Disruption of SEMA4D Ameliorates Platelet Hypersensitivity in Dyslipidemia and Confers Protection Against the Development of Atherosclerosis

Li Zhu, Timothy J. Stalker, Karen P. Fong, Hong Jiang, Anh Tran, Irene Crichton, Eric K. Lee, Keith B. Neeses, Sean F. Maloney, Hitoshi Kikutani, Atsushi Kumanogoh, Ellen Pure, Scott L. Diamond, Lawrence F. Brass

Objective—In dyslipidemic states, platelets become hyperreactive, secreting molecules that promote atherosclerosis. We have shown that the semaphorin family member, sema4D (CD100), is expressed on the surface of platelets and proposed that its role includes promoting thrombus growth by binding to nearby platelets and endothelial cells, both of which express sema4D receptors. Here we tested the hypothesis that deleting sema4D will attenuate the adverse consequences of dyslipidemia on platelets and the vessel wall.

Methods and Results—Platelet function and atherosclerotic lesion formation were measured in LDLR(−/−) and sema4D(−/−)LDLR(−/−) mice after 6 months on a high-fat diet. All of the mice developed the dyslipidemia expected on this diet in the absence of functional LDL receptors. However, when compared to LDLR(−/−) mice, sema4D(−/−)LDLR(−/−) mice had reduced lipid deposition in the descending aorta, a 6-fold decrease in the frequency of arterial occlusion and a reduction to near wild-type levels in the accumulation of platelets after injury. These differences were retained ex vivo, with a marked decrease in platelet accumulation on collagen under flow and in platelet aggregation.

Conclusions—These results show that loss of sema4D expression reduces the platelet hyperactivity otherwise found in dyslipidemia, and confers protection against the development of atherosclerosis. (Arterioscler Thromb Vasc Biol. 2009;29:1039-1045.)

Key Words: semaphorin 4D | atherosclerosis | platelet | dyslipidemia

Although the best known role of platelets is in hemostasis, the interaction between platelets and the vascular wall is not limited to the setting of acute injury and can have harmful as well as beneficial effects. Platelets help to maintain the integrity of the endothelial monolayer, but they are also believed to contribute to the development of atherosclerosis especially in dyslipidemic states, where platelet reactivity to agonists increases. The mechanisms by which platelets contribute to atherogenesis are only partly understood. In rabbits and mice, hypercholesterolemia is associated with increased adhesion of platelets to intact endothelium even before lesions are clearly established. The chemokines and cytokines released by activated platelets feed the inflammatory response, attracting monocytes and neutrophils, and then facilitating their migration into adjacent tissues. Dyslipidemia makes this more likely to happen. Genetic deletion of some of the molecules needed for a normal platelet response to injury has been shown to confer protection in mouse models of atherosclerosis, as have inhibitors of platelet function. Conversely, deletion of the platelet PGI2 receptor, which removes a normal brake on platelet activation, accelerates atherosclerosis. Therefore, one key to understanding how platelets affect the vessel wall is to understand the relationship between platelet activation and the evolution of vascular disease, and how the suppression of the former can retard the latter.

In addition to receptors for agonists and integrins such as αIIbβ3, the platelet surface expresses signaling molecules that can mediate interactions between cells. We have previously shown that ephrins and Eph kinases are a ligand/receptor pair that works in trans between adjacent platelets. More recently, we proposed that the semaphorin family member, sema4D (CD100), and its receptors do so as well, modulating thrombus growth and stability in the setting of vascular injury. Sema4D is a type I transmembrane molecule expressed as a disulfide-linked homodimer that was originally
reported on T cells. Its extracellular domain has been shown to be a ligand for CD72, plexin-B1, and possibly plexins-B2 and -C1 as well. Cell activation causes the sema4D exodomain to be cleaved and shed, producing a large soluble fragment that can activate plexin-B1 on endothelial cells and inhibit the migration of monocytes and dendritic cells, both of which have been implicated in the progression of atherosclerosis. In previous studies, we have shown that sema4D is expressed on platelets and that sema4D mice have defects in thrombus formation in vivo and in collagen-induced platelet aggregation in vitro. Those studies also show that activated platelets, like activated T-cells, shed the sema4D exodomain. The rate of shedding is slow compared to platelet aggregation, but the soluble fragment retains biological activity when added to platelets ex vivo.

