Coronary and Aortic Endothelial Function Affected by Feedback Between Adiponectin and Tumor Necrosis Factor α in Type 2 Diabetic Mice

Hanrui Zhang, Yoonjung Park, Cuihua Zhang

Objective—To verify that adiponectin and tumor necrosis factor (TNF)-α reciprocally regulate their expression, thereby synergistically affecting both coronary and aortic endothelial dysfunction in type 2 diabetic mice.

Methods and Results—We examined endothelium-dependent and endothelium-independent vasodilation/vasorelaxation of coronary arterioles and aortas in control mice, diabetic mice (Leprdb), and Leprdb treated with adiponectin or neutralizing antibody to TNF-α (anti–TNF-α). Endothelium-dependent vasodilatation to acetylcholine in both coronary arterioles and aortas was blunted in Leprdb compared with control mice. Endothelium-independent vasodilatation to sodium nitroprusside was comparable. Adiponectin and anti–TNF-α improved acetylcholine-induced vasodilatation of coronary arterioles and aortas in Leprdb without affecting dilator response to sodium nitroprusside. Adiponectin protein expression was significantly reduced, and TNF-α protein expression was significantly greater, in coronary arterioles and aortas of Leprdb compared with control mice. Immunofluorescence staining results indicate that adiponectin was colocalized with endothelial cells. Anti–TNF-α treatment upregulated adiponectin protein expression in Leprdb coronary arterioles and aortas. Adiponectin administration reduced TNF-α protein expression in Leprdb. Although adiponectin receptor 1 protein expression in coronary arterioles and aortas was similar between control and diabetic mice, adiponectin receptor 2 protein expression was significantly reduced in Leprdb. Both adiponectin and anti–TNF-α inhibited 1κBα phosphorylation and nuclear factor κB protein expression in Leprdb, suggesting that adiponectin and TNF-α signaling may converge on nuclear factor κB to reciprocally regulate their expression.

Conclusion—A reciprocal suppression occurs between adiponectin and TNF-α that fundamentally affects the regulation of coronary and aortic endothelial function in type 2 diabetic mice.

Key Words: coronary circulation ■ cytokines ■ reactive oxygen species ■ vasodilation

The growing epidemic of cardiovascular disease in developed countries is closely associated with increased prevalence of obesity and type 2 diabetes mellitus.1,2 Much of the recent work on obesity3 has highlighted the key role of adipose tissue as an endocrine organ that secretes several factors, termed adipokines, that mediate many of the vascular and metabolic complications of obesity. An adverse adipokine expression profile, characterized by diminished production of protective factors (eg, adiponectin) and increased detrimental adipokines (eg, tumor necrosis factor [TNF]-α), has been suggested in obese and type 2 diabetic patients.4–7

Adiponectin, also known as ACRP30 or AdipoQ, is an adipokine that is secreted from adipocytes.5 Adiponectin plays an important role in the regulation of glucose and lipid metabolism.9 Paradoxically, the serum concentration of adiponectin is decreased in obese and type 2 diabetic patients despite increased adiposity.10 In contrast, plasma TNF-α levels are elevated in such patients, suggesting that there may be an imbalance between the production of adiponectin and TNF-α in obesity.11 In 3T3-L1 adipocytes, decreased adiponectin mRNA levels by TNF-α were partially recovered by treatment with a c-JUN N-terminal kinase inhibitor, suggesting that the c-JUN N-terminal kinase signaling pathway, activated by TNF-α, is involved in the regulation of adiponectin expression in adipocytes.7 Another study12 shows that adiponectin decreases leptin-induced TNF-α expression by murine macrophages through suppression of phosphorylation of extracellular signal–regulated kinase 1/2 and p38 mitogen-activated protein kinase pathways. Thus, there may be a reciprocal association between adiponectin and TNF-α.

Adipose-derived adipokines actively participate in the regulation of vascular function (ie, TNF-α contributes to the impairment of coronary and aortic vascular function in type 2 diabetic mice).13,14 However, the following issues have not been resolved: (1) the role of adiponectin in regulating coronary and aortic vascular function in type 2 diabetic mice

Received on: May 3, 2010; final version accepted on: August 19, 2010.
From the Departments of Internal Medicine, Medical Pharmacology and Physiology, and Nutritional Sciences, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Mo.
Correspondence to Cuihua Zhang, MD, PhD, Departments of Internal Medicine, Medical Pharmacology and Physiology, and Nutritional Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211. E-mail ZhangCu@missouri.edu
© 2010 American Heart Association, Inc.

Arterioscler Thromb Vasc Biol is available at http://atvb.ahajournals.org
DOI: 10.1161/ATVBAHA.110.214700

2156
and (2) whether there is a reciprocal association between adiponectin and TNF-α. Thus, the goal of this study was to examine the nature and mechanisms of putative reciprocal suppressive effects between adiponectin and TNF-α in coronary microvessels and aortas in type 2 diabetic mice and how this reciprocal regulation can contribute to the pathogenesis of diabetes-associated vascular dysfunction.

