\text{O}_2 \) increases sGC/β1 gene expression and protein content, as well as sGC activity, by a posttranscriptional mechanism that involves HuR binding to the sGC/β1 mRNA 3′UTR, increasing its stability. The increase in sGC/β1 protein levels was associated with an increase in vascular relaxant responses to NO in rat aortic rings.

There is evidence supporting the role of ROS in the regulation of sGC expression.31–33 Our results show that \(\text{H}_2\text{O}_2 \) can upregulate the expression of the β1 subunit of sGC in a time- and dose-dependent manner in both cells and aortic tissue. sGC is a heterodimer made up of 2 subunits, α and β. Two isoforms are known to exist (α1β1 and α2β1) in which the β1 subunit acts as the dimerizing partner for either α subunit.34 Our results show that although α1 expression does not change, α2 subunit is also upregulated by \(\text{H}_2\text{O}_2 \) in a time- and dose-dependent manner; therefore, α2β1 sGC may be the isoform responsible for increased cGMP and vascular relaxation to \(\text{H}_2\text{O}_2 \).

The increase in sGC expression was associated with an increase in NO-dependent cGMP release, indicating that sGC was functional. Moreover, the increase in sGC levels had a biological effect because vascular relaxation responses to NO in rat aortic rings were enhanced in presence of \(\text{H}_2\text{O}_2 \). Recently, an opposite role for ROS in regulating sGC expression has been described.24 In their study, Gerassimou et al describe a downregulation in sGC/β1 mRNA caused by a transcriptional effect. However, the \(\text{H}_2\text{O}_2 \) concentration used in their study was significantly higher than the one used in our study. In addition, when these investigators exposed cells to a lower concentration of \(\text{H}_2\text{O}_2 \) (10^{-5} mol/L), they observed no change in α1 subunit protein expression and an increase in β1 subunit expression, which is consistent with our results. Indeed, by using Ang II to increase endogenous \(\text{H}_2\text{O}_2 \) production we also observed enhanced sGC/β1 expression which is blocked by catalase. This increase in was attributable to mRNA stabilization, and it was specific because it was avoided by catalase.
More recently, it has been shown that aldosterone decreases sGC activity because of disulfide bond formation, and ROS seem to be involved in the genesis of this effect. No changes in protein levels were reported. We failed to observe a reduction in sGC activity in the presence of ROS, but the manner in which aldosterone induces oxidative stress may explain the effects observed. It is believed that aldosterone promotes a defect in antioxidant defenses that increase ROS accumulation, decreases NO levels, and diminishes endothelium-dependent vascular reactivity. In our study, we directly tested the effects of H$_2$O$_2$ without perturbing oxidant or antioxidant enzymatic cellular systems. In addition, our functional experiments confirm increased sGC activity in vivo and in vitro, and this increase was specific of H$_2$O$_2$ because the increase in sGCβ_1 could be blocked by catalase.

In addition, H$_2$O$_2$ can exert its vasorelaxant effects by different mechanisms that may be vascular bed–specific. In our study, a sGC inhibitor, ODQ, reverses the NO-dependent vasodilator effect enhanced by H$_2$O$_2$, suggesting that that sGC upregulation may be responsible for the effects observed, although the participation of other pathways cannot be excluded. Thus, H$_2$O$_2$ can stimulate endothelial nitric oxide synthase expression and also increase its activity, thereby increasing NO release and cGMP synthesis and producing a vasorelaxant effect. Alternatively, H$_2$O$_2$ may stimulate the production of prostanoids, which also produce vasodilatation. It is generally accepted that vasodilation produced by prosta-cyclin is mediated by cAMP, which may relax vascular smooth muscle by several different mechanisms.

