Nuclear Receptors and Inflammation Control: Molecular Mechanisms and Pathophysiological Relevance

Wendy Huang, Christopher K. Glass

Abstract—Tissue inflammation is a tightly regulated process that normally serves to recruit the immune system to sites of infection and injury and to facilitate tissue repair processes. When an inflammatory state is excessive or prolonged, local and systemic damage to host tissues can result in loss of normal physiological functions. Here, we briefly review recent studies that advance our understanding of signaling pathways involved in initiation of inflammatory responses at the level of transcription and counterregulation of these pathways by selected members of the nuclear receptor superfamily. Studies of the intersection of nuclear receptors and inflammation have revealed mechanisms of positive and negative transcriptional control that may provide new targets for pharmacological intervention in chronic diseases, such as atherosclerosis. (Arterioscler Thromb Vasc Biol. 2010;30:1542-1549.)

Key Words: immune system ■ molecular biology ■ pharmacology ■ receptors ■ inflammation

Inflammation is a biological process that represents the initial response of an organism to infection and injury.1 A disturbance that is successfully cleared results in a return to basal homeostatic set points. When conditions that induce inflammation are persistent, or resolution mechanisms fail, a state of chronic inflammation ensues that can lead to loss of normal physiological functions. The initiation and maintenance of immunity is a metabolically costly process. The interdependency of inflammatory responses and metabolic control systems are well-conserved evolutionarily. The 2 pathways share many signaling-mediator and signaling-control systems well-conserved evolutionarily. The 2 pathways share many signaling-mediator and signaling-responder molecules.2 Innate immune responses typically promote a transient decrease in insulin sensitivity that has been suggested to allow the redistribution of glucose from skeletal muscle to leukocytes and other cell types with increased energy demands.3 Although malnutrition conditions impair immune functions, chronic metabolic overload and excess inflammation lead to immune imbalance and significantly contribute to chronic human diseases, including atherosclerosis, diabetes, fatty liver disease, airway inflammation, and cancers.2

Local tissue inflammation involves 4 major components, including the inducers, the sensors, the responding mediators, and the effects of the mediators on the surrounding tissue (reviewed in Reference 4). Tissue-resident macrophages, mast cells, endothelial cells, and barrier epithelial cells function to monitor tissue homeostasis, regulate tissue metabolism, and control inflammatory responses. These cells use extracellular and intracellular receptors to sense endogenous inducers of inflammation produced by stressed, damaged, or malfunctioning cells and tissues, as well as exogenous inflammatory inducers that signal for infection.

Pattern-recognition receptors (PRRs) represent a class of receptors that sense both exogenous and endogenous inflammation stimuli. Four main families of PRRs have been described, including the nucleotide-binding oligomerization domain-like receptor family (nucleotide-binding oligomerization domain receptors and NACHT, LRR AND PYD domains-containing proteins), Toll-like receptors (TLRs), C-type lectin-like molecules (including the mannose receptor and the β-glucan receptors), and a family of receptors with RNA-helicase and caspase-recruitment domains (retinoic acid inducible gene I and melanoma differentiation-associated gene 5).4,5 PRRs detect exogenous inducers by recognizing structurally conserved lipid, carbohydrate, peptide, and nucleic-acid molecules that are components of microbial and viral pathogens. Endogenous inducers, such as ATP, potassium ions, uric acid, high-mobility group protein B1, and heat-shock proteins released from abnormal necrotic cell death commonly found in diabetic adipose tissue and atherosclerotic plaques, are also sensed by PPRs, including NACHT, LRR and PYD domains containing protein-3 and TLR4 (reviewed in Reference 4). Furthermore, TLRs are also activated by fatty acids6 and oxidized lipid-lipoproteins7 in metabolically disturbed tissues, as well as heparin sulfates released from the extracellular matrix in response to infection and complement-coagulation cascades on tissue injury.8