Methods

Animals

The procedures followed were in accordance with approved guidelines by the Animal Care Committee at the University of Missouri. Heterozygote control mice (m Lepr^{db}) (background strain: C57BLKS/J), and Lepr^{db} null for TNF-α (dbTNF^{−/−}/dbTNF^{−/−}) (background strain: C57BL/6J) were purchased from The Jackson Laboratory, Bar Harbor, Me; and adiponectin knockout (APN^{−/−}) mice (background strain: C57BL/6J) were obtained from a laboratory. All of these mice were maintained on a normal breeding of Lepr^{db} and TNF^{−/−}/dbTNF^{−/−} mice (background strain: C57BLKS/J), and Lepr^{db} null for TNF-α (dbTNF^{−/−}/dbTNF^{−/−}) (background strain: C57BL/6J) were purchased from The Jackson Laboratory, Bar Harbor, Me; and adiponectin knockout (APN^{−/−}) mice (background strain: C57BL/6J) were obtained from a laboratory. All of these mice were maintained on a normal

Treatment With Adiponectin, TNF-α Neutralization, or Recombinant TNF-α

At the age of 12 to 16 weeks, Lepr^{db} mice were treated with the recombinant murine globular adiponectin, 30 μg/d SC twice daily for 10 days. The neutralizing antibody to TNF-α is 2E2 monoclonal antibody. Lepr^{db} mice received the neutralizing anti–TNF-α, 0.625 mg/mL per kilogram per day IP for 10 days. m Lepr^{db} received murine recombinant TNF-α, 10 μg/d IP for 3 days.

Functional Assessment of Isolated Coronary Arterioles

The techniques for identification and isolation of coronary microvessels were described in detail previously. Coronary arterioles, 4 to 6 vessels per sample, or aortas were homogenized in lysis buffer (Cellytic MT Mammalian Tissue Lysis/Extraction Reagent). Protein concentrations were assessed with a kit (BCA Protein Assay Kit), and samples were separated by SDS-PAGE and transferred to polyvinylidene fluoride membranes. The levels of TNF-α, IsEβ, phosphorylated IsEβ, adiponectin, adiponectin receptor 1 (AdipoR1), adiponectin receptor 2 (AdipoR2), and nuclear factor (NF)-κB were determined. Signals were visualized by enhanced chemiluminescence and quantified by film imaging (Fuji) software. Housekeeping gene β-actin was used as the loading control, and we validated that no significant variation was detected between control and experimental groups and across samples. The relative amounts of protein expression in various groups were quantified and normalized to those of the corresponding m Lepr^{db} control, which were set at 1.0.

Immunofluorescence Staining

Immunohistochemistry was used to identify and localize proteins in sections of vessels or myocardial tissue. Hearts or aortas were embedded in optimal cutting temperature and sectioned at 5 μm. Slides were incubated with blocking solution (10% donkey serum in PBS). Primary antibodies for adiponectin (goat polyclonal), endothelial cell marker, von Willebrand factor (rabbit polyclonal), smooth muscle α-actin (rabbit polyclonal), or fibroblast (rat monoclonal) were used for sequential double immunofluorescence staining. Secondary fluorescent antibodies were either fluorescein isothiocyanate or Texas red conjugated. For negative controls, primary antibodies were replaced with IgG isotype controls at the same concentration. Sections were finally mounted in an antifading agent (Slowfade gold with 4′,6-diamidino-2-phenylindole). Slides were observed and analyzed using a fluorescence microscope with a ×40 objective (model IX81).

Data Analysis

All data are presented as mean±SEM except as specifically stated. Statistical comparisons under various treatments were performed with 1-way ANOVA, and intergroup differences were tested with a lysergic acid diethylamide inequality. P<0.05 was considered significant. The supplemental data (available online at http://atvb.ahajournals.org) provide further details.

Results

Effects of Adiponectin and Anti–TNF-α on Body Weight, Abdominal Girth, Blood Glucose, and Insulin/Insulin Resistance

Body weight and abdominal girth were greater in Lepr^{db} versus m Lepr^{db}. Nonfasting blood glucose level, plasma insulin level, and homeostasis model assessment of insulin resistance (HOMA-IR) were elevated in Lepr^{db}. Adiponectin and anti–TNF-α treatment did not affect the described parameters in Lepr^{db} (supplemental Table I).

Role of Adiponectin in Type 2 Diabetes–Induced Coronary Endothelial Dysfunction

Vasodilation to endothelium-dependent vasodilator ACh was impaired in coronary arteries of Lepr^{db} (Figure 1A). Conversely, adiponectin partially restored ACh-induced vasodilation in Lepr^{db} (Figure 1A). Moreover, flow-induced vasodilation was diminished in coronary arteries of Lepr^{db} but was rescued by adiponectin (Figure 1B). In contrast, SNP-induced endothelium-independent vasodilation was similar.
among m Lepr^{db}, Lepr^{db}, and Lepr^{db} treated with adiponectin (Figure 1C).

Role of Adiponectin and TNF-α in Type 2 Diabetes–Induced Aortic Endothelial Dysfunction

Endothelium-dependent vasorelaxation in response to ACh was significantly impaired in aortas of Lepr^{db}. Adiponectin and anti–TNF-α partially restored impaired vasorelaxation (Figure 2A and C and supplemental Table II). Endothelium-independent vasorelaxation to SNP was not statistically different among any of the groups (Figure 2B and D). Recombinant TNF-α treatment impaired aortic function of m Lepr^{db} (Figure 2C and supplemental Table II).

