Role of HDL, ABCA1, and ABCG1 Transporters in Cholesterol Efflux and Immune Responses

Laurent Yvan-Charvet, Nan Wang, Alan R. Tall

Abstract—Atherosclerosis has been characterized as a chronic inflammatory response to cholesterol deposition in arteries, but the mechanisms linking cholesterol accumulation in macrophage foam cells to inflammation are poorly understood. Macrophage cholesterol efflux occurs at all stages of atherosclerosis and protects cells from free cholesterol and oxysterol-induced toxicity. The ATP-binding cassette transporters ABCA1 and ABCG1 are responsible for the major part of macrophage cholesterol efflux to serum or HDL in macrophage foam cells, but other less efficient pathways such as passive efflux are also involved. Recent studies have shown that the sterol efflux activities of ABCA1 and ABCG1 modulate macrophage expression of inflammatory cytokines and chemokines as well as lymphocyte proliferative responses. In macrophages, transporter deficiency causes increased signaling via various Toll-like receptors including TLR4. These studies have shown that the traditional roles of HDL and ABC transporters in cholesterol efflux and reverse cholesterol transport are mechanistically linked to antiinflammatory and immunosuppressive functions of HDL. The underlying mechanisms may involve modulation of sterol levels and lipid organization in cell membranes. (Arterioscler Thromb Vasc Biol. 2010;30:139-143.)

Key Words: ABC transporter ■ apoptosis ■ immune system ■ lipids ■ cholesterol ■ inflammation

The removal of excess cholesterol from macrophage foam cells by HDL and its principal apolipoprotein, apoA-I, is thought to be one of the key mechanisms underlying the atheroprotective properties of HDL.1,2 Cholesterol accumulation in macrophage foam cells during atherogenesis induces inflammatory responses, apoptosis, and other adverse effects.3 Accumulating evidence suggests that by promoting cholesterol and oxysterol efflux, HDL regulates all these cellular responses in macrophage foam cells.4 ATP-binding cassette transporters ABCA1 and ABCG1 play a pivotal role in cholesterol efflux from macrophage foam cells. ABCA1 and ABCG1 show additive activity in promoting macrophage reverse cholesterol transport in vivo,5 and combined deficiency of these transporters in bone marrow–derived hematopoietic cells leads to severe defects in cholesterol efflux to HDL, massive cholesteryl ester accumulation in macrophages, and accelerated atherogenesis in a susceptible background.6,7 In addition, by modulating cholesterol homeostasis, ABCA1 and ABCG1 may be central to the antiapoptotic and antiinflammatory effects of HDL.4,8,9 Cholesterol accumulation in the plasma membrane of Abca1−/− and Abcg1−/− macrophages has been shown to increase signaling of Toll-like receptors enhancing the inflammatory response to LPS or other TLR ligands.10–13 As a consequence, mice lacking ABCA1 and ABCG1 accumulate prominent macrophage foam cells in various tissues such as in the lung, liver, spleen, or thymus,6,14–17 and in response to an inflammatory stimulus Abcg1−/− bone marrow transplanted mice revealed a profound inflammatory infiltrate in the adventitia and necrotic core region of atherosclerotic lesions.13

ABC Transporters and Active Cholesterol Efflux

Although passive cholesterol diffusion accounts for a large part of the efflux of cholesterol from nonloaded macrophages, active cholesterol efflux from macrophage foam cells via ABCA1 and ABCG1 represents as much as 70% of the total cellular cholesterol efflux following cholesterol loading.6,7,18,19

