Patterns of USPIO Deposition in Murine Atherosclerosis

To the Editor:

With great interest and curiosity we awaited the publication of the article by Morris et al., ever since the presentation of their preliminary data at the ISMRM conference last year. Their article answers the question whether or not MRI of plaque macrophages in a widely used murine animal model of atherosclerosis is possible with Ferumoxtran-10. This is especially important because this agent is potentially clinical applicable, and no mechanical irritation of the vessel wall intima was performed. The article also underlines the need for further research on this topic, because macrophage content and USPIO uptake in atherosclerotic lesions are apparently not linearly correlated under certain circumstances. The reduction of USPIO uptake rather than macrophage content by p38 MAPK inhibition poses many questions regarding the imaging of therapeutic effects on macrophage content and activity using USPIOs.

Because our working group conducted similar experiments on Ferumoxtran-10 in ApoE knockout mice we would appreciate a discussion of our findings with Joanne Morris and her coworkers. After the injection of 1000 μmol iron per kilogram (kg) body weight, we could observe 2 different patterns of USPIO uptake specifically into atherosclerotic lesions (Figure). In the light of the recent publication by Briley-Saebo et al., it would be interesting to discuss whether Morris et al made similar observations. Different patterns of USPIO uptake have not been described yet and might reflect the different pathways in which USPIOs accumulate in atherosclerotic lesions.

Passive diffusion into the atherosclerotic lesion via the luminal endothelium might be reflected by a homogeneous USPIO uptake into the intimal and subintimal layers (Figure, arrowheads). Colocalization with macrophages may occur through uptake of USPIOs by resident macrophages rather than through immigration of USPIO-labeled monocytes. In this case, increased USPIO content in plaques activated by angiotensin II might also represent increased endothelial permeability.

Circumscribed iron-positive areas in the media (Figure, circles) might be indicative of USPIO delivery via neovascularure or thrombosis. We do not expect residual iron oxides in the vasculature to be a cause of our results, because the half life time of Ferumoxtran-10 at the used dose is believed to be around 1 to 2 hours. We observed the peak in circumscribed iron oxide uptake after 48 hours and a plateau for up to 14 days.

In summary we think that the study of Morris et al contributed substantially to the ongoing research on MRI of macrophage content and activity in murine atherosclerosis. Further studies, however, on the uptake mechanisms of USPIOs into murine atherosclerosis are needed to clarify recent results.

Disclosures

None.

References


Letter to the Editor

Patterns of USPIO Deposition in Murine Atherosclerosis

To the Editor:

With great interest and curiosity we awaited the publication of the article by Morris et al., ever since the presentation of their preliminary data at the ISMRM conference last year. Their article answers the question whether or not MRI of plaque macrophages in a widely used murine animal model of atherosclerosis is possible with Ferumoxtran-10. This is especially important because this agent is potentially clinical applicable, and no mechanical irritation of the vessel wall intima was performed. The article also underlines the need for further research on this topic, because macrophage content and USPIO uptake in atherosclerotic lesions are apparently not linearly correlated under certain circumstances. The reduction of USPIO uptake rather than macrophage content by p38 MAPK inhibition poses many questions regarding the imaging of therapeutic effects on macrophage content and activity using USPIOs.

Because our working group conducted similar experiments on Ferumoxtran-10 in ApoE knockout mice we would appreciate a discussion of our findings with Joanne Morris and her coworkers. After the injection of 1000 μmol iron per kilogram (kg) body weight, we could observe 2 different patterns of USPIO uptake specifically into atherosclerotic lesions (Figure). In the light of the recent publication by Briley-Saebo et al., it would be interesting to discuss whether Morris et al made similar observations. Different patterns of USPIO uptake have not been described yet and might reflect the different pathways in which USPIOs accumulate in atherosclerotic lesions.

Passive diffusion into the atherosclerotic lesion via the luminal endothelium might be reflected by a homogeneous USPIO uptake into the intimal and subintimal layers (Figure, arrowheads). Colocalization with macrophages may occur through uptake of USPIOs by resident macrophages rather than through immigration of USPIO-labeled monocytes. In this case, increased USPIO content in plaques activated by angiotensin II might also represent increased endothelial permeability.

Circumscribed iron-positive areas in the media (Figure, circles) might be indicative of USPIO delivery via neovascularure or thrombosis. We do not expect residual iron oxides in the vasculature to be a cause of our results, because the half life time of Ferumoxtran-10 at the used dose is believed to be around 1 to 2 hours. We observed the peak in circumscribed iron oxide uptake after 48 hours and a plateau for up to 14 days.

In summary we think that the study of Morris et al contributed substantially to the ongoing research on MRI of macrophage content and activity in murine atherosclerosis. Further studies, however, on the uptake mechanisms of USPIOs into murine atherosclerosis are needed to clarify recent results.

Disclosures

None.
Patterns of USPIO Deposition in Murine Atherosclerosis
G. Klug, L. Bauer and W.R. Bauer

doi: 10.1161/ATVBAHA.108.170506
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/28/9/e157

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/