Activation of the PRRs has diverse effects upon the host, including alteration in metabolic states, protein production/secretion/processing, and induction of genes that function in
The initial insult has been removed, tissue macrophages facilitate inflammation resolution and tissue repair, at least in part, through secretion of transforming growth factor β, growth factors, and anti-inflammatory lipid mediators, including lipoxins, resolvins, and protectins.14 When the acute inflammatory response fails to eliminate the initial disturbance, the inflammatory process acquires new characteristics, including pathological tissue remodeling, fibrosis, reduced normal tissue functions, and even persistent tissue metastasis. Sensors of inflammatory stimuli have well-documented roles in chronic inflammatory diseases, including atherosclerosis, diabetes mellitus, arthritis, inflammatory bowel diseases, and neurodegenerative diseases in human patients and animal models.15–19 Elevated PRRs expression and their activation by local endogenous and exogenous mediators correlate with the pathological states of obesity, diabetes, and coronary artery diseases in human.20–23 Single nucleotide polymorphisms in genetic loci coding for various PRRs have been linked to differential risks for the development and progression of these inflammatory diseases in human population studies.24 Animal models revealed that deletion of PRRs is protective against diet-induced insulin resistance25 and atherosclerosis progression.17,26 In contrary, administration of PRR agonists enhances local and systemic inflammation, increasing disease burden.18,27

In addition to PRRs, local tissue metabolic stresses, such as excess saturated fatty acids and free cholesterol, are sensed by intracellular lipid chaperone proteins and cellular organelles, including the endoplasmic reticulum and mitochondria.28 Endoplasmic reticulum stress and mitochondrial activation can lead to increased inflammatory reactive oxygen species production. Reactive oxygen species oxidation of high-density lipoproteins and low-density lipoproteins can convert these molecules into secondary inflammatory inducers. Malfunctioning of fatty acid chaperone proteins, endoplasmic reticulum, and mitochondria have been implicated in chronic inflammatory diseases, including type 2 diabetes and cardiovascular diseases in human.29–31 Overall, the emerging picture suggests that receptors for inflammation inducers play quantitatively important roles in the initiation and progression of chronic inflammatory diseases.

Inflammation Regulators: Nuclear Receptors

Tissue inflammation is a tightly regulated process. Given the need to resolve inflammation following eradication of the inciting stimuli and the importance of preventing excessive inflammation and the resulting tissue dysfunction, it is not surprising that inflammation is subject to counterregulation at multiple levels. Signaling molecules downstream of TLR, TIR-domain-containing adapter-inducing interferon-β (TRIF)/myeloid differentiation primary response gene-88 (MyD88), interleukin-1 receptor associated kinase (IRAKs)/TNF receptor-associated factors (TRAFs) and NF-κB, are negatively regulated in the cytoplasm by sterile-alpha and Armadillo motif containing protein/soluble myeloid differentiation primary response gene (88), deubiquitinating enzyme A20/tripartite-motif (TRIM) proteins 30a, and B-cell CLL/lymphoma 1/activating transcription factor 3, respectively.30 Members of the nuclear receptor superfamily of ligand-
dependent transcription factors play diverse roles in the regulation of development, homeostasis, and immune responses by positively and negatively regulating gene expressions. Many are found to cross-talk with the inflammatory signaling pathways and regulate the innate and adaptive immune system, contributing to inflammatory diseases in vivo. We highlight below the roles of the ligand-binding glucocorticoid receptor (GR), peroxisome proliferator-activated receptors (PPARs), liver X receptors (LXR), and the orphan receptor, nuclear receptor related 1 protein (nuclear receptor related-1 [Nurr1]), in the physiology and pathology of inflammation and some of the recent advances in our understanding of the molecular mechanisms underlying their antiinflammatory functions (illustrated in Figure 3). Several other members of the nuclear receptor family also contributed significantly to inflammatory processes. Their roles in inflammatory diseases and the underlying mechanisms are briefly summarized in Table.

Figure 2. Three classes of inflammation-responsive genes. Class I-inducible genes are basally expressed and are further activated upon inflammatory signal. Class II-inducible genes are "poised" with RNA polymerase II positioned on the promoter in a paused state. Class III-inducible genes are not decorated by RNA polymerase II and are kept at a repressed state basally. Activation of class II and class III inflammatory-response genes require removal of the basal corepressor complexes (NCoR), recruitment of transcription activators (p65) and coactivators (various kinases for phosphorylating transcription factors and RNA polymerase II), as well as additional histone modifiers (histone acetylase [HAT] and deubiquitin enzymes [DUB]) and chromatin remodeling machinery. TBL indicates transducin β-like protein-1; cxcl2, chemokine (C-X-C motif) ligand-2; socs3, suppressor of cytokine signaling-3; SP1, Sp1 transcription factor; TBLR, transducin beta-like related protein; nos2, nitric oxide synthase 2A.