The presence of sema4D on platelets and T cells, along with the presence of sema4D receptors on endothelial cells, monocytes, and dendritic cells, puts these molecules in locations that are intimately involved in atherothrombosis. In the present studies, we have examined the contribution of sema4D to platelet function in the setting of dyslipidemia, and asked whether loss of sema4D expression is protective against the development of atherosclerosis. The studies take advantage of the sema4D(−/−) mouse line, which we have crossed with proatherogenic LDLR(−/−) mice. The results show that deleting sema4D attenuates much of the increase in platelet responsiveness that is otherwise observed in dyslipidemic states. It also impairs atherogenesis. Although expression of sema4D is not limited to platelets, the effects that we observed are at least in part platelet autonomous and, therefore, provide an additional link between platelets and the development of atherosclerosis.

Methods

Mice
Sema4D(−/−) mice on a C57Bl/6 genetic background were crossed with C57Bl/6 LDLR(−/−) mice obtained from Jackson Laboratory (Bar Harbor, Me). Their progeny were bred to fat; formula TD88137, Harlan Teklad) at 8 weeks of age and stained with Gill Formulation No. 1 hematoxylin (Fisher Scientific). Antibody binding was detected after amplification with Vectastain ABC avidin-biotin (Vector Laboratories), and developed with diaminobenzidine (Dako) as substrate. All sections were counterstained with Gill Formulation No. 1 hematoxylin (Fisher Scientific). Isotype matched controls were run in parallel and showed negligible staining in all cases.

Plasma Lipid Analysis
Heparinized blood (150 U/mL, 1:9 dilution with blood) was obtained from the inferior vena cava of anesthetized mice that had been fasted for 4 hours. Plasma total cholesterol and triglyceride levels were measured using a Cobas Fara II autoanalyzer (Roche Diagnostic Systems).

Vascular Injury
Thrombus formation was visualized in the cremaster muscle microcirculation. After anesthesia (90 mg/kg pentobarbital, i.p.), the cremaster muscle was exteriorized, spread on the pedestal of a custom built chamber while being superfused with bicarbonate buffer (37°C), and bubbled with 95%N2/5%CO2. After 10 minutes, Alexa-488–labeled anti-CD41 antibody F(ab)2 fragments (MWRReg30, 240 μg/kg, BD Bioscience) were administered via the jugular vein. After an additional 5 minutes, an arteriole (30 to 50 μm diameter) was injured using a pulsed nitrogen dye laser fired through the microscope objective. Images were captured using a CCD camera (SensiCam, Cooke) coupled to Slidebook 4.2 image acquisition software (Intelligent Imaging Innovations). Platelet accumulation is reported as the background-subtracted median fluorescence intensity. Thrombus area calculations reflect the number of pixels exceeding background.

Immunohistochemistry
Mouse hearts were embedded in Tissue Tek O.C.T (Sakura-Finetek Inc) and 8 μm serial sections of the aortic root mounted on masked slides (Carlson Scientific). Acetone fixed and peroxidase quenched sections were incubated with biotinylated rat antimouse CD4 and rat antimouse CD8 (made in-house), rat antimouse CD22 (Southern Biotech), and rat antimouse CD11b (BD Biosciences) and FITC-conjugated mouse anti-α-smooth muscle actin (SMA) clone 14A (Sigma). Sections stained for SMA were subjected to an intermediate step with biotinylated goat anti-FITC (Vector Laboratories) antibody. Antibody binding was detected after amplification with Vectastain ABC avidin-biotin (Vector Laboratories), and developed with diaminobenzidine (Dako) as substrate. All sections were counterstained with Gill Formulation No. 1 hematoxylin (Fisher Scientific).

Results

Loss of sema4D Expression Ameliorates the Effects of Dyslipidemia on Platelet Function In Vivo
Dyslipidemia affects platelet function, making them more reactive to agonists and, arguably, more likely to become activated in response to vascular injury or plaque rupture. Having shown previously that loss of sema4D expression impairs platelet responses in vitro and in vivo in otherwise normal C57Bl/6 mice fed a standard chow diet, we began the present studies by asking whether eliminating sema4D-dependent events could provide a means to reduce platelet hyperactivity in the setting of dyslipidemia. To accomplish this, sema4D(−/−) mice were crossed with LDLR(−/−) mice, all in the C57Bl/6 background, and then placed on a high-fat, high-cholesterol diet for 3 or 6 months beginning at...
8 weeks of age, as were male wild-type C57Bl/6 mice for comparison. Lipid profiles confirmed the dyslipidemia expected on this diet in mice that lack LDLR, with similar levels achieved in both knockout strains, but not the WT mice (Table).