Reciprocal Association Between Adiponectin and TNF-α in Coronary Arterioles and Aortas of Diabetic Mice

Protein expressions of adiponectin and TNF-α from isolated coronary arterioles and aortas were analyzed in m Lepr^{db}, Lepr^{db}, and Lepr^{db} mice treated with anti–TNF-α or adi-

![Figure 1](image1.png)

Figure 1. Role of adiponectin in improving coronary arteriolar endothelium-dependent and endothelium-independent vasodilation in type 2 diabetic mice. A and B, ACh-induced vasodilatation and flow-induced vasodilatation (FID) were blunted in coronary arterioles of Lepr^{db} and adiponectin partially restored NO-mediated coronary arteriolar dilation to ACh and FID in Lepr^{db}; C, Endothelium-independent vasodilatation of coronary arterioles to SNP was not different among m Lepr^{db}, Lepr^{db}, and Lepr^{db} plus adiponectin. Data are shown as mean±SEM (n=6 mice). *P<0.05 vs m Lepr^{db} and #P<0.05 vs Lepr^{db}.

![Figure 2](image2.png)

Figure 2. Role of adiponectin and TNF-α in aortic endothelium–dependent and aortic endothelium–independent vasorelaxation in type 2 diabetic mice. A and B, Endothelium-dependent vasorelaxation in response to ACh was significantly impaired in aortas of Lepr^{db}. Adiponectin partially restored impaired vasorelaxation. Endothelium-independent vasorelaxation of aortic rings to SNP was similar among m Lepr^{db}, Lepr^{db}, and Lepr^{db} + adiponectin. C and D, Anti–TNF-α (anti-TNF) improved endothelium-dependent vasorelaxation in Lepr^{db}, but recombinant TNF-α (TNF) treatment impaired ACh-induced vasorelaxation in m Lepr^{db}. SNP-induced vasorelaxation of aortic rings was not different among m Lepr^{db}, Lepr^{db}, Lepr^{db} + anti-TNF, and m Lepr^{db} + TNF. Data are shown as mean±SEM (n=4 to 10 mice). *P<0.05 vs m Lepr^{db} and #P<0.05 vs Lepr^{db}.**
Adiponectin. Western blot analysis (Figure 3) revealed that anti–TNF-α markedly increased adiponectin expression, whereas adiponectin reduced TNF-α expression in both coronary arterioles and aortas of diabetic mice. mRNA expression of TNF-α was consistent with protein expression, but mRNA expression of adiponectin showed no difference among groups (supplemental Figure I).

Cellular Source of Adiponectin Expression in Type 2 Diabetes

Immunostaining showed that adiponectin protein expression (red) was present in endothelial cells but not in vascular smooth muscle cells in both coronary microvessels (Figure 4) and aortas (supplemental Figure II). Adiponectin staining was absent in APN−/− mice, which validated the specificity of staining (supplemental Figure III).

AdipoR Expression in Coronary Arterioles and Aortas of Diabetic Mice

AdipoR1 protein expression was not significantly different between m Leprdb and Leprdb in both coronary arterioles and aortas (Figure 5A and B), whereas AdipoR2 protein expression was greatly decreased in Leprdb coronary arterioles and aortas (Figure 5C and D).

Adiponectin and TNF-α Signaling Converged on NFκB to Reciprocally Regulate Their Expression

In both coronary arterioles and aortas, IkBα (inhibitor of NFκB) expression was decreased in Leprdb (Figure 6A and D), whereas phosphorylated IkBα was greatly elevated (Figure 6B and E). Both adiponectin and anti–TNF-α inhibited IkBα phosphorylation (Figure 6B and E) without affecting total IkBα expression (Figure 6A and D). NFκB p65 protein expression was significantly higher in Leprdb. Adiponectin and anti–TNF-α decreased NFκB protein expression (Figure 6C and F).

Discussion

To our knowledge, this is the first in vivo evidence for a reciprocal regulation occurring between adiponectin and TNF-α in microcirculation and macrocirculation in type 2 diabetic mice. The circulatory protein adiponectin protects against diabetes-induced coronary arteriolar and aortic vascular dysfunction; this protection involves, at least in part, the downregulation of TNF-α. Furthermore, inhibition of TNF-α is associated with upregulation of adiponectin in microvessels and macrovessels. Taken together, these data suggest that the reciprocal suppression of adiponectin and TNF-α functionally contributes to the regulation of diabetes-associated vascular dysfunction.

