Angiogenesis requires coordinated signaling events among a variety of angiogenic factors and their receptors. Tie-2 is endothelial-specific receptor tyrosine kinase. Angiopoietin-1 (Ang-1) and Angiopoietin-2 (Ang-2) are the two key ligands for the Tie-2 receptor. Ang-1 binds to the Tie-2 receptor and induces Tie-2 phosphorylation.¹⁻³ Ang-2 has been identified as a natural antagonist of Ang-1, inhibiting Ang-1–mediated Tie-2 phosphorylation and angiogenesis.⁴ Angiogenesis is mainly regulated by the interplay between vascular endothelial growth factor (VEGF) and angiopoietins.⁵,⁶ VEGF is required to initiate neovessel formation, whereas Ang-1 is required for further maturation of the neovessel by recruitment of smooth muscle cell (SMC).⁵,⁶ Disruption of Ang-1–Tie-2 signaling has been shown to impede vascular maturation and disrupt vessel formation in the developing embryo.⁴ Ang-2 has been identified as a vessel-stabilizing agent that plays a predominant role in controlling vessel regression. In the absence of VEGF, increased Ang-2 leads to endothelial cell apoptosis, immature neovessel destabilization and neovessel regression.⁷

In patients with diabetes mellitus, coronary collateral vessel formation is significantly impaired during myocardial ischemia.⁸ The molecular mechanisms underlying the impairment of angiogenesis in diabetes have generated much interest but, so far, have remained largely unidentified. Recent studies have revealed that diabetic abnormal angiogenesis is closely associated with an abnormality of the angiopoietins/Tie-2 system.⁹ Our previous studies have demonstrated that disturbed angiopoietins/Tie-2 balance contributes to the hyperglycemic exacerbation of myocardial infarction and impairment of myocardial ischemia-induced neovessel formation in type 1 diabetes.¹⁰ However, what might be wrong with myocardial ischemia-induced neovessel formation and what is the molecular basis that leads to these abnormalities remain unknown. Ang-1 is required for SMC recruitment and neovessel maturation during myocardial ischemia.¹¹ After an early phase of plasticity associated with robust angiogenic response, SMCs were recruited into the infarct neovessels to form muscular arteries and veins, which improve myocardial blood supply and facilitate myocardial repair.¹²⁻¹⁵ To date, little is known about the role of the angiopoietins/Tie-2 system on diabetic impaired myocardial angiogenesis and vascular maturation. Whether disruption of Ang-1–Tie-2 signaling occurs in the diabetic heart, which

Objective—Microvascular insufficiency represents a major cause of end-organ failure among diabetics. The current studies were undertaken to determine whether dysregulation of the angiopoietins/Tie-2 system would result in an impairment of smooth muscle cell (SMC) recruitment and vascular maturation, which contributes to impaired angiogenesis in diabetes.

Methods and Results—Tie-2 expression was significantly attenuated, whereas angiopoietin-2 (Ang-2) was increased in db/db mice subjected to myocardial ischemia. Our morphological analysis showed that the number of SMC coverage area per neovessel was significantly reduced in db/db mice. This was accompanied by a significant reduction of myocardial capillary density and arteriole formation. Interestingly, Angiopoietin-1(Ang-1)–induced SMC recruitment and vessel outgrowth were severely impaired in db/db mice. Our in vitro studies further demonstrated that exposure of mouse heart endothelial cells to high glucose resulted in a significant upregulation of Ang-2 and a downregulation of Tie-2 expression. These alterations led to a significant impairment of Ang-1–induced Akt and eNOS phosphorylation, along with a remarkable impairment of Ang-1–induced endothelial cell migration and endothelial cell spheroid sprouting. Ang-1 gene transfer restored Tie-2 expression and rescued these abnormalities in diabetes.

Conclusions—Our findings underscore the important role of Ang-1–Tie-2 signaling in the diabetes-induced impairment of vascular maturation and angiogenesis. (Arterioscler Thromb Vasc Biol. 2008;28:1606-1613)

Key Words: hyperglycemia ■ angiopoietins/Tie-2 ■ myocardial ischemia ■ angiogenesis ■ type II diabetes
may contribute to the formation of immature vasculature, and thus leading to neovessel regression and reduction of angiogenesis in response to myocardial ischemia, has not yet been determined.

