Cell death has been recognized in the cardiovascular system for centuries. In Virchow’s 1858 lectures, he described atherosclerosis as producing new tissue, followed by cell death: “Thus, we have here an active process which really produces new tissues, but then hurries on to destruction in consequence of its own development.” Degraded and really produces new tissues, but then hurries on to destruction by cell death: “Thus, we have here an active process which described atherosclerosis as producing new tissue, followed.

From the Division of Cardiovascular Medicine (M.R.B.), University of Cambridge, Cambridge, UK.

Correspondence to Martin R. Bennett, Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge, CB22QQ, UK. Email mrb@mole.bio.cam.ac.uk

© 2011 American Heart Association, Inc.

DOI: 10.1161/ATVBAHA.111.239954

ATVB in Focus
Cell Death in Cardiovascular Disease
Series Editor: Martin R. Bennett

Articles in this series:

Cell Death in Cardiovascular Disease
Martin R. Bennett
involved in the degradation and recycling of the building blocks of organelles, proteins, and other components of the cytoplasm important for cellular homeostasis. Despite the fact that autophagy can lead to cell survival, recent studies indicate that apoptosis and autophagy involve complementary pathways and that autophagic degeneration may be a part of apoptosis, at least in some cell types.

This review series in ATVB on “Cell Death in the Cardiovascular System” is therefore very timely. The reviews cover the relationship between cell death and inflammation, particularly covering the innate immune system (Zheng et al), the evidence for and role of autophagy in vascular disease (Schijvers et al), and how ER stress and the unfolded protein response regulates apoptosis (Scull and Tabas). Importantly, the reviews demonstrate that we are moving beyond simple descriptions of cell death in disease. The elucidation of mechanisms underlying cell death has allowed the causal role of cell death to be elucidated in disease. These studies show that very little cell death (as measured) can result in profound consequences for the tissue, and that prevention of cell death is both part of the mechanism of action of established drugs, and a fertile ground for new therapeutics.

Acknowledgments

Professor Bennett is supported by a British Heart Foundation Professorship and the National Institute for Health Research, Cambridge Biomedical Research Centre.

References

1. Virchow R. Cellular Pathology as Based Upon Physiological and Pathological Histology. Birmingham, AL, 1858.

Key Words: Imaging agents Immune system
Cell Death in Cardiovascular Disease
Martin R. Bennett

Arterioscler Thromb Vasc Biol. 2011;31:2779-2780
doi: 10.1161/ATVBAHA.111.239954
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/31/12/2779

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/