ABCA1 and Cholesterol Efflux to ApoA-I

Two distinct mechanisms have been proposed to explain ABCA1-mediated cholesterol efflux from macrophage to apoA-I. One is that apoA-I forms complexes with phospholipid and cholesterol at the cell surface in a process promoted by ABCA1 activity.20,21 There is abundant evidence that ABCA1-mediated cholesterol efflux to apoA-I can occur at the plasma membrane.22–24 The other is that apoA-I binds ABCA1 at the cell surface and is subsequently internalized and targeted to late endosomes, where apoA-I picks up lipids...
and the apolipoprotein-lipid complexes are then released from the cell by exocytosis.25–27 Internalized ABCA1–apoA-I complexes have been localized within late endosomes. More decisively, a mutant version of ABCA1 containing a deletion of the PEST sequence within its cytoplasmic domain (PEST sequences are rich in proline, glutamic acid, serine, and threonine) showed defective internalization and trafficking to late endosome/lysosomes and defective cholesterol efflux to apoA-I after loading the late endosome/lysosome pool of cholesterol by AcLDL treatment.26 In a novel mode of posttranscriptional regulation, apoA-I stabilizes ABCA1 by preventing its calpain-mediated degradation in a PEST sequence-dependent fashion.28,29 A recent study by Lu et al30 helps to integrate these findings by showing that apoA-I stabilizes ABCA1 against calpain proteolysis after internalization of ABCA1. Although these mechanisms are not mutually exclusive, there is controversy as to which mechanism plays the dominant role in ABCA1-mediated cholesterol efflux from macrophages to apoA-I. Recent studies have confirmed internalization of apoA-I and its accumulation in the late endosome/lysosome compartments in ABCA1-expressing macrophages.30–32 These studies also showed that the majority of the resorbed apoA-I had been degraded.31 However, these studies were performed using macrophages without cholesterol loading in the endosomal system.30–32

The mechanism governing the efflux after cholesterol loading, as pointed out by Oram33 and described above, are likely different. Indeed, a recent study has confirmed that the retroendocytosis of ABCA1 was critical in promoting cholesterol efflux through the ABCA1–apoA-I axis when excess lipoprotein-derived cholesterol had accumulated within cells.34 In contrast, this study also demonstrated that blocking retroendocytosis of ABCA1 did not affect cholesterol efflux from cells in the absence of cholesterol loading in agreement with previous studies.30–32

ABCG1 and Cholesterol Efflux to Mature HDL

Despite increasing interest and extensive study on the role of ABCG1, relatively little is known about how this transporter promotes efflux of cholesterol to mature HDL. Wang et al showed that ABCG1 promotes efflux of cholesterol to a variety of acceptors, including HDL, LDL, phospholipid vesicles, and cyclodextrin without increasing the binding of lipoproteins to cells.35 ABCG1 also promoted efflux of a broader spectrum of sterols including oxysterols such as 7-ketocholesterol,8 whereas ABCG1 and ABCG4 together promote efflux of sterol intermediates from the cholesterol synthesis pathway such as desmosterol.36 Interestingly, overexpression of ABCG1 increases efflux of not only cellular sterols but also, to some extent, cellular phospholipids.35,37,38 Overexpression of ABCG1 results in increased cell membrane cholesterol pools available for efflux and increases the rate constant for efflux; efflux appears to be diffusional and unidirectional and is more efficient for smaller LDL particles.39 Different models have been proposed to explain how ABCG1 promotes cholesterol efflux to HDL. One suggests that ABCG1 helps sterol molecules to overcome the energy barrier for entry into the hydrophilic water layer, perhaps by using ATP to promote protonation of the cholesterol molecule into water, followed by a transient collision with an acceptor.40 A second model points to a function of ABCG1 as a phospholipid floppase,37 promoting changes in the organization of plasma membrane phospholipids and subsequent attraction of sterols to the outer leaflet for diffusional efflux. Another possibility is that ABCG1 promotes flopping of cholesterol in liquid ordered regions of plasma membrane such that spontaneous flipping of sterol back to the inner membrane is not possible.

