Venous thromboembolism (VTE) is a term that encompasses both deep vein thrombosis (DVT) and pulmonary embolus (PE). VTE is a common disorder; although there are remaining uncertainties about its precise incidence, it accounts for at least 250,000 (and as many as 900,000) incident cases per annum in the United States.1 When compared with the other major cardiovascular thrombotic disorders, the incidence of VTE is similar to the incidence of fatal or nonfatal stroke or myocardial infarction.2,3 The diagnosis of VTE can be challenging, requiring an algorithmic approach combining the degree of clinical suspicion, objective appropriately validated laboratory markers (such as plasma D-dimer level), and radiological study results.4 The clinical presentation of about two thirds of patients is with DVT, whereas the remaining one third present with PE. However, because occult PE is common in patients presenting with DVT (and vice versa), DVT and PE are considered to be complementary manifestations of the same pathophysiological process. Little is known about why some DVTs embolize, whereas others apparently do not. Finally, although not the primary focus of this article, it has become clear that the opportunity to prevent much of the burden of VTE, particularly among hospitalized patients, has not been realized.5 Thus, implementing appropriate VTE prophylaxis guidelines remains a universal high-priority topic for health systems.6,7

See accompanying article on page 369

The initial treatment of VTE, combining 5 to 7 days of a rapid-acting parenterally administered unfractionated heparin, low-molecular-weight heparin, or fondaparinux, and a more prolonged course of an oral vitamin K antagonist, is a straightforward intervention supported by several decades of irrefutable evidence from clinical trials.8 In the first 3 months of therapy, the primary goals of DVT treatment are to prevent extension and embolization of the thrombus (thereby facilitating the action of endogenous thrombolysis); in patients with PE, the primary goal is to prevent potentially fatal recurrence. Beyond the 3-month time point, the use of continued anticoagulation is considered to be “secondary prophylaxis,” aimed at prevention of a late recurrence. By using standard modern-day regimens, the rates of early recurrence (within 3 months) or death are quite low overall, generally in the order of 3% or less.9 In its most extreme forms, massive PE may present with sudden death, with hypotension (systolic arterial pressure < 90 mm Hg), and/or circulatory collapse, which is generally considered to be an indication for thrombolytic therapy.10 Anticoagulation therapy for the more than 90% of patients presenting with nonmassive PE is administered in a manner analogous to that for DVT, but there remains some controversy about the role of adjunctive therapies in a subset of these patients (discussed later in this article).

An important concept to emerge from a number of studies evaluating the risks and benefits of longer-term (> 3-month) secondary prophylaxis with oral vitamin K antagonists is the fact that acute VTE, unprovoked by recognized triggers such as surgery or trauma, is in fact a chronic disorder that is associated with a significant risk of late recurrence (≤ 50% after 10 years following the cessation of anticoagulation).11,12 However, the prevention of late recurrence has to be weighed against the risks of bleeding associated with the long-term use of warfarin. Balancing these considerations, analysis of the evidence by an expert panel has led to the recommendation that long-term secondary prophylaxis is indicated for those patients with a low risk of bleeding and access to high-quality anticoagulant monitoring. This recommendation was also qualified by a statement to the effect that patient preference should be considered.8

Key Words: anticoagulation ▪ deep vein thrombosis ▪ pulmonary embolism
Given this accumulated wealth of experience, what are some of the remaining knowledge gaps and unmet needs in the management of patients with VTE? We have selected 4 topics for brief discussion; we believe these topics to be among the most critical questions in the current era.

Need for Better Oral Anticoagulants for the Treatment of VTE

The introduction of low-molecular-weight heparins and related inhibitors of factor Xa (such as the pentasaccharide fondaparinux) has arguably addressed the clinical need for better parenteral anticoagulants. These agents have superior bioavailability and reduced need for monitoring compared with unfractionated heparin. However, the need for orally available anticoagulants to replace warfarin and other vitamin K antagonists in the secondary prophylaxis of VTE persists. Warfarin was introduced into clinical practice in 1954; to this day, it remains the only licensed oral agent for the treatment of VTE. The limitations of the oral vitamin K antagonists include their slow onset of action; the variability of dosing between individuals, resulting in part from genetic polymorphisms in warfarin’s metabolic pathways; and the fact that frequent monitoring is required to manage drug interactions, which are often unpredictable. In addition, like many anticoagulants, warfarin has a relatively narrow therapeutic window that necessitates careful monitoring. Thus, major bleeding events were twice as common in studies targeting an international normalized ratio of greater than 3.0 compared with those targeting the most commonly used target range of 2.0 to 3.0; an international normalized ratio of greater than 4.5 is a strong independent risk factor for bleeding, with an odds ratio of almost 6. More important, major bleeding associated with anticoagulant therapy is frequently associated with poor clinical outcomes. For example, in the RIETE Registry, the all-cause mortality in the 2% to 3% of patients developing major bleeding during treatment for VTE was 33%, of whom about half died as a direct result of the hemorrhagic event. Although these numbers may appear high relative to the published clinical trials, their validity is supported by community-based studies that likely are more representative of the “real-world” experience with warfarin-induced bleeding. Many of the patients who would have been ineligible for the trials that have formed the basis for current evidence-based recommendations, including elderly subjects, may account for the excess community-based mortality and morbidity with warfarin.

