New Insights Into Cancer-Associated Thrombosis

Tarek Sousou, Alok A. Khorana

Abstract—Venous thromboembolism (VTE) is an increasingly frequent complication of anticancer therapy. The underlying mechanisms are not completely understood, but are related in part to oncogene activation and tissue factor (TF) expression. Several risk factors have been identified including site and stage of cancer, patient comorbidities, and specific therapeutic agents. Candidate biomarkers such as blood counts, TF, and P-selectin have recently been identified. A risk model predictive of chemotherapy-associated VTE has been validated. Thromboprophylaxis with low molecular weight heparin (LMWH), unfractionated heparin (UFH), or fondaparinux is recommended for hospitalized medical and surgical cancer patients. Long-term anticoagulation with LMWH is safe and effective in reducing recurrent VTE in cancer. The role of thromboprophylaxis in ambulatory cancer patients receiving chemotherapy is an area of active investigation. (Arterioscler Thromb Vasc Biol. 2009;29:316-320.)

Key Words: thrombosis ■ risk factors ■ cancer

Cancer is a prothrombotic state, and cancer treatments are often complicated by thromboembolism. Venous events are the most common, presenting as either deep venous thrombosis (DVT) or pulmonary embolism (PE), together described as venous thromboembolism (VTE). Indeed, cancer patients account for as much as 20% of the total burden of VTE. Arterial events, including stroke and myocardial infarction, are also more prevalent in cancer patients.

The prothrombotic state of cancer is driven by specific oncogenic events. Activation of the coagulation cascade appears integrally linked to the processes of tumor growth, metastasis, and angiogenesis. Elegant preclinical studies have shown, for instance, that defects in fibrinogen and platelet activation can decrease metastatic potential. This has led to a renewed interest in studying the anticancer effects of interrupting the coagulation cascade.

Several other factors have contributed to an increasing awareness of the impact of VTE in cancer. The incidence of VTE in cancer is on the rise. Novel anticancer drugs, particularly antiangiogenic agents, may be contributing to this increase. VTE is the second leading cause of death in cancer patients and the most common cause of death in the postoperative period. VTE in cancer is associated with a 21% annual risk of recurrent VTE, a 12% annual risk of bleeding complications, requirement for long-term anticoagulation, and interruption of chemotherapy.

This brief review will focus on new insights into the pathophysiology of cancer-associated thrombosis, risk factors and candidate predictive biomarkers for VTE, as well as appropriate strategies for the prevention and treatment of VTE in cancer.

Mechanisms of Thrombosis

The pathophysiology of cancer-associated thrombosis is not entirely understood. Rather than one unifying mechanism, the etiology is likely multifactorial with different factors assuming lesser or greater degrees of importance depending on the clinical setting.

Much of the research in this area has focused on the intrinsic properties of tumor cells that lead to a prothrombotic state. The role of tissue factor (TF) has gathered the most attention. TF, a transmembrane glycoprotein, is the prime physiological initiator of coagulation and is expressed in a variety of human cancers, induced by activation of oncogenes or inactivation of tumor suppressor genes. Overexpression of TF in tumor cells or elevated TF levels in association with microparticles in the systemic circulation may contribute to systemic hypercoagulability. Much of this work has focused on selected cancers, particularly pancreas, and whether TF is equally important in other cancers remains to be seen. Activation of the MET oncogene has been shown in a mouse model of hepatocarcinogenesis to result in a thromboemorragic state mediated by upregulation of plasminogen activator inhibitor type 1 (PAI-1) and cyclooxygenase-2 gene activity. However, the applicability of this model to other cancers and to the clinical setting is not known. Carcinoma mucins, glycosylated molecules that act as ligands for the selectin family, may also play a role in thrombosis. Finally, the role of tumor hypoxia and inflammatory cytokines has also been speculated to contribute to the prothrombotic state in cancer, but firm experimental evidence is awaited.

Extrinsic factors are also important but, unfortunately, are not accounted for by the various experimental models dis-
Risk Factors and Candidate Biomarkers for VTE