ABC Transporters and the Molecular Regulation of the Immune System

ABC Transporters and Macrophage Inflammation

HDL has potent antiinflammatory properties, including the ability to directly bind and sequester lipopolysaccharide,41,42 suppressing activation of Toll-like receptor 4 (TLR4) signaling.43 Recent studies have indicated additional direct cellular effects of HDL leading to suppression of inflammatory responses. By promoting cholesterol efflux, HDL has been proposed to inhibit cellular inflammatory signaling leading to inhibition of MCP-1 and CD11b expression and monocyte transmigration.44 Several studies have shown that the increased lipid raft formation in macrophages with genetic deficiencies of ABCA1 or ABCG110–13,45 could account for the enhanced inflammatory responses, especially after treatment with LPS or other TLR ligands leading to enhanced signaling via Myd88-NFκB (Figure).10–13,15 Replenishment or removal of cholesterol using cyclodextrin modulates the inflammatory response of macrophages deficient in ABCA1 or ABCG1, indicating that the increased inflammatory response is likely attributable to cholesterol accumulation in membranes (Figure).12,13 We recently reported that by modulating membrane cholesterol, deficiency of ABCA1 or ABCG1 increased TLR4 cell surface expression (Figure).13 ABCG1 appears to have a more potent role in modulating macrophage inflammatory response than ABCA1, perhaps reflecting a predominant role of this transporter in modulating the lipid composition of plasma membrane lipid rafts (liquid ordered domains).38 Interestingly, this response was not specific for TLR4, because macrophages lacking ABCA1 and ABCG1 were also more susceptible to TLR2 and TLR3 ligands. TLR3, in contrast to TLR2 and TLR4, is localized to the endosomal compartment. Recently, Sun et al showed that free cholesterol accumulation in the endosomal compartment increased the inflammatory response in a Toll-like receptor-dependent fashion, with TLR3 playing the major role.46 Together with the fact that ABCA1 plays a key role in removing cholesterol from the endosomal/lysosomal compartment, this suggests the hypothesis that there may be a unique role of ABCA1 in modulating inflammatory response initiated in late endosome/lysosomes (Figure).

ABC Transporters and Lymphocyte Proliferation

Recently, Bensinger et al reported that Liver X Receptor (LXR) signaling coupled sterol metabolism to T-cell lymphocyte proliferation in an ABCG1-dependent fashion.47 ApoA-1 KO mice also develop T-cell proliferation and activation and features of autoimmunity when backcrossed into an LDL
by guest on April 29, 2017 http://atvb.ahajournals.org/ Downloaded from

ABCA1 may have a compartment such as TLR3. By promoting cholesterol efflux spontaneous activation of Toll-like receptors present in this compartment also modulated the inflammatory response by ABCG1 activity. Free cholesterol accumulation in the endosomal this mechanism doesn’t seem to be controlled by ABCA1 or receptor–deficient background. Together these 2 mechanisms (ie, increased sterol synthesis and decreased sterol efflux) likely help to conserve cellular cholesterol required for increased membrane synthesis during cell proliferation. Additional mechanisms may also be involved, such as changes in membrane lipid composition or organization that lead to enhanced growth factor receptor mediated signaling events.

ABC Transporters and In Vivo Relevance of the Regulation of the Immune System: A Role in Atherosclerosis and Other Inflammatory Diseases

ABC Transporters and Atherosclerosis

Transplantation of bone marrow from Abca1−/− mice into Ldlr−/− or apoE−/− recipients caused an increase in atherosclerosis. However, conflicting data have been reported as deficiency of ABCG1 in bone marrow cells resulted in either a modest increase or decrease in atherosclerosis, and total body ABCG1 overexpression also resulted in either no effect, or protection against atherosclerosis. ABCA1 and ABCG1 have complementary activities in mediating cholesterol efflux, and both transporters are LXR target genes. Therefore, the effects of single transporter deficiency could be masked by the compensatory upregulation of the other transporter as a result of sterol accumulation and LXR activation. Accordingly, in vivo measurements of macrophage reverse cholesterol transport have shown additive effects of ABCA1 and ABCG1, and bone marrow transplantation from mice with combined deficiencies of ABCA1 and ABCG1 into Ldlr-deficient mice resulted in accelerated atherosclerosis. However, in another similar study transplantation of double KO bone marrow into Ldlr−/− mice resulted in no change in atherosclerosis, most likely reflecting an unexpected decrease in VLDL and LDL levels in the double KO bone marrow transplant recipients. The latter study was interpreted as showing a disproportionate increase in atherosclerosis given the degree of VLDL/LDL lowering. We have not observed such decreases in VLDL/LDL in Abca1−/−/Ldlr−/− bone marrow–transplanted mice, and the reasons for this discrepancy will require further studies. Interestingly, the Ldlr knockout recipient mice receiving bone marrow from Abca1−/−/Abcg1−/− donor mice showed massive myocardial foam cell accumulation, as well as foam cell and inflammatory cell accumulation in other tissues such as intestine and spleen, most likely secondary to markedly increased overall and macrophage-specific inflammatory responses illustrating in vivo the relevance of ABCA1 and ABCG1 in dampening inflammation.