Although several oral anticoagulants have been approved outside the United States for the prophylaxis of VTE, including the Xa inhibitors rivaroxaban and apixaban and the thrombin inhibitor dabigatran etexilate, none has yet been approved for the treatment of VTE. The pharmacology and development of these agents, as well as a detailed description of their performance in prospective randomized clinical trials, have been reviewed elsewhere. The first phase 3 VTE treatment study comparing dabigatran with warfarin in the treatment of acute VTE was recently published. In the RE-COVER Study, patients were randomized to dose-adjusted warfarin (at a standard international normalized ratio target of 2.0 to 3.0) or fixed-dose dabigatran after receiving unfractionated or low-molecular-weight heparin for 5 to 11 days. The noninferiority of dabigatran compared with warfarin for the primary end point of recurrent VTE or VTE-related death within 6 months of therapy was demonstrated. Similarly, dabigatran was as safe as warfarin, with rates of bleeding and liver function abnormalities that did not differ. A theoretical advantage of the new oral anticoagulants over warfarin is their rapid onset of action, which could obviate the need for initial parenteral anticoagulation. However, to our knowledge, no trial has demonstrated that this strategy is safe and efficacious. Conversely, however, a potential limitation of the new anticoagulants is the absence of a specific antidote to reverse their anticoagulant effect in the event of bleeding. The potential impact of this limitation in clinical practice remains to be seen.

Determining Whether All Forms of VTE Require Treatment

With the advent of increasingly sensitive radiological methods of detection, venous thrombosis may be revealed in an anatomical location and/or clinical scenario in which the benefit-risk profile of active treatment has not been clearly defined. This uncertainty inevitably leads to disparities in management among different centers and even between physicians within the same practice.

In the lower extremities, clots detected below the popliteal vein (ie, within the calf veins) typically present with symptoms that overlap with those seen in patients with more proximal DVT. The diagnosis of isolated distal DVT is common in clinical practice, where it may account for about half of DVT diagnoses in the outpatient setting. Because distal clots that remain confined to the calf veins are considered to be at low risk (<1%) of embolization on 3-month follow-up, it has been recommended by some experts that these patients not receive systemic anticoagulation. This opinion is supported by the lack of convincing data in favor of anticoagulation, because patients with symptomatic isolated distal DVT have generally been excluded from clinical trials focusing on the treatment of VTE. Furthermore, existing registries agree that the clinical profile of patients with isolated symptomatic distal DVT fundamentally differs from those with asymptomatic proximal DVT, with distal DVT occurring more often in patients with transient risk factors. On follow-up, isolated distal DVT (when treated with anticoagulant therapy) seems to be associated with a lower risk of death compared with proximal DVT; however, there remains some uncertainty about the relative rates of recurrence and major bleeding. Thus, it is probably inappropriate to extrapolate treatment outcomes of studies that only included patients with proximal DVT, and the existing clinical equipoise calls for a definitive answer through prospective randomized clinical trials focusing on the treatment of patients with isolated distal DVT. Clinically relevant end points in these trials might reasonably include the relief of acute symptoms, in addition to the prevention of proximal extension, embolization, and recurrence.

A further example of a clinical dilemma with respect to the uncertainty of the risk-benefit of anticoagulant therapy may arise when unexpected venous thrombosis, often DVT or PE,
but also thrombus in other locations such as in the portal vein, is detected in patients with cancer undergoing routine staging computed tomographic scanning. Asymptomatic VTE may be quite prevalent, occurring in up to 10% of patients with cancer undergoing staging computed tomographic scans.25,26 These patients may have been truly asymptomatic, or the nonspecific symptoms of thrombosis, such as fatigue or shortness of breath, may have erroneously been attributed to their underlying disease.27 Either way, the natural history of these previously unsuspected thrombi in terms of morbidity and mortality is not yet well-defined, nor is the benefit-risk profile of standard anticoagulation therapy. Until these data are available, it has been recommended that these patients be managed in a similar manner to those with symptomatic VTE.8

In both examples referenced in this section, the interpretation of clinical trial data could potentially be complicated by imprecision in the diagnostic accuracy of imaging studies of distal DVTs or subsegmental PEs.