Vascular Effects of TNF-α and Adiponectin in Type 2 Diabetes

TNF-α and adiponectin are important adipose-derived factors. TNF-α is a key proinflammatory cytokine mainly secreted by nonfat cells in adipose tissue. It was previously demonstrated that TNF-α contributed to endothelial dysfunc-
Adiponectin in type 2 diabetes by inducing activation of NAD(P)H oxidase and production of reactive oxygen species in both aortas and coronary microcirculation.13,14,18 Adiponectin is a relatively abundant plasma protein specifically secreted by adipocytes. Adiponectin exists in the circulation as a full-length protein and as a putative proteolytic cleavage fragment consisting of the globular C-terminal domain (gAd), which may have enhanced potency.19,20 The biological activities of gAd are controversial because of its proinflammatory effects in cardiac fibroblasts,21 but it appears that globular adiponectin is significantly more potent in reversing insulin resistance and exerts vascular protective effects by enhancing NO availability in endothelial cells.22,23 gAd incubation, 2 mg/mL, for 2 hours improved endothelium-dependent relaxation and total production of NO as a result of enhanced eNOS activity.24 In Leprdb mice, serum adiponectin levels are significantly reduced compared with those in m Lepr db (supplemental Table I). By treating the mice with recombinant globular adiponectin, we found that long-term adiponectin administration rescues both coronary microvascular and aortic macrovascular dysfunction in type 2 diabetic mice (Figures 1 and 2). This vasoprotection by adiponectin may be partly through the direct vascular effects of stimulating endothelial NO production and ameliorating oxidative stress based on previous studies using APN/H11002 mice. In APN/H11002, ACh-induced vasodilation in aortas was impaired, accompanied by increased superoxide and peroxynitrite production. eNOS expression was conserved in APN/H11002 mice, but NO production and eNOS phosphorylation were significantly reduced.25 Adiponectin also causes endothelium-independent vasodilation by opening voltage-gated K channels.26 However, the endothelium-independent vasodilatory effects of adiponectin do not represent a common pathway for the regulation of vascular dysfunction in type 2 diabetic mice because SNP-induced vasodilation is similar among m Leprdb, untreated diabetic mice, diabetic mice treated with adiponectin, or the neutralizing antibody to TNFα (anti–TNF-α) (Figure 1C and Figure 2B and D).

Figure 4. Colocalization and regulation of adiponectin expression in coronary microvessels. Dual fluorescence combining adiponectin with markers for endothelial cells (von Willebrand factor [vWF], vascular smooth muscle [α-actin], and fibroblast marker) with the use of specific primary antibodies followed by fluorescence-labeled secondary antibodies. A through C, Dual labeling of adiponectin (red) and vWF (green) in control mouse heart tissue. D through F, Dual labeling of adiponectin (red) and vWF (green) in Leprdb mouse heart tissue. G through I, Dual labeling of adiponectin (red) and vWF (green) in dbTNF/-/dbTNF/- heart tissue. White arrows in A, D, G, J, and M indicate the staining of adiponectin. Grey arrows in B, E, and H indicate the staining of endothelial cells. Blue arrows in C, F, and I indicate the colocalization of adiponectin and endothelial cells (yellow). J through L, Dual labeling of adiponectin (red) and α-actin (green) in control mouse heart tissue. The pink arrows in K and L show the specific α-actin staining with absence of adiponectin staining. M through Q, Dual labeling of adiponectin (red) and marker of fibroblast in Leprdb mice heart tissue. The brown arrows in N and O indicate the specific fibroblast staining with absence of adiponectin staining. P and Q, Negative control; the purple arrows show an absence of staining in vessels with isotype control IgG and without primary antibodies. R, Nuclear staining with 4′,6-diamidino-2-phenylindole (blue) in m Leprdb heart tissue. Magnification ×40. Data are representative of 4 separate experiments.

Figure 5. Protein expression of AdipoRs in coronary arterioles and aortas. A and B, AdipoR1 protein expression was not significantly different between m Leprdb and Leprdb in both coronary arterioles and aortas. C and D, AdipoR2 protein expression was remarkably decreased in Leprdb coronary arterioles and aortas. Data are shown as mean±SEM (n=4 separate experiments). *P<0.05 vs m Leprdb.

Reciprocal Regulation Between Adiponectin and TNF-α
The reciprocal regulation between adiponectin and TNF-α has been studied in various tissues and cells. Adiponectin
suppresses lipopolysaccharide-stimulated TNF-α production in cultured cardiac myocytes and macrophages,7,27,28 whereas adiponectin deficiency leads to an increase in circulating TNF-α in mouse models.29 TNF-α also has a regulatory effect on adiponectin. By incubating human visceral adipose tissue with TNF-α in vitro, the mRNA and protein expressions of adiponectin were significantly reduced.30 However, there are no in vivo studies examining the reciprocal association between adiponectin and TNF-α in the vasculature. Also, the role of this reciprocal regulation in the pathogenesis of diabetes-induced microvascular and macrovascular dysfunction has not been investigated. Our results suggest that anti–TNF-α treatment upregulates adiponectin expression; however, adiponectin treatment inhibits TNF-α expression in coronary arterioles and aortas of diabetic mice (Figure 3). Thus, adiponectin and TNF-α not only exert vascular effects independently by affecting vascular NO bioavailability and oxidative stress13,14,25 but also act interactively to participate in the complex regulation of their combined vascular expression in type 2 diabetes.