In this study, we hypothesized that diabetes impairs myocardial angiogenesis by a mechanism involving disruption of Ang-1–Tie-2 signaling and vascular maturation. To test our hypotheses, we characterized the expression of the angiopoietins/Tie-2 in vivo using a db/db mouse model subjected to myocardial ischemia, and, in vitro, using mouse heart myocardial endothelial cells (MHMECs) under hyperglycemic conditions. We examined SMC recruitment, neovessel maturation, and the angiogenic response to ischemia or Ang-1 stimulation. Our data indicated that SMC recruitment and myocardial ischemia-induced neovessel maturation were severely impaired in db/db mice. Furthermore, hyperglycemia disrupted Ang-1–Tie-2 signaling and attenuated Ang-1–induced SMC recruitment and angiogenesis.

Materials and Methods

Experimental Diabetic Mouse Myocardial Ischemia Model

C57BLKS/J and db/db mice (12 to 14 weeks of age) were purchased from Jackson Laboratories (Bar Harbor, Me). Myocardial ischemia was achieved by ligation of the left anterior descending coronary artery (LAD). The sham control underwent the surgery without the LAD ligation. All procedures were in conformance with the Institute for Laboratory Animal Research Guide for the Care and Use of Laboratory Animals and were approved by the Vanderbilt University Institutional Animal Care and Use Committee.

Western Blot Analysis

For angiopoietins/Tie-2 and VEGF expression, the membranes were immunoblotted with Ang-1, Ang-2, Tie-2, and VEGF antibodies (1:1000, Santa Cruz). For eNOS and Akt phosphorylation, the membranes were immunoblotted with rabbit antiphospho-Akt and antiphospho-eNOS (1:1000, Cell Signaling). Total eNOS, Akt, and loading control β-Actin were detected using anti-Akt, Anti-eNOS, and anti–β-Actin (1:1000, Cell Signaling Technology) on the same nitrocellulose blots after stripping.

Analysis of Myocardial Capillary and Arteriole Densities

Sections were incubated with fluorescerin-labeled Isolectin B4 (1:200, Molecular Probe, Invitrogen) and Cy3-conjugated anti–smooth muscle actin (SMA, 1:100; Sigma). Myocardial capillary and arteriole (SMA-positive coated neovessels) densities were measured using image acquisition and analysis software (Image J, NIH). To assess the acquisition of a muscular coat by infarct neovessels, the density of coated vessels in the infarcted border zone area was stained for SMA. SMC coverage per neovessel in the infarcted border zone area was measured using image analysis software (Image J, NIH).

Mouse Aortic Ring Sprouting Ex Vivo Model

Mouse aortas were isolated from C57BLKS/J and db/db mice. Vessel outgrowth at day 5 was examined using a Nikon TE-300
Microscope. The area of vessel outgrowth was quantified using image acquisition and analysis software (Image J, NIH).

Endothelial Cell and Smooth Muscle Cell Immunostaining
To characterize Ang-1–induced SMC recruitment, specific EC and SMC markers were directly applied to ex vivo aortic culture explants. Briefly, the cultured explants were incubated with specific cell markers: fluorescein isothiocyanate (FITC)-labeled mouse CD31 antibody (1:100, BD Biosciences) for ECs; and Cy3-conjugated anti–α-smooth muscle actin (1:100) for SMCs. SMC recruitment was quantified by measuring the relative area of SMC/EC coverage using image acquisition and analysis software (Image J, NIH).

Endothelial Cell Migration and Spheroid Angiogenesis Assays
Endothelial cell migration and endothelial cell spheroid sprouting assays were performed as previously described.

Statistical Analysis
The results are expressed as the mean±SD. Statistical analysis was performed using ANOVA followed by a t test corrected for multiple comparisons (Student–Newman–Keuls). Significance was set at \(P<0.05 \).