Thrombus formation in vivo was measured using a laser to produce focal endothelial injuries in cremaster muscle arteries. In this model, platelet accumulation is detected in real time using fluorescently-tagged F(ab)2 fragments of a nonblocking anti-CD41 (αIb) antibody. Two sets of studies were performed. In the first, sema4D(−/−) and matched sema4D(+/+) (referred to as WT) mice were compared while receiving a normal chow diet. Platelet accumulation after injury occurred in both strains of mice, but the initial rate and maximum extent of accumulation were reduced by 83% and 60%, respectively in the sema4D(−/−) mice compared to the wild-type mice (Figure 1A and 1C). The second set of studies compared sema4D(−/−)LDLR(−/−) and LDLR(−/−) mice that had been on the high-fat diet for 6 months. Again large differences were observed, with the initial rate and maximum extent of platelet accumulation reduced by 48% and 58% in the sema4D(−/−)LDLR(−/−) mice compared to the LDLR(−/−) mice (Figure 1B and 1D).

A comparison of these 2 sets of observations highlights both the consequences of dyslipidemia and the effects of deleting sema4D. Because the 2 sets of observations were performed with different batches of fluorescent antibody, mean thrombus area (ie, all pixels exceeding background), rather than median fluorescence intensity (a measure that more closely approximates total platelet accumulation over time), was used for the comparison. Consistent with previous studies on the effects of dyslipidemia, the calculated mean thrombus area near the end of the observation period after injury was 3 times greater in the LDLR(−/−) mice fed a high-fat diet than in matched wild-type C57Bl/6 mice fed a regular chow diet (Figure 1E, P<0.00005). Thrombus area in the sema4D(−/−)LDLR(−/−) mice was also substantially less than in the LDLR(−/−) mice (P<0.002). In fact at that time point, mean thrombus area in the sema4D(−/−)LDLR(−/−) mice fed the high-fat diet approached that observed in the wild-type mice fed the chow diet, reflecting a large effect of the sema4D knockout in this setting (Figure 1E). Note that in terms of thrombus area, the sema4D(−/−) mice on the chow diet were not significantly different from the WT mice fed the same diet. In part this reflects the narrowing of the differences between WT and sema4D(−/−) mice late in the observation period when thrombus size tends to decrease (Figure 1C), but it also suggests that, as might be expected, total platelet accumulation over time is a more sensitive measure of the effects of sema4D deficiency on thrombus formation in response to laser injury under normolipidemic conditions than is mean thrombus area.

A second metric of platelet hyperactivity in vivo was also affected by the deletion of sema4D. In normolipidemic conditions, platelet accumulation was delayed by 1 minute following injury in the sema4D(−/−)LDLR(−/−) mice compared to the WT mice (Figure 1F). These observations again suggest that sema4D is necessary to mediate the thrombotic response to laser injury in vivo.

Table. Plasma Lipid Profiles in Male Mice That Had Been Placed on a High-Fat Diet for 6 Months Starting at 8 Weeks of Age (Mean±SEM)

<table>
<thead>
<tr>
<th>LDLR(−/−)LDLR(−/−) (n=5)</th>
<th>Total Cholesterol (mg/dl)</th>
<th>HDL Cholesterol (mg/dl)</th>
<th>Total Triglycerides (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sema4D(−/−)LDLR(−/−) (n=5)</td>
<td>2055±778</td>
<td>270±109</td>
<td>297±185</td>
</tr>
<tr>
<td>LDLR(−/−) (n=5)</td>
<td>2188±476</td>
<td>275±64</td>
<td>476±151</td>
</tr>
<tr>
<td>Wild type (n=5)</td>
<td>293±61</td>
<td>212±32</td>
<td>23±5</td>
</tr>
</tbody>
</table>