The expression of sGC mRNA can be regulated by different agents. It has been described that NO and cAMP can downregulate sGC by modifying its mRNA stability. Furthermore, hypoxia and ECM can also modulate sGC mRNA expression. The 3'UTR region of the sGC gene contains several AUUUA-rich sequences that intervene in mRNA stability, HuR binds to these sequences, thereby stabilizing mRNA in the cytoplasm. Our results show that after H$_2$O$_2$ treatment sGCβ_1 mRNA half-lives and HuR binds to the ARE sequences present in the 3'UTR region of sGCβ_1 mRNA. The binding is specific because it could be competed by a nonlabeled RNA probe and prevented by incubation of extracts with an HuR antibody. The increased binding of HuR could be explained by an increased expression of HuR in response to H$_2$O$_2$. The mechanisms that regulate the localization or function of HuR are not fully understood, but recent studies have provided some important clues. In the majority of studies in which an upregulation of mRNA stability has been described, cytosolic HuR does increase. Indeed, our results show a diminished presence of HuR in the nuclei of H$_2$O$_2$–treated cells, favoring a cytosolic localization that could account for the increase in sGC mRNA stability. Endogenous H$_2$O$_2$ induced by Ang II also increased HuR presence on the cytosol, and this effect was reversed by catalase. HuR silencing reversed only not the effects of H$_2$O$_2$ in sGCβ_1 protein levels but also sGC function because cGMP did not increased in response to NO in HuR–silenced cells exposed to H$_2$O$_2$.

It appears that H$_2$O$_2$ is a vasoactive agent and may play an important role as an endogenous mediator contributing to the regulation of vascular tone and possibly local blood flow in the microcirculation under physiological and/or pathophysiological conditions. In view of our results, it is possible that endogenous H$_2$O$_2$ can contribute to vasodilation by stabilizing sGC mRNA through HuR, increasing the expression of sGC and hence cGMP formation.

Acknowledgments

We thank to Kathy Griendling for critical reading of the manuscript.

Sources of Funding

This work was supported by grants from the “Ministerio de Ciencia e Innovación (MICINN)” (SAF 2007-64335 to M.S. and SAF...
None.

Disclosures

References

H$_2$O$_2$ Regulation of Vascular Function Through sGC mRNA Stabilization by HuR
Abel Martin-Garrido, Marta Gonzalez-Ramos, Mercedes Griera, Brenda Guijarro, Jorge Cannata-Andia, Diego Rodriguez-Puyol, Manuel Rodriguez-Puyol and Marta Saura

Arterioscler Thromb Vasc Biol. 2011;31:567-573; originally published online December 16, 2010;
doi: 10.1161/ATVBAHA.110.219725
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/31/3/567

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2010/12/15/ATVBAHA.110.219725.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/
Supplement Material

MATERIALS

Acrylamide and bisacrylamide were from Merck (Darmstadt, Germany). Hydrogen peroxide, phenylmethanesulfonylfluoride (PMSF), leupeptin, ammonium persulfate, sodium nitroprusside, salmon sperm DNA, formaldehyde, guanidinium thiocyanate, formamide, 1H-(1,2,4) Oxadiazolo (4,3-a)quinoxalin-1-one (ODQ), collagenase IV, anti-sGC-β1 and α1 antibodies, and α-actin antibody were purchased from Sigma Chemical (St. Louis, MO, USA). Tissue culture media and growth supplements were from BioWhittaker (Walkersville, MD, USA). The random prime labeling system (Rediprime II), nylon filters (Hybond N), and deoxy-[32P] cytidine triphosphate and RIA kit were purchased from Amersham Pharmacia Biotech (Buckinghamshire, UK). The bicinchoninic acid (BCA) assay kit and LightShift Chemiluminescent EMSA kit were from Pierce (Rockford, IL, USA). The polyvinylidene difluoride membrane was from Perkin Elmer (Boston, MA, USA). All the reagents employed were of the highest commercially available grade.

METHODS

Cell culture

Rats Aortic Smooth Muscle Cells (RASMC) were obtained from thoracic aortas of Wistar rats by methods described previously1.