Results

Dysregulation of the Myocardial Angiopoietins/Tie-2 System in db/db Mice Subjected to Myocardial Ischemia
Wild-type (WT) mouse hearts exposed to ischemia for 24 hours showed a significant increase in Tie-2 expression, whereas myocardial ischemia (IS)-induced Tie-2 expression was significantly blunted in db/db mouse hearts (Figure 1A). Relative to WT mice, db/db mice had enhanced Ang-2 expression which was further increased by myocardial ischemia (Figure 1B). Ang-1 expression did not change significantly in either WT or db/db mouse hearts (data not shown). To examine the correlation between angiopoietins/Tie-2 and VEGF in diabetes-induced impairment of angiogenesis, we also examined myocardial VEGF level. Myocardial ischemia–induced VEGF expression was diminished in db/db mouse hearts subjected to ischemia for 24 hours (Figure 1C).

Impaired Akt and eNOS Phosphorylation in db/db Mice
Next, we examined Akt and eNOS phosphorylation in db/db mice. Our Western blot analysis data showed that Akt and
eNOS phosphorylation was significantly reduced in the db/db mouse hearts (Figure 2A and 2B). Additionally, total Akt and eNOS expression was also significantly reduced in db/db mice both at basal level and subjected to myocardial ischemia (Figure 2C and 2D).

Myocardial Ischemia–Induced Capillary and Arteriole Formation Are Impaired in db/db Mice

WT mouse hearts subjected to ischemia showed a significant increase in myocardial capillary density in the border zone of the infarcted myocardium (Figure 3A). Furthermore, the number of arterioles in the border zone of the infarcted myocardium was also significantly increased (Figure 3B). Myocardial ischemia–induced capillary and arteriole formation in the border and remote area of the infarcted myocardium were significantly less in the hearts of db/db mice compared to WT mice (Figure 3A and 3B; supplemental Figure I and II, available online at http://atvb.ahajournals.org). To further determine whether rescuing impaired Ang-1–Tie-2 signaling can reverse impaired angiogenesis in the diabetic heart, diabetic db/db mice were given an intravenous injection of 1×10⁸ PFU Ad-Ang-1. Ang-1 protein expression was significantly increased in the hearts of Ad-Ang-1–treated db/db mice. Ang-1 gene transfer resulted in the restoration of Tie-2 expression in db/db mice (Figure 3C). Furthermore, Ang-1 gene transfer led to a significant improvement in myocardial capillary formation in the db/db mice (Figure 3D).

Impairment of Neovessel Maturation in db/db Mice Subjected to Myocardial Ischemia

As shown in Figure 4A, the border zone of the infarcted myocardial area contained a significant number of mature, coated neovessels in WT mice, whereas few coated neoves-

Figure 3. A and B, Myocardial ischemia-induced capillary and arteriole formation was significantly reduced in db/db mice. C, Myocardial Ang-1 and Tie-2 expression was increased in Ad-Ang-1–treated db/db mice. D, Systemic administration of Ad-Ang-1 significantly increased capillary density in db/db mice. n=6 to 8, *P<0.05.
Ang-1–Induced SMC Recruitment Is Impaired in db/db Mice

Stimulation of aortic rings isolated from WT mice with Ang-1 (250 ng/mL) led to a significant increase in SMC recruitment (Figure 4B). Ang-1–induced SMC/EC coverage was significantly less in aortic rings isolated from db/db mice than in those from WT mice (Figure 4B). The area of vessel outgrowth in response to Ang-1 stimulation was significantly reduced in the aortic rings isolated from db/db diabetic mice than in those from WT mice (supplemental Figure III).

High Glucose Dysregulates Angiopoietins/
Tie-2 Expression and Impairs Ang-1–Induced Angiogenesis

Exposure of MHMECs to high glucose (HG; 25 mmol/L) resulted in a significant increase in Ang-2 expression; this was accompanied by a dramatic decrease in Tie-2 expression as compared to low glucose conditions (LG; 5 mmol/L; Figure 5A). Ang-1 expression was undetectable in MHMECs both under LG and HG conditions (data not shown). Stimulation of MHMECs with Ang-1 (250 ng/mL) led to a gradual increase in Akt and eNOS phosphorylation under LG conditions. Ang-1–induced Akt and eNOS phosphorylation were significantly blunted under HG conditions (Figure 5B and 5C). This was accompanied by a significant reduction of MHMEC migration in response to Ang-1 (supplemental Figure IV). Furthermore, Ang-1–induced endothelial cell spheroid sprouts were dramatically suppressed under HG conditions (supplemental Figure IV).