ABC Transporters and Inflammatory Diseases

Mice lacking ABCA1 and ABCG1 accumulate inflammatory macrophage foam cells not only in the myocardium but also in various tissues such as in the lung, liver, spleen, or thymus. Several investigators have focused on the lung because mice lacking ABCA1, with low plasma HDL levels, revealed pulmonary lipidosis and progressive disease with chronic inflammation, and this was much more prominent
in mice lacking ABCG1, with normal plasma HDL levels.6,14
The mechanism by which these transporters are involved in
lung disease is thought to be similar to what has been
described for atherosclerosis including enhanced Toll-like
receptor-mediated macrophage inflammation.15,16 Consistent
with this inflammatory phenotype, mice lacking ABCA1 and
ABCG1 featured an inflammatory blood pattern characterized
by increased neutrophils and monocytes.7,13 This suggests
that by dampening inflammation, HDL may have a general
beneficial effect on inflammatory diseases including athero-
sclerosis and perhaps some inflammatory pulmonary dis-
ases. Overexpression of the human apoA-I transgene in mice
resulted in lower cytokine levels and improved survival rates
after LPS challenge compared to wild-type mice.60 whereas
reconstituted HDL has been shown to reduce LPS-induced
inflammation in rabbit, dogs, and humans.61–64 The beneficial
effect of HDL is, at present, thought to be related to the
LPS-neutralizing properties of HDL.41,42 These findings sug-
gest that raising HDL may be a valuable therapeutic approach
for a broad range of inflammatory diseases possibly including
the treatment of septic shock and some inflammatory lung
diseases.

Summary and Future Directions

The studies of mice and cells with genetic deficiencies of
ABCA1 and ABCG1 have helped to clarify the roles of these
transporters in cholesterol and oxysterol efflux from macro-
phage foam cells. These processes have been shown to be
linked to inflammatory and immune responses.10–13,17,18,47,48 In
the future studies of mice with cell-specific knock-outs of
transporters in mice of uniform genetic background may help
to define the importance of the immune system effects in
atherosclerosis and other inflammatory diseases of the lung
and the underlying cellular mechanisms.

Disclosures

None.

Sources of Funding

This work was supported by grants from the NIH (HL54591) and
American Heart Association Scientist Development Grant
095DG2160053 to L. Yvan-Charvet.