Figure 1. Platelet response to injury in vivo. Platelet accumulation (green) in cremaster muscle arterioles damaged with a pulsed laser. A and B, Video captures 2 minutes after injury. The WT and sema4D(−/−) mice were on a normal diet. LDLR(−/−) and sema4D(−/−)LDLR(−/−) mice were studied after 6 months on a high-fat diet. C and D, Median fluorescence intensity. WT, 29 injuries in 4 mice. Sema4D(−/−), 23 injuries in 3 mice. LDLR(−/−), 26 injuries in 3 mice. Sema4D(−/−)LDLR(−/−), 25 injuries in 3 mice. E, Mean thrombus area. F, Frequency of complete occlusion.
conditions, the laser injury in this model rarely results in complete occlusion of the arteriole in wild-type mice (data not shown). However, complete occlusion of the arteriole after laser injury occurred in nearly half (48%) of the injuries in dyslipidemic LDLR(−/−) mice, but only 8% of injuries in dyslipidemic sema4D(−/−)LDLR(−/−) mice (P=0.004; Figure 1F). Thus, loss of sema4D expression results in a significant reduction in the response of platelets to vascular injury. This effect of sema4D deficiency on platelet responsiveness is preserved in the context of dyslipidemia, conditions under which (as will be shown below) sema4D deficiency also significantly reduces atherosclerosis.

Loss of sema4D Expression Also Reduces the Effects of Dyslipidemia on Platelet Function Ex Vivo

Because the expression of sema4D and its receptors is not limited to platelets, the results obtained in the in vivo models are not necessarily attributable solely to the loss of expression of sema4D from platelets. Therefore, we next asked whether loss of sema4D expression diminishes the effects of dyslipidemia when platelets are studied ex vivo. In the first of these studies, platelet accumulation on a collagen-coated surface was measured in a microfluidics flow chamber. Whole blood studies, platelet accumulation on a collagen-coated surface was limited to platelets, the results obtained in the in vivo models are not necessarily attributable solely to the loss of expression of sema4D from platelets. Therefore, we next asked whether loss of sema4D expression diminishes the effects of dyslipidemia when platelets are studied ex vivo. In the first of these studies, platelet accumulation on a collagen-coated surface was measured in a microfluidics flow chamber. Whole blood anticoagulated with the thrombin inhibitor, PPACK, and perfused through the chamber for 5 minutes at 1000 seconds−1 was reduced by 41% in the sema4D(−/−)LDLR(−/−) mice compared to the LDLR(−/−) mice (P=0.004; Figure 2A). Thus, loss of sema4D expression results in a significant reduction in the response of platelets to vascular injury. This effect of sema4D deficiency on platelet responsiveness is preserved in the context of dyslipidemia, conditions under which (as will be shown below) sema4D deficiency also significantly reduces atherosclerosis.

Atherosclerosis Is Reduced in Mice That Lack sema4D

Because the absence of sema4D reduces the platelet hyperactivity otherwise seen in the setting of dyslipidemia, we next asked whether it would alter the progression of atherosclerosis usually observed when mice lacking LDL receptors are placed on a high-fat diet. Histological examination revealed extensive lipid deposits in the aortas of LDLR(−/−) mice, especially after 6 months on the high-fat diet. The deposits were visibly smaller in mice that lacked both LDLR and sema4D, and negligible in the wild-type mice receiving the same diet (Figure 4A).

![Figure 2. Platelet accumulation on collagen in a microfluidics flow chamber. A, Whole blood anticoagulated with PPACK was perfused through the chamber at 1000 s−1 for 300 seconds, then platelet poor plasma was substituted and shear was increased 10-fold. Mean±SEM (n=7). B, Data at 10 000 s−1 were normalized by dividing by the fluorescence intensity achieved just before the shear increase.](http://atvb.ahajournals.org/)

![Figure 3. Loss of sema4D expression impairs platelet aggregation. A, Collagen-induced platelet aggregation from mice maintained on a high-fat diet for 6 months. B, Summary of 16 studies performed with platelets from 5 mice of each genotype (mean±SEM).](http://atvb.ahajournals.org/)
Lesion size was quantified after 3 and 6 months on the high-fat diet, with most of the studies being performed with mice that had received the high-fat diet for 6 months. At the 3-month time point, lipid deposits were small in both the male and female mice, and there was no evident difference between the LDLR(−/−) mice and the sema4D(−/−) LDLR(−/−) mice (Figure 4B). Note, however, that the number of mice studied at the 3-month time point was small.