Briefly, Wistar rats (125-200g) were sacrificed and exsanguinated. Thoracic aortas were removed, cleaned of surrounding tissues, dissected into small strips, and incubated in DMEM/Ham’s F-12 medium with collagenase type IV at 37°C for 45 min. Digested strips were seeded onto 100-mm diameter dishes and maintained DMEM/Ham’s F-12 with 10% fetal calf serum, at 37°C, in a humidified atmosphere of 5% CO2. The cells were used between the third and fifth passages.
Protein Extraction and Western Blot Analysis

Following treatment, cells were washed in PBS and solubilized (10 mmol/L Tris-HCl pH 7.4, 1 mmol/L EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 500 nmol/L sodium orthovanadate, 50 nmol/L NaF, 1 mmol/L pepstatin/leupeptin/aprotinin, 1 mmol/L PMSF) for 30 min at 4°C. Immunoblotting was performed as described. Immunoreactive bands were visualized with the SuperSignal detection system according to the manufacturer's instructions (Pierce, Rockford, IL, USA).

Immunohistochemistry

Aortas were harvested from Wistar rats and treated with or without hydrogen peroxide for 2h, fixed with formalin and subjected to increasing concentrations of ethanol and xylene. Tissues were embedded in paraffin, and cut into serial sections 3-5 μm thick and incubated with anti sGC β1 (Sigma, dilution 1:100). The aortic sections were then incubated with biotin-labelled goat anti-mouse antibody (DAKO, Carpinteria, CA, USA) followed by exposure to avidin–peroxidase complex (DAKO). Finally, diaminobenzidine (DAB, DAKO) was added to serve as a substrate. Samples were counterstained with Mayer's Haematoxylin. Negative controls were obtained by omitting primary antibodies (IgG).

Measurement of cGMP Synthesized by sGC

Control and hydrogen peroxide-treated cells were washed with buffer A (Tris 20 mmol/L, NaCl 130 mmol/L, KCl 5 mmol/L sodium acetate 10 mmol/L, glucose 5 mmol/L, pH 7.45). Cells were then preincubated with the same buffer containing 2.5 mmol/L Ca²⁺ and IBMX 10⁻⁴ mol/L. The reactions were started by the addition of a NO donor (SNP 10⁻⁶ mol/L) for 15 min. The medium was aspirated and 1 ml of ice-cold ethanol was added to the plates and maintained at 4°C for 30 min. Concentrations of
cGMP were determined with a commercial \(^{125}\)IcGMP RIA kit. Protein concentration was determined by the BCA assay

RNA Isolation and Northern Blot Analysis

Total RNA from RASMC was isolated as described\(^3\). For Northern analysis, a set of primers for sGC-\(\beta1\) (forward, base position 350, 5'-CGTGTCTGGGGCTCTAA-3' and reverse, base position 774, 5'-ACCACTAGGTCCCAGTCG-3') was used to amplify a 408 bp cDNA probe in a reverse transcription-polymerase chain reaction\(^4\). The fragment of human sGC \(\beta1\) subunit and a GAPDH RNA probe were radiolabeled as recommended by the manufacturer (Redi Prime, Amersham Pharmacia Biotech, Buckinghamshire, UK). The membranes were hybridized at 60ºC and autoradiography was performed. Densitometric analysis of the exposed films was performed with a scanner and analysed using NIH Image 1.55 software.

Transient Transfection and Luciferase Assays

RASMC were plated on six well plates for 24 h. RASMC were then incubated with 1 \(\mu\)g of sGC \(b1\) subunit promoter\(^5\) and 4 \(\mu\)l of LipofectAMINE reagent according to the manufacturer’s instructions (Invitrogen Co. Carlsbad, CA, USA). Luciferase activity was determined using the Dual Luciferase Reporter Kit (Promega). Firefly luciferase activity was evaluated (Monolight 2010 luminometer, Analytical Luminescence Laboratory, Ann Arbor, MI, USA) and normalized against Renilla luciferase activity. Results were normalized as relative luciferase light units/mg protein.

RNA Interference.

Cells were nucleotransfected by electroporation using a Nucleofector (Amaxa Biosystems,) set to the U25 program with 2 \(\mu\)g of annealed small interfering (si)RNA duplexes for HuR (Qiagen,) or nonsilencing control sequence (All-star Negative, Qiagen) per 1x10^6 cells. siRNA duplexes were synthesized using a previously published sequence (sense: 5'-GAU GCC AAC UUG UAC AUC ATT -3'; antisense: 5'
UGA UGU ACA AGU UGG CAU CTT -3′}⁶. After transfection, RAVSMC were allowed to attach overnight in complete medium.