References

1. Tall AR. Cholesterol efflux pathways and other potential mechanisms
involved in the athero-protective effect of high density lipoproteins.
2. Rader DJ. Mechanisms of disease: HDL metabolism as a target for novel
3. Tabas I. Consequences and therapeutic implications of macrophage apo-
ptosis in atherosclerosis: the importance of lesion stage and phagocytic
4. Tall AR, Yvan-Charvet L, Terasaka N, Pagler T, Wang N. HDL, ABC
transporters, and cholesterol efflux: implications for the treatment of
5. Wang X, Collins HL, Ranalletta M, Fuki IV, Billheimer JT, Rothblat GH,
Tall AR. Rader DJ. Macrophage ABCA1 and ABCG1, but not SR-BI,
C, Tall AR. Combined deficiency of ABCA1 and ABCG1 promotes foam
7. Out R, Hoekstra M, Habets K, Meurs I, de Waard V, Hildebrand RB,
Wang Y, Chimini G, Kuiper J, Van Berkel TJ, Van Eck M. Combined
deletion of macrophage ABCA1 and ABCG1 leads to massive lipid
accumulation in tissue macrophages and distinct atherosclerosis at rela-
tively low plasma cholesterol levels. Arterioscler Thromb Vasc Biol.
2007;27:258–264.
8. Terasaka N, Wang N, Yvan-Charvet L, Tall AR. High-density lipoprotein
protects macrophages from oxidized low-density lipoprotein-induced
apoptosis by promoting efflux of 7-ketocholesterol via ABCG1. Proc Natl
McCormick SP, Remaley AT, Sviridov D, Chin-Dusting J. High-density
lipoprotein reduces the human monocyte inflammatory response. Arte-
D, Aiello RJ. Increased cholesterol deposition, expression of scavenger
receptors, and response to chemotactic factors in Abca1-deficient mac-
JC, Nakagawa-Toyama Y, Sato SB, Kobayashi T, Shimada Y, Ohmoh-
washita Y, Matsuura F, Shimomura I, Yamashita S. Increased lipid rafts
and accelerated lipopolyasacharide-induced tumor necrosis factor-alpha
secretion in Abca1-deficient macrophages. J Lipid Res. 2007;48:
299–306.
AK, Willingham MC, Hiltbold EM, Mishra N, Maeda N, Parks JS.
Increased cellular free cholesterol in macrophage-specific Abca1
knock-out mice enhances pro-inflammatory response of macrophages.
13. Yvan-Charvet L, Welch C, Pagler TA, Ranalletta M, Lamkanfi M, Han S,
Ishibashi M, Li R, Wang N, Tall AR. Increased inflammatory gene
expression in ABC transporter-deficient macrophages: free cholesterol
accumulation, increased signaling via toll-like receptors, and neutrophil
Frank J, Francione OL, Edwards PA. ABCG1 has a critical role in mediating
cholesterol efflux to HDL and preventing cellular lipid accumu-
15. Baldan A, Gomes AV, Ping P, Edwards PA. Loss of ABCG1 results in
2008;180:4273–4282.
L, Chimini G, Kuiper J, Chapman MJ, Huby T, Van Berkel
TJ, Van Eck M. Coexistence of foam cells and hypocholesterolemia in
mice lacking the ABC transporters A1 and G1. Circ Res. 2008;102:
113–120.
Rinninger F, Jiang XC, Shear CL, Tall AR. Inhibition of cholesteryl ester
transfer protein by torcetrapib modestly increases macrophage cholesterol
Rothblat GH. The roles of different pathways in the release of cholesterol
20. Wang N, Silver DL, Costet P, Tall AR. Specific binding of ApoA-I,
enhanced cholesterol efflux, and altered plasma membrane morphology
21. Oram LF, Lawn RM, Garvin MR, Wade DP. ABCA1 is the cAMP-
ducible apolipoprotein receptor that mediates cholesterol secretion from
22. Vaughan AM, Oram LF. ABCA1 mediates macrophage cholesterol
independent of apolipoprotein interactions. J Lipid Res. 2003;44:
1373–1380.
cassette transporter A1-mediated cellular lipid efflux to apolipoprotein
24. Nandi S, Ma L, Denis M, Kurwatsky J, Li Z, Jiang XC, Zha X. ABCA1-
mediates cholesterol efflux generates microparticles in addition to HDL
through processes governed by membrane rigidity. J Lipid Res.

Role of HDL, ABCA1, and ABCG1 Transporters in Cholesterol Efflux and Immune Responses
Laurent Yvan-Charvet, Nan Wang and Alan R. Tall

Arterioscler Thromb Vasc Biol. 2010;30:139-143; originally published online October 1, 2009; doi: 10.1161/ATVBAHA.108.179283
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2009 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/30/2/139

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org/subscriptions/