Getting Physical With the Aortic Valve

Peter F. Davies, Marie A. Guerraty

Mammalian cells and tissues rely on continuous interactions with the structural, physical, and soluble chemical environment to adapt to rapidly changing conditions. This ensures the continuation of proper physiological functions, accurate developmental cues during embryogenesis, containment of chronic pathological changes, and efficient repair of acute injuries. As part of cell regulation, the mechanical status of cells is constantly undergoing adjustment through coordinated responses to changes of intracellular tension imposed by internal and external forces and by encounters with extracellular matrices of varying stiffness.1,2 The role of extracellular proteins in mechanoregulated cell biology has emerged over the last decade in studies of fibrosis—the differentiation of myofibroblasts that express contractile α-smooth muscle actin (α-SMA) organized into stress fibers. Myofibroblast differentiation requires sustained mechanical tension that in turn is dependent on the stiffness of the extracellular matrix as sensed through integrin adhesion sites in the cell membrane.3 A critical soluble protein required for myofibroblast differentiation is transforming growth factor-β (TGF-β)4 that is secreted from myofibroblasts and, in an autocrine loop, can stimulate the cell via TGF-β receptors. However, secreted TGF-β binds to the extracellular matrix via a fibronectin splice variant (TGF-β latent complex), making it unavailable to the cell and preventing differentiation.5 In 2007, Wipff et al6 showed that TGF-β availability depends on the matrix stiffness and that its sequestration is reversed when the matrix is stiff rather than soft. The underlying mechanism is that intracellular cytoskeletal tension (inherent to all anchorage-dependent cells) is increased by the deformation-resistant stiff matrix against which it pulls. As a result, the TGF-β complex, attached to the matrix as well as to the cell membrane, undergoes force-induced conformational change, releasing TGF-β from the latent complex.6,7 The free molecule then interacts with the cell to promote α-SMA synthesis through TGF receptor binding, phosphorylation, and activation of Smads. Thus intracellular and extracellular mechanical properties converge with critical soluble proteins at the cell/matrix interface to regulate cell differentiation. This elegant integrated regulatory mechanism in myofibroblasts applies to wide-ranging examples of fibrosis in injury repair (eg, granulation tissue contractility8) and chronic inflammatory diseases, including atherosclerosis and calcified aortic valve disease (CAVD), pathologies that are usually associated with significant localized changes of matrix stiffness.

See accompanying article on page 590

In this edition of the journal, Chen et al9 add a new mechanics-related cross-talk mechanism to TGF-β-induced myofibroblast differentiation through their investigations of swine valve interstitial cells (VICs). Increased myofibroblast differentiation of VICs is a prominent feature of CAVD lesions.10 In humans and swine, CAVD occurs preferentially and more severely on the aortic side of the valve and is preceded by valve thickening. The aortic valve functions in a spatially heterogeneous hemodynamic environment that is particularly complicated on the downstream aortic side,11 where the subendothelial fibrosa layer is stiffer than the ventricularis region located on the opposite side.12 Consequently, the mechanical environment of the fibrosa is both intrinsically stiffer and extrinsically subject to more irregular outside forces than the ventricularis. TGF-β1/Smad signaling is activated in CAVD13; Chen et al9 noted the coexisting activation of TGF-β1 and Wnt/β-catenin pathways in valves and proposed that they may be related both to each other and to spatially related matrix stiffness within the tissue. Importantly, they showed that although Smad phosphorylation and nuclear translocation are critical to TGF-β1-induced myofibroblast differentiation, Smad proteins alone are insufficient to activate transcription,14 implying a requirement for cross-talk between TGF signaling and other signaling pathways. Shafer and Towler (2009)15 recently showed convergence of Wnt3a and TGF-β1/Smad signaling in the regulation of SM22α. Could the canonical Wnt/β-catenin pathway satisfy this cross-talk requirement in VIC differentiation and furthermore be linked to local matrix mechanical properties that mediate mechanotransduction signaling?

In primary cultures of swine VICs isolated from normal valve leaflets and grown on plastic, by using multiple interventions, β-catenin was shown to be required for TGF-β1-induced VIC myofibroblast differentiation through TGF-β type 1 receptor. TGF-β1 and Wnt3A synergistically increased β-catenin nuclear translocation, promoting greater myofibroblast differentiation and α-SMA transcription than TGF-β1 alone. Furthermore, using collagen I–coated polyacrylamide gels that mimic the stiffnesses of fibrosa and ventricularis, Chen et al9 demonstrated that TGF-β1-induced β-catenin activation and subsequent myofibroblast differentiation occurred only on the stiffer matrix that mimics fibrosa. To extend the cell studies to compromised tissue, immuno-cytchemistry of diseased valves from swine fed a hypercho-

© 2011 American Heart Association, Inc.

Arterioscler Thromb Vasc Biol is available at http://atvb.ahajournals.org
DOI: 10.1161/ATVBAHA.110.220962

© 2011 American Heart Association, Inc.
Getting Physical With the Aortic Valve
Peter F. Davies and Marie A. Guerraaty

Arterioscler Thromb Vasc Biol. 2011;31:474-475
doi: 10.1161/ATVBAHA.110.220962
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/31/3/474

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org/subscriptions/