Role of Thrombolysis in the Prevention of Postthrombotic Syndrome After Acute DVT

In up to one third of cases of DVT in the lower extremity, postthrombotic syndrome (PTS) may ensue as a late-onset chronic debilitating complication that imparts a significant negative effect on subjects’ quality of life.28 PTS is characterized by discomfort, hyperpigmentation, and swelling in the affected limb; in severe cases, it may be accompanied by cutaneous ulceration. These symptoms result from some combination of persistent venous hypertension, usually as the result of residual intravascular obstruction, and/or venous valvular insufficiency.29 Although the prolonged use of fitted compression stockings has been demonstrated to reduce the incidence of PTS after DVT,30,31 the role that the acute DVT treatment approach may play in modulating the subsequent risk has yet to be defined. For several years, a variety of circumstantial evidence has suggested that pharmacological removal of the acute thrombus using fibrinolytic therapy (usually administered locally via an indwelling catheter, with or without mechanical clot disruption) may preserve the function of the adjacent venous valves and minimize residual clotting, which in aggregate could reduce the risk of future PTS.32 Recently, more robust prospective studies33,34 randomizing patients with acute proximal DVT to pharmacological thrombolysis (with or without mechanical thrombectomy) versus standard anticoagulation are under way. In the recently initiated National Institutes of Health–sponsored ATTRACT trial,34 participants will be assessed for PTS and quality of life at 24 months postintervention; if the results of this study demonstrate clinical benefit, cost-benefit, and acceptable safety of pharmacomechanical treatment, an entire paradigm shift in the treatment of acute DVT may need to be entertained.

Need to Test Immediate Intervention Strategies for Submassive PE

The management of patients with submassive PE, defined as the absence of hemodynamic compromise with detectable right ventricular dysfunction, is controversial. Right ventricular dysfunction is generally defined by some combination of abnormalities on echocardiography and serum levels of cardiac biomarkers (eg, troponin and/or brain natriuretic peptide). Because these patients, especially if they are also hypoxic at presentation, may be at greater risk of death,35–37 it has been argued that thrombolytic therapy is indicated as the first-line treatment. In addition, some retrospective studies have indicated that the prognosis may be improved by the use of adjunctive inferior vena cava filters.10 However, both of these approaches remain controversial, because the studies that have attempted to address the issues have generally been underpowered and are methodologically diverse or inadequate. It is to be hoped that a large prospective randomized study under way in Europe (the PEITHO Pulmonary Embolism Thrombolysis Study [Comparison Trial Evaluating Efficacy and Safety of Single IV Bolus Tenecteplase Plus Standard Anticoagulation as Compared With Standard Anticoagulation in Normotensive Patients; ClinicalTrials.gov Identifier NCT00639743]) will answer the question of whether systemically administered thrombolytic therapy is superior to standard anticoagulation in patients with submassive PE. However, it remains unclear whether risk stratification of subjects using clinical, echocardiographic, and laboratory criteria adds to the ability to predict outcomes.38

In summary, the treatment of VTE, although supported by extensive high-quality evidence, remains a challenging area with still many unmet needs and unanswered questions. Ultimately, the burden of disease will hopefully be reduced by more effective implementation of prophylactic guidelines, particularly among patients hospitalized for other indications.

Sources of Funding
This study was supported by grant RO1 HL095096 from the National Institutes of Health (Drs Key and Kasthuri).

Disclosures
None.

References

17. Levi M, Hovingh GK, Canneugieter SC, Vermeulen M, Buller HR, Rosendaal FR. Bleeding in patients receiving vitamin K antagonists who would have been excluded from trials on which the indication for anticoagulation was based. *Blood*. 2008;111:4471–4476.

Current Treatment of Venous Thromboembolism
Nigel S. Key and Raj S. Kasthuri

Arterioscler Thromb Vasc Biol. 2010;30:372-375; originally published online February 5, 2010;
doi: 10.1161/ATVBAHA.109.197145
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272
Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://atvb.ahajournals.org/content/30/3/372

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/