Adiponectin and AdipoR Expression in Coronary Microvessels and Aortas

Two receptor forms have been cloned for adiponectin, and the receptors have unique distributions and affinities for the molecular forms of adiponectin. AdipoR1 is a high-affinity receptor for gAd with low affinity for full-length protein, and AdipoR2 has intermediate affinity for both forms of adiponectin.3 Interestingly, AdipoR1 is abundantly expressed in skeletal muscle and moderately expressed in other tissues, whereas AdipoR2 is predominantly expressed in the liver.20,31,32 Aortic endothelial cells express both adiponectin isoforms but appear to preferentially express mRNA of AdipoR1.33 In human umbilical vein endothelial cells, globular adiponectin-induced phosphorylation of eNOS at serine 1177 and NO production22 were abrogated when expressions of AdipoR1 and AdipoR2 were simultaneously suppressed.34 Overexpression of AdipoR1 and AdipoR2 in human umbilical vein endothelial cells significantly enhanced the suppressive effect of an otherwise symptomless dose of globular adiponectin on TNF-α–induced intercellular adhesion molecule 1 expression and NF-κB activation, suggesting the involvement of AdipoRs in adiponectin-induced vasoprotection against the proinflammatory effects of TNF-α.35 To our knowledge, this study provides the first in vivo documentation that AdipoR1 expression is similar between control and diabetic mice but AdipoR2 expression is significantly reduced in both coronary arterioles and aortas in diabetic mice (Figure 5). Furthermore, AdipoR2 expression in aortas of diabetic mice is only 25% of that in aortas of m Leprdb, but AdipoR2 expression in coronary arterioles of diabetic mice is approximately 47% of that in coronary vessels of m Leprdb. The mechanisms accounting for the reduced AdipoR2, but not AdipoR1, expression in diabetic mice vasculature, and the possible differences in AdipoR2 expression between vascular beds, remain unknown. However, our results suggest that, in addition to the reduced circulating level of adiponectin in diabetic mice (supplemental Table I), suppressed AdipoR2
expression and the receptor-mediated response may also contribute to the impaired adiponectin-mediated vascular protective effects. Moreover, an increased serum TNF-α level (supplemental Table 1) and TNF-α receptor 1 expression in diabetic mice synergistically exacerbated the detrimental effects of TNF-α on vascular function. Thus, in addition to modulating adiponectin and TNF-α production and circulatory levels, treatments mediating AdipoR2 and TNF-α receptor 1 expression may have potential therapeutic applications for vascular complications associated with the metabolic syndrome and diabetes.

Adiponectin and TNF-α Converge on NFκB to Regulate Their Reciprocal Suppression

Adiponectin-mediated suppression of TNF-α expression and inflammatory responses by the inhibition of NFκB signaling functionally contribute to the beneficial actions of adiponectin. Full-length protein suppresses TNF-α-mediated inflammatory changes in human aortic endothelial cells by blocking IκBα phosphorylation and NFκB activation without affecting TNF-α-activated IκBα degradation. This suppression was reversed by an IκBα kinase-β inhibitor, IMD-0354. These data suggest that NFκB signaling may act as a pivot for a reciprocal association between adiponectin and TNF-α.

Our studies demonstrate this pivotal role of NFκB signaling in the reciprocal association between adiponectin and TNF-α in both coronary microcirculation and aortas in the type 2 diabetic murine model. The results reveal that adiponectin and anti–TNF-α treatment remarkably inhibit IκBα phosphorylation and NFκB expression in coronary arterioles and aortas of LeprΔdb without affecting total IκBα expression (Figure 6). Therefore, adiponectin and TNF-α may converge on NFκB signaling to reciprocally regulate their expression and function in coronary microvessels and aortas in type 2 diabetic mice. In conclusion, although TNF-α is a key adipokine promoting endothelial dysfunction, adiponectin may prevent vascular injury. This paradigm for adipokine regulation of endothelial function may have important therapeutic implications in diabetes-associated vascular complications.

Acknowledgments

We thank Dr William P. Fay, MD, for providing the APNΔ−/− mice (background strain: C57BL/6J).

Sources of Funding

This study was supported by Clinical Biodetective Training Grant R90DK70105 (Dr H. Zhang) and grants RO1-HL077566 and RO1-HL085119 (Dr C. Zhang) from the National Institutes of Health; Atorvastatin Research Award 2004–37 from Pfizer (Dr C. Zhang); and grant SDG110350047A from the American Heart Association (Dr C. Zhang).

Disclosures

None.
Coronary and Aortic Endothelial Function Affected by Feedback Between Adiponectin and Tumor Necrosis Factor α in Type 2 Diabetic Mice
Hanrui Zhang, Yoonjung Park and Cuihua Zhang

Arterioscler Thromb Vasc Biol. 2010;30:2156-2163; originally published online September 2, 2010;
doi: 10.1161/ATVBAHA.110.214700

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/30/11/2156

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2010/09/02/ATVBAHA.110.214700.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/
Supplement Material

Supplemental Methods

Animal Models

The procedures followed were in accordance with approved guidelines set by the Laboratory Animal Care Committee at the University of Missouri. Heterozygote control mice (m Leprdb) (Background Strain: C57BLKS/J), homozygote type 2 diabetic mice (Leprdb) (Background Strain: C57BLKS/J) and Leprdb null for TNF\textalpha (dbTNF-/dbTNF-) (Background Strain: C57BL/6J) were purchased from Jackson Laboratory and Adiponectin knockout mice (APN+/-) (Background Strain: C57BL/6J) were from Dr. William P. Fay’ laboratory. All of these mice were maintained on a normal rodent chow diet. Male, 20-35g m Leprdb and APN+/-, 40-60 g Leprdb, and dbTNF-/dbTNF- mice of either sex were used in this study. The cross (dbTNF-/dbTNF-) of Leprdb with TNF\textalpha knockout mice is heterozygous for Leprdb and homozygous for TNF knockout mice (TNF-/-). These dbTNF-/dbTNF- mice show the phenotypes of hyperglycemia and obesity, the diabetic phenotype that is consistent with the penetrance of the leptin receptor mutation. The obese mice from the second round of breeding of Leprdb and TNF-/- were used in experimentation.1