GR

GR is prototypic of a subset of the ligand-dependent nuclear receptors that integrate host immune responses with physiological circuits that are required for maintenance of necessary organ functions. Glucocorticoids have potent antiinflammatory effects and have been used clinically to treat inflammatory diseases since mid 1900s. Similarly, animal studies have supported its protective role against cholesterol-induced atherosclerosis. The ability of GR to repress inflammatory responses is thought to result, at least in part, from its ability to interfere with the activities of other signal-dependent transcription factors, including those of NF-κB and AP-1, by direct interactions with NF-κB components, induction of negative regulators that target signaling molecules involved in activating NF-κB and AP-1, including interleukin (IL)-10, glucocorticoid-induced leucine zipper, MAPK phosphatase 1, and IκB kinase (IKK)α, disruption of activator/coactivator complexes, blockage of transcriptional elongation, and/or alteration of the...
epigenetic states of chromatins on target gene promoters through mitogen- and stress-activated protein kinase 1 and glutamate receptor-interacting protein 1.40–42

PPARs

PPARs play important roles in regulating metabolism, cell differentiation, and tissue inflammation that contributes to metabolic disorders and cardiovascular diseases.43 Two classes of clinical drugs for increasing insulin sensitivity in type 2 diabetes and lowering circulating fatty acids and triglycerides, thiazolidinediones and fibrates, target PPARγ and PPARα, respectively. In animal models, deletion of PPARγ from macrophages results in insulin resistance in lean animals and a loss of the full antidiabetic effects of synthetic

Table. Other Nuclear Receptors and Inflammation

<table>
<thead>
<tr>
<th>Nuclear Receptor (NR)</th>
<th>Known Ligand</th>
<th>Disease Association</th>
<th>Known Molecular Mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrogen receptors (NR3A1–2)</td>
<td>17β-Estradiol</td>
<td>Vascular injury75 and chemical-induced intestinal inflammation76</td>
<td>Decrease NFκB activation and increase TGFβ signaling77 to modulate inflammation, growth factor expression, and oxidative stress77</td>
</tr>
<tr>
<td>Vitamin D receptor (NR1I1)</td>
<td>Vitamin D metabolite: 1,25-dihydroxyvitamin D3</td>
<td>SLE,78–80 type 1 diabetes,81,82 rheumatoid arthritis,83 inflammatory bowel disease,84 and EAE85</td>
<td>Inhibits T-cell proliferation and cytotoxicity, induces differentiation and expansion of regulator T cells, and decreases the expression of chemokines and subsequent monocyte infiltration85</td>
</tr>
<tr>
<td>Retinoic acid receptors (NR1B1–3)</td>
<td>Vitamin A: metabolite, all-trans-retinoic acid and 9-cis-retinoic acid</td>
<td>Asthma,86 psoriasis, acne, photoaging, and cancer87</td>
<td>Enhance cytotoxicity and T-cell proliferation, low concentration allows for Th17 cell differentiation, while high concentration favors the induction of regulator T cells88</td>
</tr>
<tr>
<td>LRH-1 (NR5A2)</td>
<td>Unknown</td>
<td>Inflammatory bowel disease89 and lipid absorption90</td>
<td>SUMO and NCoR-dependent antiinflammatory mechanism92</td>
</tr>
</tbody>
</table>

LRH indicates liver receptor homolog-1.
PPARγ agonists in obese and insulin resistant mice. These findings are consistent with important functions of PPARγ in macrophages in controlling the production of proinflammatory mediators that help promote the insulin-resistant state. Deletion of PPARα from macrophages results in elevation of NF-κB expression and increased atherosclerotic lesion formation. Similarly, PPARβ has been suggested to negatively regulate inflammatory responses implicated in chemical-induced colitis, experimental autoimmune encephalomyelitis, and atherosclerosis.

Multiple mechanisms have been described to account for the antiinflammatory action of PPARγ. In endothelial cells and vascular smooth muscle cells, activation of PPARγ inhibits the phosphorylation of NF-κB, decreasing its transcriptional activities. In the adaptive immune system, PPARγ activation decreases the capacity of dendritic cells to prime naïve T lymphocytes and its ability to interact with critical transcription factor, nuclear factor of activated T cells, reduces the production of proinflammatory molecules in T lymphocytes. In cells of the innate immune system, PPARγ activation promotes expression of antiinflammatory mediators, including IL-10 and LXR, and contributes to the phenotype of alternatively activated macrophages that exert suppressive effects on inflammation. In classically activated macrophages, PPARγ inhibits the transcription of genes coding for proinflammatory molecules, including chemokine C-C motif ligand 2, nitric oxide synthase 2A, IL-12, and matrix metalloproteinase 9. The molecular mechanism underlying the repression of these inflammatory genes has been recently identified. In macrophages, many of the inflammatory-responsive genes are kept at a “repressed but poised state” by the nuclear receptor corepressor (NCoR)/silencing mediator of retinoid and thyroid hormone receptor checkpoint, summarized in Figure 2. The dismissal of these corepressor complexes from inflammatory-response genes is a prerequisite for their transcriptional activation by PPARs.