RNA-EMSA.

RNA-electrophoretic mobility shift assays (EMSA) were carried out as described recently⁷. The biotin-labeled oligoribonucleotides β1GC3UTR (5′AAACUGCUUUUCUGUAAAAUGUUUGUCUUUCAUUUAGUA-3′) comprising bases 2929 to 2968 of the 3′-UTR from the sGCβ1 mRNA were used as probes. The oligoribonucleotides (150 ng) were incubated with 20 µg of total protein extract from endothelium-denuded rat aorta and a reaction mixture [10x reaction buffer (100 mmol/L Tris, pH 7.5, 500 mmol/L KCl, 10 mmol/L DTT; LightShift chemiluminescent EMSA Kit, 1.5% glycerol, 5 mmol/L MgCl₂, 0.05% Nonidet P-40, 2 units/µl RNase inhibitors (40 units/µl, RNaseOUT), 200 ng/ml total tRNA] for 30 min at 4°C. Complexes were resolved by native 8% polyacrylamide gel electrophoresis for 2 to 3h at 4°C and electroblotted onto nitrocellulose filters. Blocking and detection of biotin-labeled bands was performed as described previously. For supershifts, 4 µg of the monoclonal HuR-antibody was incubated with the native protein extract for 1 h on ice before the specific riboprobe was added; all subsequent steps were performed as described for native gels.

Statistical Analysis

Data are presented as mean ± SEM of a variable number of experiments (see figure legends). For animal studies the n values refer to the number of individual animals in which the experiment was performed. The data are expressed as the mean ± S.E. Non-parametric statistics were used for comparisons (Friedman´s and Wilcoxon´s test). A p<0.05 was considered statistically significant.
REFERENCES

Supplemental figure I. Hydrogen peroxide (H₂O₂) increases soluble guanylate cyclase β1 subunit [sGC (β1)] protein levels in cultured rat aortic smooth muscle cells (RASMC) in a dose dependent manner. Western blot for sGC (β1) in protein extracts from RASMC treated with different H₂O₂ concentrations (10⁻⁶-10⁻⁴ mol/L) for 4 hours. Lower panel shows the densitometric analysis of 10 independent experiments expressed as % increase of control. *p<0.05 vs. control (0).
Supplemental Figure II: Hydrogen peroxide does not change soluble guanylate cyclase α1 subunit [sGC (α1)] protein levels in cultured rat aortic smooth muscle cells (RASMC). Western blot for sGC (α1) in protein extracts from RASMC treated with and without \(\text{H}_2\text{O}_2 \) \((10^{-4} \text{ mol/L}) \) at different time points (A) or \(\text{H}_2\text{O}_2 \) concentrations \((10^{-6}-10^{-4} \text{ mol/L}) \) for 4 hours (B). Lower panel shows the densitometric analysis of 10 independent experiments expressed as % increase of control. *p<0.05 vs. control (0).
Supplemental Figure III: Hydrogen peroxide increases guanylate cyclase α2 subunit [sGC (α2)] protein levels in cultured rat aortic smooth muscle cells (RASMC). Western blot for sGC (α2) in protein extracts from RASMC treated with and without H$_2$O$_2$ (10$^{-4}$ mol/L) at different time points (A) or H$_2$O$_2$ concentrations (10$^{-6}$-10$^{-4}$ mol/L) for 4 hours (B). Lower panel shows the densitometric analysis of 10 independent experiments expressed as % increase of control. *p < 0.05 vs. control (0).
Supplemental Figure IV: Arterial responses to noradrenaline (NA) are not affected by H$_2$O$_2$ or ODQ treatment. Degree of arterial contraction to in rat aortic rings pretreated with saline (CT), 10$^{-4}$ mol/L H$_2$O$_2$ (H$_2$O$_2$), ODQ (ODQ) or H$_2$O$_2$+ODQ for 4h. Results are expressed as % increase of contraction to basal tension.