Measurement of Glycemic Status

Non-fasting blood glucose levels were measured by OneTouch Ultramini glucometer (LifeScan). Non-fasting plasma insulin level was measured with the use of a commercial kit, Insulin (Mouse) Ultrasensitive EIA (ALPCO Diagnostics) by spectrophotometry (Multiskan MCC, Fisher Scientific) at 450 nm. Insulin resistance was determined by the homeostasis model assessment; HOMA-IR using the following formula:2

\[
\text{HOMA-IR} = \frac{\text{(non-fasting glucose [mmol/L])} \times \text{(non-fasting insulin [mU/L])}}{22.5}.
\]
Treatment with Adiponectin, TNFα Neutralization, or Recombinant TNFα

At 12-16 weeks of age, Lepr^{db} mice were treated with the recombinant murine globular adiponectin (30 µg/day, s.c. twice daily for 10 days, PeProTech). The neutralizing antibody to TNFα is 2E2 monoclonal antibody (2E2 MAb. 94021402, NCI Biological Resources Branch). The Lepr^{db} mice received the neutralizing anti-TNFα (anti-TNF, 0.625 mg/ml/kg/day, i.p. for 10 days).³ m Lepr^{db} control mice received murine recombinant TNFα (10 µg/day, i.p. for 3 days, R&D). After treatment, the animals were anesthetized with sodium pentobarbital (50 mg/kg, i.p.). Blood was obtained from vena cava, heart and aorta were excised for functional study preparation.

Functional Assessment of Isolated Coronary Arterioles

The techniques for identification and isolation of coronary microvessels were described in detail previously.³ Coronary arterioles (40 to 100 µm in diameter) from mouse heart were carefully dissected for in vitro study. To determine whether adiponectin plays a role in vascular dysfunction in type 2 diabetes, vasodilation to endothelium-dependent vasodilator acetylcholine (ACh, 0.1 nmol/L to 10 µmol/L), endothelium-independent vasodilator sodium nitroprusside (SNP, 0.1 nmol/L to 10 µmol/L), or flow-induced dilation (NO-mediated, endothelial-dependent, but agonist-independent; 4 to 60 cm H₂O) were assessed in isolated coronary arterioles in m Lepr^{db}, Lepr^{db} and Lepr^{db} mice treated with adiponectin. At the end of each experiment, the vessel was relaxed with 100 µmol/L SNP to obtain its maximal diameter at 60 cm H₂O intraluminal pressure. All diameter changes in response to agonists were normalized to the vasodilation in response to 100 µmol/L SNP and expressed as a percentage of maximal dilation.

Functional Assessment of Murine Aortas
After anesthesia, aortas were rapidly excised and rinsed in cold physiological saline solution (PSS) and loose fat and connective tissue were removed. PSS contains 118.99 mM NaCl, 4.69 mM KCl, 1.18 mM KH₂PO₄, 1.17 mM MgSO₄•7H₂O, 2.50 mM CaCl₂•2H₂O, 14.9 mM NaHCO₃, 5.5 mM D-Glucose, and 0.03 mM EDTA. Aortas were maintained in PSS in 95% O₂-5% CO₂ at 37 ºC for the remainder of the experiment. 2 mm of aortic rings were isometrically mounted in a myograph (model 610M, DMT, Denmark). After an equilibration period of 45 min, during which an optimal passive tension (15 mN) was applied, aortic rings were precontracted with 1 µmol/L phenylephrine (PE). Dose-response curve was obtained by cumulative addition of ACh (1 nmol/L to 10 µmol/L) and SNP (1 nmol/L to 10 µmol/L). Relaxation at each concentration was measured and expressed as the percentage of force generated in response to PE. The contribution of NO in vasorelaxation was assessed by incubating the vessels with NOS (eNOS and neuronal NOS) inhibitor N^G-nitro-L-arginine methyl ester (L-NAME; 100 µmol/L for 20 min).

Protein Expression by Western Blot Analyses

Coronary arterioles (4-6 vessels per sample) or aortas were homogenized in lysis buffer (Cellytic™ MT Mammalian Tissue Lysis/Extraction Reagent, Sigma). Protein concentrations were assessed with a BCA™ Protein Assay Kit (Pierce) and samples were separated by SDS-PAGE and transferred to PVDF membranes. TNFα, IκBα, phospho-IκBα (Santa Cruz), Adiponectin (R&D), AdipoR1 and AdipoR2 (Alpha Diagnostics), and NFκB (Abcam) were determined. Horseradish peroxidase-conjugated secondary antibodies were used. Signals were visualized by enhanced chemiluminescence (ECL, Santa-Cruz), scanned with a Fuji LAS3000 densitometer and quantified by Multigauge software (Fujifilm). Housekeeping gene β-actin was used as the loading control and we validated that no significant variation was detected between
control and experimental groups as well as across samples. The relative amounts of protein expression in various groups were quantified and normalized to those of the corresponding mLepr^{db} control, which were set to a value of 1.0.