Ligand activation of PPARγ induces an allosteric change that enables protein inhibitor of activated STAT-1-dependent small ubiquitin-like modifier (SUMO)ylation of PPARγ by SUMO1. SUMOylated PPARγ binds to NCoR complexes on PPR-inducible gene promoters and prevents the signal-dependent turnover of NCoR. As a consequence, NCoR complexes continue to exert repression functions, resulting in attenuated transcription activation and dampened subsequent inflammatory responses.

Similar to PPARγ, PPARα activation also decreases NF-κB and AP-1 activities in liver and endothelial cells. Three major mechanisms have been described for the antiinflammatory actions of PPARβ/δ, including the induction of antiinflammatory corepressor BCL6 protein, inhibition of NF-κB, and induction of antiinflammatory mediators, such as transforming growth factor β, regulator of G-protein signaling-4 and regulator of G-protein signaling-5.

LXRs

LXRs are sensors of cholesterol metabolites in vivo. In animal models, administration of synthetic LXR ligands can reduce atherosclerosis, whereas deficiencies in LXRs result in disturbed cholesterol homeostasis, promoting exaggerated inflammatory responses and accelerated diseases pathologically. LXRs play a role in regulating immunologic synapse formation in dendritic cells and have antiproliferative effects on T cells. In murine macrophages, ligand binding of LXRs promotes SUMOylation by SUMO2/3, using histone deacetylase-4 as the SUMO E3 ligase. Similar to PPARγ, SUMOylated LXRs exert transcription repression activities by directing their interaction with corepressor complexes, NCoR and silencing mediator of retinoid and thyroid hormone receptor, to inhibit a set of inflammatory genes in macrophages and other cell types. Studies of primary macrophages derived from genetic knockout mice indicate that the NCoR/silencing mediator of retinoid and thyroid hormone receptor corepressors are required for nearly all of the transrepression functions of LXRs in macrophages.

Nuclear Receptor 4A Family

Three members of the nuclear receptor 4A family, Nurr77, neuron-derived orphan receptor-1, and Nurr1, have been found to play important roles in regulating inflammatory diseases. These receptors are induced by atherogenic stimuli in macrophages and smooth muscle cells and are found in atherosclerotic plaques (reviewed in Reference 63). Overexpression of these receptors decreases inflammatory cytokine and scavenger receptor expression, lowering low-density lipoprotein accumulation in macrophages and formation of foam cells. Nurr77 also inhibits smooth muscle cell proliferation and lowers inflammatory gene expression in smooth muscle cells, macrophages, and endothelial cells. In contrast, Nor1 induces vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in endothelial cells, promotes monocytes adhesion, and its deficiency decreases neointima formation in response to vascular injury. Molecular mechanisms accounting for these divergent effects have not been established. Mutations in Nurr1 are linked to familial Parkinson’s disease, and this association has been suggested to be due, at least in part, to the diminished negative regulation of inflammatory responses by Nurr1 in microglia and astrocytes resulting in neurotoxicity in the brain. On TLR activation, PIAS4 conjugates Nurr1 to SUMO2/3, SUMOylated Nurr1 and its associated cellular corepressor protein corepressor complex interact with phosphorylated NF-κB and dislodge it from gene promoters, attenuating the expression of NF-κB-dependent inflammatory genes to help protect against Parkinson’s disease in animal models.

Perspectives

Investigation of the intersection between an as yet small subset of nuclear receptors and inflammation pathways has led to new insights into basic transcriptional control mechanisms that are required for immunity and homeostasis. Systematic expression profiling experiments have documented the expression of 28 members of the nuclear receptor family in primary mouse macrophages, many of which exhibit dramatic changes in response to inflammatory stimuli. Corresponding studies in other immune cells have not been performed but are likely to yield similarly complex patterns of nuclear receptor expression. In addition, the
biological roles and mechanisms of action of most members of the nuclear receptor family in regulating inflammation and immunity remain poorly understood. Even for the most intensively studied receptors, such as GR and PPARγ, many questions remain regarding the relative importance of positive and negative regulation of gene expression. Mechanistically, how are these receptors recruited to their respective gene target promoters to exert repression in DNA-binding independent manner? How are concentrations of endogenous ligands controlled at the local level in normal and disease states? Additional questions include whether posttranslational modifications and corepressor/coactivator interactions modulate nuclear receptor functions and whether chronic inflammatory signals inactivate their protective effects. The respective contribution of each of the above molecular mechanism in inflammatory conditions in vivo remains to be elucidated in future studies.