<table>
<thead>
<tr>
<th>Patient-related factors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Older age</td>
<td></td>
</tr>
<tr>
<td>Female gender</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>Higher in blacks</td>
<td></td>
</tr>
<tr>
<td>Lower in Asian/Pacific Islanders</td>
<td></td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
</tr>
<tr>
<td>Infection, renal disease, pulmonary disease, obesity</td>
<td></td>
</tr>
<tr>
<td>Inherited prothrombotic mutations</td>
<td></td>
</tr>
<tr>
<td>Prior history of VTE</td>
<td></td>
</tr>
<tr>
<td>Cancer-related factors</td>
<td></td>
</tr>
<tr>
<td>Primary site of cancer</td>
<td></td>
</tr>
<tr>
<td>Brain, pancreas, kidney, stomach, lung, gynecologic, lymphoma, myeloma</td>
<td></td>
</tr>
<tr>
<td>Advanced stage of cancer</td>
<td></td>
</tr>
<tr>
<td>Initial period after diagnosis of cancer</td>
<td></td>
</tr>
<tr>
<td>Treatment-related factors</td>
<td></td>
</tr>
<tr>
<td>Major surgery</td>
<td></td>
</tr>
<tr>
<td>Hospitalization</td>
<td></td>
</tr>
<tr>
<td>Cancer therapy</td>
<td></td>
</tr>
<tr>
<td>Chemotherapy</td>
<td></td>
</tr>
<tr>
<td>Hormonal therapy</td>
<td></td>
</tr>
<tr>
<td>Antiangiogenic agents</td>
<td></td>
</tr>
<tr>
<td>Thalidomide, lenalidomide, bevazucizumab</td>
<td></td>
</tr>
<tr>
<td>Erythropoiesis-stimulating agents</td>
<td></td>
</tr>
<tr>
<td>Transfusions</td>
<td></td>
</tr>
<tr>
<td>Central venous catheter</td>
<td></td>
</tr>
<tr>
<td>Candidate biomarkers</td>
<td></td>
</tr>
<tr>
<td>Prechemotherapy platelet count ≥350 000/mm³</td>
<td></td>
</tr>
<tr>
<td>Prechemotherapy leukocyte count >11 000/mm³</td>
<td></td>
</tr>
<tr>
<td>Tissue factor (TF)</td>
<td></td>
</tr>
<tr>
<td>High grade of TF expression by tumor cells</td>
<td></td>
</tr>
<tr>
<td>Elevated TF plasma levels</td>
<td></td>
</tr>
<tr>
<td>Soluble P-selectin</td>
<td></td>
</tr>
<tr>
<td>D-dimer</td>
<td></td>
</tr>
<tr>
<td>C-reactive protein</td>
<td></td>
</tr>
</tbody>
</table>

cussed above. Chemotherapy can result in activation of hemostasis within a few hours of administration. This occurs via a variety of mechanisms, including induction of TF in tumor cells and monocytes, downregulation of anticoagulant proteins such as protein C and S, damage to vascular endothelium, and platelet activation. Antiangiogenic agents also contribute to thrombosis, perhaps through endothelial cell and platelet activation. Comorbid conditions such as infection, obesity, anemia, and pulmonary and renal disease particularly add to the risk of VTE. The primary site of cancer is an important risk factor, with highest rates observed in patients with brain, pancreas, gastric, kidney, ovary, and lung cancers and hematologic malignancies, particularly lymphomas. In a population-based study, the risk of VTE was greatest in the first 3 months after the diagnosis of cancer (OR 53.5, 95% CI 8.6 to 334.3). Hospitalization increases the risk of VTE in cancer patients. Major surgery has long been known to be associated with an increased risk of VTE; more recent data indicate that this risk extends for a prolonged period after the procedure, with 40% of all VTE events in one registry occurring later than 21 days from surgery. Chemotherapy is associated with a 2- to 6-fold increased risk of VTE as compared to the general population. VTE is also associated with the use of central venous catheters. Erythropoiesis-stimulating agents (ESAs) have been found to increase the risk of VTE; unfortunately, red blood cell transfusions may have a similar association. Novel therapeutics such as the antiangiogenic class of agents are also associated with VTE. Thalidomide and lenalidomide-containing regimens increase the risk several-fold in patients with myeloma. Regimens containing bevacizumab, a monoclonal antibody directed against the proangiogenic vascular endothelial growth factor, are associated with high rates of both arterial and venous events.

Candidate Biomarkers

Research conducted primarily in cancer outpatients has resulted in the identification of novel candidate biomarkers that may be predictive of cancer-associated VTE. In an observational study, VTE occurred in 4% of patients with a prechemotherapy platelet count ≥350 000/mm³ as compared to 1.25% for those with counts <200 000/mm³. An elevated prechemotherapy leukocyte count (defined as ≥11 000/mm³) was also significantly and independently associated with an increased risk of VTE. High grades of TF expression in tumor cells and elevated levels of circulating TF have been associated with the risk of VTE in pancreatic and ovarian cancers. In a prospective cohort study, elevated levels of soluble P-selectin levels (>53.1 ng/mL, representing the 75th percentile) were predictive of VTE (HR 2.6, CI 1.4 to 4.9). Markers of hemostatic activation, particularly D-dimer, have been observed to be elevated in cancer patients and predictive of recurrent VTE in cancer patients. In an observational study of 507 cancer patients, an elevated C-reactive protein (>400 mg/dL) was associated in multivariate analysis with VTE.