Immunofluorescence Staining

Immunohistochemistry was used to identify and localize proteins in sections of vessels or myocardial tissue. Hearts or aortas were embedded in OCT and sectioned at 5 µm. Slides were incubated with blocking solution (10% donkey serum in PBS). Primary antibodies for adiponectin (goat polyclonal, R&D, AF1119), and endothelial cell marker, von Willebrand factor (rabbit polyclonal, Abcam), or smooth muscle α-actin (rabbit polyclonal, Abcam) or fibroblast (rat monoclonal, Novus Biologicals) were used for sequential double immunofluorescence staining. Secondary fluorescent antibodies were either FITC or Texas Red conjugated. For negative controls, primary antibodies were replaced with IgG-isotype controls at the same concentration. Sections were finally mounted in an anti-fading agent (Slowfade gold with DAPI, Invitrogen). Slides were observed and analyzed using a fluorescence microscope with a 40× objective (IX81, Olympus).

mRNA Expression of Adiponectin and TNFα by Real-time Polymerase Chain Reaction

We have used a quantitative real time RT-PCR technique to analyze mRNA expression of adiponectin and TNFα in mouse aortas, using the iCycler iQ5 Real-Time PCR Detection System (BioRad). Total RNA was isolated with RNeasy Fibrous Tissue Mini RNA Isolation Kit (Qiagen) and was reverse transcribed using Superscript III RT (Invitrogen). Primers were designed with the use of Primer3 (v.0.4.0). Efficiency of the PCR reaction was determined using dilution series of a standard vascular sample. Quantification was performed using the 2^{-ΔΔCT} method as reported. The mRNA levels of the various genes tested were normalized to
housekeeping gene β-actin, used as an internal control in all experiments. Results are presented as fold change of transcripts for adiponectin or TNFα in Leprdb mice and Leprdb mice treated with adiponectin or anti-TNFα, compared with the mean transcript abundance in aortas of m Leprdb mice (defined as 1.0).

Serum Concentration of TNFα and Adiponectin

Serum TNFα level was measured with the use of a commercial kit, BIO-Plex cytokine assay (Bio-Rad Laboratories, Hercules, Calif) as previously reported.3 TNFα concentrations were automatically calculated by BIO-Plex Manager software with the use of a standard curve derived from a recombinant cytokine standard. Values were expressed as pictograms per milliliter. Serum adiponectin level was determined by a commercially available ELISA kit (ALPCO). Values were expressed as micrograms per milliliter.

Data Analysis

All data were presented as mean±SEM except as specifically stated. Statistical comparisons under various treatments were performed with one-way ANOVA, and intergroup differences were tested with LSD inequality. BioDataFit 1.02 was used for dose-response analysis. Significance was accepted at P < 0.05.
Supplemental Results

Table I. Baseline Plasma Parameters

<table>
<thead>
<tr>
<th></th>
<th>m Lepr<sup>db</sup></th>
<th>Lepr<sup>db</sup></th>
<th>Lepr<sup>db</sup>+adiponectin</th>
<th>Lepr<sup>db</sup>+anti-TNF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Weight, g</td>
<td>25.54±0.62</td>
<td>45.18±0.47*</td>
<td>45.11±0.89*</td>
<td>45.03±1.08*</td>
</tr>
<tr>
<td>Abdominal Girth, cm</td>
<td>8.56±0.12</td>
<td>12.56±0.30*</td>
<td>12.75±0.33*</td>
<td>12.64±0.27*</td>
</tr>
<tr>
<td>Blood Glucose, mg/dl (non-Fasting)</td>
<td>156.25±8.06</td>
<td>529.63±11.58*</td>
<td>515.75±18.15*</td>
<td>523.38±20.83*</td>
</tr>
<tr>
<td>Insulin, ng/ml (non-Fasting)</td>
<td>2.83±0.77</td>
<td>6.46±0.70*</td>
<td>6.93±0.24*</td>
<td>7.03±0.11*</td>
</tr>
<tr>
<td>HOMA</td>
<td>29.78±7.66</td>
<td>234.31±22.39*</td>
<td>250.47±18.34*</td>
<td>244.59±9.32*</td>
</tr>
<tr>
<td>Adiponectin (µg/ml)</td>
<td>9.54±0.89</td>
<td>5.43±0.37*</td>
<td>8.88±0.85#</td>
<td>5.24±0.29*</td>
</tr>
<tr>
<td>TNF<sub>α</sub> (pg/ml)</td>
<td>9.01±1.43</td>
<td>33.51±2.92*</td>
<td>28.83±2.82*</td>
<td>10.49±1.56#</td>
</tr>
</tbody>
</table>

Table II. – Log EC₅₀ and E_{max} Values for ACh Concentration-Response Curves

<table>
<thead>
<tr>
<th></th>
<th>-Log EC<sub>50</sub></th>
<th>E<sub>max</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>m Lepr<sup>db</sup></td>
<td>7.71±0.06</td>
<td>87.12±2.42</td>
</tr>
<tr>
<td>Lepr<sup>db</sup></td>
<td>7.10±0.10*</td>
<td>73.31±1.74*</td>
</tr>
<tr>
<td>Lepr<sup>db</sup> + adiponectin</td>
<td>7.32±0.05*</td>
<td>83.13±1.62*</td>
</tr>
<tr>
<td>Lepr<sup>db</sup> + anti-TNF</td>
<td>7.21±0.04*</td>
<td>83.04±1.79*</td>
</tr>
<tr>
<td>m Lepr<sup>db</sup> + TNF</td>
<td>7.70±0.09#</td>
<td>78.12±1.24*</td>
</tr>
</tbody>
</table>

Table III. Primer Sequences Used for Real-Time RT-PCR.