Figure 4. Loss of sema4D expression reduces atherosclerotic lesion size. A, Aortas after 6 months on the high-fat diet showing lipid-rich deposits. B through D, Analysis of lesion size. E, Sections from the aortic root. Markers: CD4 and CD8, T-cells; CD22, B-cells; CD11b, monocytes, macrophage, and neutrophils; smooth muscle actin (αSMA), smooth muscle cells, and fibrotic caps. No differences were observed.
(5 in each arm of the experiment), so small differences might have been missed. By the 6-month time point, lesion size had grown substantially, especially in the male mice. A comparison between the LDLR(−/−) and the sema4D(−/−) LDLR(−/−) mice at 6 months showed that loss of sema4D expression was associated with a 23% decrease in total lesion size in the entire aorta (P=0.04) in both the male and the female mice (Figure 4C). An even greater difference (39%) between the LDLR(−/−) and the sema4D(−/−) LDLR(−/−) mice was observed regionally in the descending aorta of the male mice at 6 months (P=0.005, Figure 4D). The female mice showed the same trend, but it did not reach statistical significance.

Finally, as noted in the introduction, sema4D is expressed on T-cells, as well as platelets, and B-cells, monocytes, and endothelial cells express sema4D receptors. T-cells in particular have been shown to be present in atherosclerotic lesions in humans and mice27,28 and would be expected to be affected by the global absence of sema4D in the mouse lines that we studied. Because a megakaryocyte-selective deletion of sema4D is not available for comparison, we performed immunohistochemistry of aortic lesions using markers for T-cells, B-cells, monocytes, and macrophage. No consistent differences were observed (Figure 4E).

Discussion

The idea that platelets contribute to atherogenesis is not a new one, but increasing evidence has been found to support it. Here we have tested the hypothesis that loss of the semaphorin family member, sema4D, would be protective against both the gain-of-platelet function normally seen in dyslipidemia and the subsequent evolution of atherosclerotic disease. Sema4D is of interest in this context for several reasons. First, sema4D supports platelet activation by collagen, which is impaired in mice lacking sema4D and in human platelets preincubated with antisema4D.16,29 Second, sema4D receptors are expressed by many of the cells believed to be involved in atherogenesis, including endothelial cells, monocytes, activated macrophage, B-cells, and dendritic cells in addition to platelets. Finally, activated platelets shed sema4D as a single large exodomain fragment that retains its ability to activate sema4D receptors. Soluble sema4D shed in the context of atherosclerotic lesions, like surface-expressed sema4D on platelets, can potentially affect the behavior of nearby cells expressing its receptors. The results that we obtained show that loss of sema4D expression attenuates the progression of atherosclerosis in LDLR(−/−) mice despite the presence of profound dyslipidemia. It also greatly reduces the increase in platelet reactivity otherwise found in this setting.

Studies from a number of laboratories have demonstrated that platelets become hypersensitive to agonists when studied in the presence of dyslipidemia in humans or in mouse models.2 The basis for the increase in platelet function observed in dyslipidemia is only partially understood, but a recent study shows that oxidized LDL binds to CD36 (GP IV) on platelets and that deletion of CD36 reduces the effects of dyslipidemia on platelets.20 Consistent with these observations, we found that LDLR(−/−) mice on a high-fat diet formed larger thrombi after vascular injury than did wild-type mice and were much more likely to develop occlusive thrombi. Loss of sema4D reduced thrombus size and the frequency of occlusion. It should be noted that while these studies were performed in the microvasculature, our previous study demonstrated thrombus formation was attenuated in both the microvasculature and the carotid artery of sema4D knockout mice after oxidative injuries produced by, respectively, excised rose Bengal dye and FeCl₃.28 It is likely, therefore, that our findings in the microvasculature of dyslipidemic mice would translate to the macrovasculature where atherosclerotic lesions develop. Further, when studied ex vivo we found that loss of sema4D expression limited platelet accumulation on collagen under flow and destabilized the thrombi that formed.