Recent technological advances in performing genetic association studies, genome-wide localization studies (chromatin immunoprecipitation with massively parallel DNA sequencing), and transcriptome studies (global run-on sequencing and RNA sequencing) will likely catalyze rapid progress in our understanding of how nuclear receptors reengineer nuclear chromatin architectures, modulate expression of inflammatory genes and noncoding small RNAs with immunoregulatory roles, and contribute to human inflammation-related diseases. Of note, many of the previously described molecular mechanisms of nuclear receptor function are studied in particular cell types, including macrophages, microglia, and endothelial cells. This begs the question of the generality of the described mechanisms. It is tempting to speculate that tissue-specific mechanisms should exist in vivo to facilitate different immunologic and metabolic needs of different tissues in the context of an inflammatory response. It will therefore be of interest to use tissue-specific knockout animals in physiological and pathological contexts to evaluate the potential contribution of specific nuclear receptors in particular cell types in chronic inflammatory diseases.

A challenge of therapeutic interventions aimed at reducing inflammation is to tune down inflammatory programs that promote chronic disease processes without disarming the ability of the immune system to respond to infection or altering the homeostatic metabolic states of the organism. Although current therapeutic approaches that target members of the nuclear receptor superfamily have potent antiinflammatory effects, many are associated with adverse side effects. For instance, glucocorticoids alter glucose homeostasis and inhibit the bone-forming activities of osteoclasts, among other adverse effects, resulting in hyperglycemia and osteoporosis that limit their use in treating chronic conditions in human patients. Long-term exposure to LXR ligands could potentiate inflammatory responses by upregulating TLR4 expression and increasing triglyceride synthesis that could contribute to hepatic steatosis. Therapeutic approaches that prevent activation of sensors of inflammatory signals, such as biological that specifically target inflammatory cytokines such as TNF and IL-1, remain costly with delivery constraints and pitfalls of disease recurrences when treatment ceases. Together, the needs for novel therapeutics for treating chronic inflammatory conditions remain substantial.

One potential level of intervention is at the level of corepressor function, as illustrated by the antiinflammatory activities of the nuclear receptors, PPARγ and LXRs. As discussed earlier, inflammation-promoting genes are tightly regulated under basal conditions by the NCoR corepressor complexes that are recruited to broad sets of inflammatory-response genes by members of the AP-1 transcription factor family member, c-Jun. Recent studies identified several kinases, IKKα, c-Jun N-terminal kinase, IKKε, and Ca2+/calmodulin-dependent kinase II γ, downstream of cell surface receptor signaling that promote phosphorylation of components of the basal corepressor complex to facilitate corepressor turnover and activation of a subset of their respective target genes. These kinases represent a potentially important class of pharmacological targets, because their inhibitors will likely mimic nuclear receptor antiinflammatory effects by blocking corepressor turnover and inflammatory gene activation, yet bypassing the clinically significant side effects associated with therapies that target the nuclear receptors systemically. Recently, small-molecule inhibitor for c-Jun N-terminal kinase has been shown to be effective in treating arthritis in animal models. Better understanding of the process of inflammation and its natural regulatory pathways along with recent development of kinome-wide screens and tissue-specific drug delivery strategies will facilitate the identification of new therapeutic strategies for treating chronic inflammatory diseases in humans.

Sources of Funding
This work was supported by the National Research Service Award Grant 1F31DK083913 (to W.H.) and by a grant from the Leducq Transatlantic Network and National Institutes of Health Grants RO1 CA52599, PO1 HC088093, and PO1 DK074868 (to C.K.G.).

Disclosures
None.

References
Nuclear Receptors and Inflammation Control: Molecular Mechanisms and Pathophysiological Relevance
Wendy Huang and Christopher K. Glass

Arterioscler Thromb Vasc Biol. 2010;30:1542-1549
doi: 10.1161/ATVBAHA.109.191189
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/30/8/1542

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/