A Predictive Risk Model

VTE in cancer is a multifactorial disease that involves various risk factors, as is evident from the preceding discussion. A risk model for chemotherapy-associated VTE has recently been published and is based on scores assigned to 5 predictive variables identified in a development cohort of 2701 ambulatory cancer patients initiating chemotherapy (Table 2). The score was then validated in an independent cohort of 1365 patients from the same study. Rates of VTE in the
Development and validation cohorts, respectively, were 0.8% and 0.3% in the low-risk category (score=0), 1.8% and 2% in the intermediate-risk category (score=1 to 2), and 7.1% and 6.7% in the high-risk category (score=3) over a median period of 2.5 months. Rates of VTE in this high-risk subgroup are comparable to hospitalized patients for whom prophylaxis is safe and effective. The National Heart, Lung, and Blood Institute has recently funded a study of outpatient prophylaxis in cancer patients identified as high-risk based on this model.

Prevention of VTE

Hospitalized Medical Cancer Patients
Three large randomized controlled trials studied either enoxaparin, dalteparin, or fondaparinux for thromboprophylaxis in acutely ill hospitalized medical patients and reported relative risk reductions in VTE ranging from 45% to 63% with anticoagulation. Unfortunately, none of these were cancer-specific study populations and cancer patients formed only a minority (ranging from 5% to 15%) of study patients. Furthermore, bleeding complications, a major concern with anticoagulation in cancer, were not separately reported for cancer patients. Unfractionated heparin (UFH) is an acceptable alternative to low-molecular-weight heparins (LMWHs) as thromboprophylaxis in this setting. Despite the lack of cancer-specific data, the American Society of Clinical Oncology (ASCO) guidelines recommend that hospitalized cancer patients should be considered for VTE prophylaxis with anticoagulants in the absence of bleeding or other contraindications to anticoagulation.

Surgical Cancer Patients
Multiple clinical trials have established the safety and efficacy of thromboprophylaxis in the perioperative period for cancer patients undergoing major surgical procedures. More recently, two studies (including one cancer-specific study) have suggested that extending the duration of postoperative LMWH prophylaxis for 2 to 4 weeks after hospital discharge reduces the incidence of late venographic VTE. Both the ASCO and the National Comprehensive Cancer Network (NCCN) guidelines support either UFH, LMWH, or fondaparinux in the surgical cancer patient for VTE prophylaxis and suggest using prolonged prophylaxis in high-risk patients.

Ambulatory Cancer Patients
The treatment of cancer has now primarily moved to the outpatient setting. Several clinical trials have been conducted to evaluate the benefit of thromboprophylaxis for cancer outpatients, with varying inclusion criteria and contradictory results. Data from the most recent and largest study found fewer thromboembolic events (venous and arterial combined) occurred in the nadroparin arm than in the placebo arm (2.0% versus 3.9% P=0.033, NNT=53.8). Current guidelines do not recommend prophylaxis for cancer outpatients, although data from more targeted approaches such as the risk model described above are awaited. One exception to this is patients with multiple myeloma receiving thalidomide/lenalidomide-based regimens for whom prophylaxis is recommended with either LMWH or warfarin based on data from nonrandomized studies.

Treatment of VTE in Cancer Patients
Warfarin has previously been the standard for chronic anticoagulation but in the cancer population is associated with increased rates of bleeding, recurrent VTE, and dietary and drug-related interactions. In the CLOT trial, 672 cancer patients with documented VTE were randomized to receive either dalteparin or dalteparin followed by a vitamin K antagonist (control group) for a total of 6 months. Recurrent VTE at 6 months occurred in 9% of patients in the dalteparin group compared to 17% in the control group. These findings are consistent with data from multiple other smaller studies and a meta-analysis. These data have established LMWH for at least 3 to 6 months as the standard of care for treatment of VTE in cancer, as recommended by the ASCO, NCCN, and other guidelines. The optimal duration of anticoagulation in cancer patients with VTE remains unknown. Given that cancer patients remain at risk for VTE, it is recommended that patients with active cancer be considered for indefinite anticoagulation. It is important to note in this context preclinical and clinical data (albeit conflicting) suggesting that anticoagulants, particularly LMWHs, may impact cancer processes such as angiogenesis and tumor cell adhesion and, therefore, clinical outcomes.

Conclusions
Ongoing areas of investigation include understanding the pathophysiology of cancer-associated thrombosis in ways that can impact tumor biology, targeted prophylaxis in cancer outpatients, and studying the impact of anticoagulation on survival in cancer. Although many new beginnings have been made in the field of cancer-associated thrombosis in the past decade, much learning awaits.

Sources of Funding
Dr Khorana is supported by grants from the National Cancer Institute K23 CA120587, the National Heart, Lung, and Blood Institute 1R01HL095190-01, and the V Foundation.

Disclosures
A.K. has received research funding from sanofi-aventis, Eisai, and Bristal Myers Squibb as well as speakers fees and consulting fees from sanofi-aventis and Eisai.
References

New Insights Into Cancer-Associated Thrombosis
Tarek Sousou and Alok A. Khorana

Arterioscler Thromb Vasc Biol. 2009;29:316-320
doi: 10.1161/ATVBAHA.108.182196
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2009 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/29/3/316

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org/subscriptions/