Collectively, these results not only confirm earlier observations that platelets become hyperresponsive in dyslipidemia, but also show that removing sema4D attenuates much of the increase. Mechanistically, we show elsewhere that loss of sema4D leads to impaired activation of the tyrosine kinase, Syk, which, in turn, decreases activation of phospholipase Cγ2 and reduces the increase in cytosolic Ca²⁺ that otherwise occurs when platelets are activated by collagen.29 Although not directly examined in the present study, a defect in this signaling pathway could explain the attenuation of platelet responses in the dyslipidemic setting.

This study is not the first in which the knockout of a protein expressed on platelets that has been shown to affect the progression of atherosclerosis. What general lessons can be learned by comparing these mice? First, not all deletions that affect platelet interactions with collagen have the same effect on atherogenesis. Platelets have at least 3 collagen receptors: the GP VI/FcRγ complex, integrin α₅β₁, and GP Ibα, which binds via von Willebrand factor. Although deletion of either FcRγΔ or von Willebrand factor is protective against atherosclerosis, loss of α₅β₁ is not.31 Second, there does not seem to be a linear relationship between the extent to which a particular gene deletion impairs platelet function and the extent to which it ameliorates atherosclerosis. Eliminating α₂₃₅β₃ on platelets has a much greater effect on platelet function than does the sema4D knockout, but the effects of the 2 knockouts on atherogenesis are similar (reference 10 and the present study). Among other possibilities, this may mean that platelet signaling defects, particularly those that affect secretion, have a greater impact on atherogenesis than do adhesion or cohesion defects caused by deletion of integrins.

The sema4D knockout mice used in the present studies have a global defect in sema4D expression. Although our studies show that the sema4D knockout has cell-autonomous effects on platelet function, sema4D is also expressed on T-cells and sema4D receptors are on activated macrophage, dendritic cells, and endothelial cells. Defects in these cells would not be expected to contribute to the defects in platelet function that we observed ex vivo, but might well affect the development of atherosclerosis. It is reasonable, therefore, to ask whether the global loss of sema4D expression affects atherogenesis because of its absence from platelets or from other types of cells. Tissue-specific knockouts would be helpful in answering this question but are not yet available. As an alternative, we sought evidence that other hematopoietic cells are involved by looking for differences in T-cell,
B-cell, and macrophage infiltration into the atherosclerotic lesions in LDLR(−/−) and sema4D(−/−) LDLR(−/−) mice. No differences were observed, but this deserves to be revisited. Therefore, our results support a role for sema4D in the enhancement of both atherogenesis and platelet activation, but further study is required to determine whether the role of sema4D in platelet function is directly related to its ability to enhance atherogenesis. However, because other studies have demonstrated that inhibition of platelet function can attenuate atherogenesis, we would like to speculate that the attenuation in the sema4D(−/−) mice is attributable at least in part to reduced platelet function.

Acknowledgments
We thank Dr Daniel Rader (University of Pennsylvania, Philadelphia) for assistance with the mouse lipid profiles, and Min Wang and Hua Li for their technical assistance.

Sources of Funding
This work was supported by National Institutes of Health grants P50-HL81012 (to L.F.B.), P33-HL087385 (to L.F.B. and S.L.D.), P01-HL62250 (to E.P.), and F32-HL093040 (to K.B.N.), and American Heart Association postdoctoral fellowship 0525630U (to T.J.S.). E.P. also acknowledges support from the Pennsylvania Department of Health and the Ludwig Institute for Cancer Research.

Disclosures
None.

References
Disruption of SEMA4D Ameliorates Platelet Hypersensitivity in Dyslipidemia and Confers Protection Against the Development of Atherosclerosis
Li Zhu, Timothy J. Stalker, Karen P. Fong, Hong Jiang, Anh Tran, Irene Crichton, Eric K. Lee, Keith B. Neeves, Sean F. Maloney, Hitoshi Kikutani, Atsushi Kumanogoh, Ellen Pure, Scott L. Diamond and Lawrence F. Brass

Arterioscler Thromb Vasc Biol. 2009;29:1039-1045; originally published online April 23, 2009; doi: 10.1161/ATVBAHA.109.185405
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2009 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/29/7/1039

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2009/04/23/ATVBAHA.109.185405.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org/subscriptions/
Supplemental Material

Figure 1, supplemental videos 1-4. Platelet accumulation following vascular injury. Videos for the following genotypes: WT, sema4D(-/-), LDLR(-/-) and sema4D(-/-)LDLR(-/-).