<table>
<thead>
<tr>
<th>Name</th>
<th>Accession #</th>
<th>Sequence</th>
<th>Target Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF<sub>α</sub> s</td>
<td>NM_013693</td>
<td>GTCCCCAAAGGGATGAGAAG</td>
<td>134</td>
</tr>
<tr>
<td>TNF<sub>α</sub> as</td>
<td>NM_013693</td>
<td>CACTTGGTGTTTGCTACGA</td>
<td>134</td>
</tr>
<tr>
<td>Adiponectin s</td>
<td>NM_009605</td>
<td>AGGTTGGATGGCAGGC</td>
<td>129</td>
</tr>
<tr>
<td>Adiponectin as</td>
<td>NM_009605</td>
<td>GTCTCACCCTTAGGACCAAGA</td>
<td>129</td>
</tr>
<tr>
<td>β-actin s</td>
<td>NM_007393</td>
<td>GCTCTTTCCAGCCTCTCTT</td>
<td>168</td>
</tr>
<tr>
<td>β -actin as</td>
<td>NM_007393</td>
<td>CTTCTGCATCCTGTCAGCA</td>
<td>168</td>
</tr>
</tbody>
</table>
Figure I.

A

![Graph showing mRNA expression of TNF-α in aorta.]

B

![Graph showing mRNA expression of adiponectin in aorta.]

Figure II.

![Images showing immunofluorescence of Adiponectin, vWF, and Merge.]
Figure III.

Adiponectin 2

Merge

Adiponectin 2

Merge

Figure IV.

Table I. Baseline Plasma Parameters

Body weight and abdominal girth were higher in Leprdb vs. m Leprdb. Non-fasting blood glucose level, plasma insulin level and HOMA-IR were elevated in Leprdb. Adiponectin or anti-TNF\(\alpha\) treatment did not affect the above parameters in Leprdb. Serum adiponectin level was reduced in Leprdb, while TNF\(\alpha\) level was increased in Leprdb. Globular adiponectin treatment increased serum adiponectin level without significantly affecting serum TNF\(\alpha\) level. Anti-TNF\(\alpha\) (anti-TNF) treatment diminished serum TNF\(\alpha\) level without changing serum adiponectin level. Data were shown as mean±SEM. n=4-8 mice. *P<0.05 vs. m Leprdb, #p<0.05 vs. Leprdb.
Table II. –Log EC₅₀ and Eₘₐₓ Values for ACh Concentration-Response Curves

The –log EC₅₀ was significantly lower in Lepr⁹. Lepr⁹ treated with adiponectin or anti-TNFα (anti-TNF) and m Lepr⁹ treated with recombinant TNFα (TNF) showed no changes in –log EC₅₀. The Eₘₐₓ for ACh-induced vasorelaxation was decreased in Lepr⁹. Adiponectin and anti-TNFα treatment increased Eₘₐₓ in Lepr⁹. m Lepr⁹ treated with recombinant TNFα showed lower Eₘₐₓ compared with that of m Lepr⁹. Data were shown as mean±SEM. n=4-10 mice. *P<0.05 vs. m Lepr⁹, #p<0.05 vs. Lepr⁹.

Table III. Primer Sequences Used for Real-Time RT-PCR.

Figure Legends

Figure I. A, mRNA expression of TNFα was increased in aortas of Lepr⁹. Both adiponectin and anti-TNFα treatment reduced TNFα mRNA expression. B, mRNA expression of adiponectin was not statistically different among m Lepr⁹, Lepr⁹, and Lepr⁹ treated with either adiponectin or anti-TNFα. Data were shown as mean±SEM. n=4 separate experiments. *p<0.05 vs. m Lepr⁹; #p<0.05 vs. Lepr⁹.

Figure II. Dual fluorescence combining adiponectin with markers for endothelial cells [von Willebrand factor (vWF)] and vascular smooth muscle (α-actin) with the use of specific primary antibodies followed by fluorescent-labeled secondary antibodies. A, B and C, dual labeling of adiponectin (red) and vWF (green) in control mouse aorta. E, F and G, dual labeling of adiponectin (red) and vWF (green) in Lepr⁹ mouse aorta. I, J and K dual labeling of adiponectin (red) and vWF (green) in dbTNF⁻/dbTNF⁻ aorta. The blue arrows in C, G and K show the colocalization of adiponectin and endothelial cells (yellow). The insert in C (D), inserts in G (H) and K (L) show the higher magnification of colocalization pointed by blue arrows in C, G and K.
M, N and O, dual labeling of adiponectin (red) and α-actin (green) in m Lepr^{db} mouse aorta. The pink arrow in O shows the specific α-actin staining with absence of adiponectin staining. Q and R, negative control: the purple arrows show an absence of staining in vessels. S shows nuclear staining with DAPI (blue) in control mice aorta. Data shown are representative of 4 separate experiments.

Figure III. The absence of adiponectin staining in adiponectin knockout mice (APN-/-). n=3 separate experiments.

Figure IV. Vasorelaxation to ACh in m Lepr^{db}, Lepr^{db}, and Lepr^{db}+adiponectin mice was abolished after incubation of the aortic rings with the nitric oxide synthase inhibitor N^G-nitro-L-arginine methyl ester (L-NAME, 100 μM for 20 min), which indicated that vasorelaxation of aortas to ACh was nitric oxide-mediated. Data were shown as mean±SEM. n=4-6 mice. *p<0.05 vs. m Lepr^{db}; #p<0.05 vs. Lepr^{db}.
Reference

7. Shibata R, Sato K, Kumada M, Izumiya Y, Sonoda M, Kihara S, Ouchi N, Walsh K. Adiponectin accumulates in myocardial tissue that has been damaged by ischemia-