To examine whether overexpression of Ang-1 to rescue Ang-1–Tie-2 signaling can restore angiogenesis under HG conditions, MHMECs were first infected with Ad–Ang-1 for 24 hours. The infected cells were then exposed to HG conditions for 72 hours. Overexpression of Ang-1 significantly improved the HG-induced impairment of MHMEC spheroid sprouting (supplemental Figure V).

Discussion

In this study, we have demonstrated that Tie-2 expression was significantly attenuated, whereas Ang-2 expression was increased under hyperglycemia and in db/db mice subjected to myocardial ischemia. Ang-1 plays a critical role in regulating endothelial sprouting and SMC recruitment, whereas Ang-1–induced SMC recruitment and ischemia-induced neovessel maturation were impaired in db/db mouse hearts. These were accompanied by a significant reduction of angiogenesis. Restoration of Tie-2 expression by Ang-1 gene transfer reversed the impaired angiogenesis in db/db mouse hearts. Our present study has provided additional mechanistic evidence that hyperglycemia may impair angiogenesis by a mechanism involving disruption of Ang-1–Tie-2 signaling in diabetes.

Diabetic reduced angiogenesis is associated with defective angiogenic growth factor expression as well as the impairment of angiogenic signaling transduction, such as the loss Akt/eNOS signaling.19–21 Tie-2 expression is specifically localized to the vascular endothelium and is upregulated by hypoxia and ischemia.22–26 Reduction of Tie-2 expression has been found in the experimental pulmonary hypertension model. Furthermore, restoration of Tie-2 expression by Ang-1 gene transfer protects the pulmonary microvasculature and attenuates pulmonary hypertension progression.27 Our data for the first time have demonstrated that myocardial ischemia–induced Tie-2 expression was significantly blunted in db/db mice. Exposure of MHMECs to high glucose resulted in a significant reduction of Tie-2 expression. This was accompanied by a significant impairment of Ang-1–induced Akt/eNOS phosphorylation and angiogenesis. These results led us to speculate that reduction of Tie-2 expression and disruption of Ang-1–Tie-2 signaling under hyperglycemic conditions may be the underlying cause of impaired angiogenesis in diabetics. This notion was further substantiated by our data which revealed that overexpression of Ang-1 restored Tie-2 expression and significantly improved angiogenesis both in vitro and in vivo myocardial angiogenesis models.
Sustained elevation of Ang-2 expression has been shown to disrupt the formation of capillary-like structures and impaired angiogenesis. Furthermore, chronic systemic delivery of Ang-2 resulted in a dramatic reduction of myocardial vasculature. Recent clinical studies revealed that the plasma Ang-2 level was increased in patients with diabetes. Intriguingly, administration of Ang-2 into the eyes of normal rats led to a dose-dependent pericyte loss whereas heterozygous Ang-2 deficiency completely prevented diabetes-induced pericyte loss. Exposure of mesangial cells to high glucose dramatically increased Ang-2 expression and significantly inhibited capillary tubule formation. Consistent with these findings, our data showed that Ang-2 expression was upregulated in MHMECs under hyperglycemic conditions and in diabetic db/db mice. Furthermore, Ang-1–induced endothelial cell spheroid sprouting was significantly decreased in MHMECs in the presence of exogenous Ang-2 (unpublished data, Chen JX, 2007). As such, we reasoned that elevation of Ang-2 might be competition with Ang-1 and negatively interfere with Ang-1–Tie-2 signaling and impair angiogenesis in diabetes. Our data showed that Ang-1 gene transfer rescued the hyperglycemia-induced impairment of endothelial sprouting, further suggesting the possibility that the overexpression of Ang-1 may overcome endogenous blocking by Ang-2, thereby restoring angiogenesis in diabetes.

Neovessel maturation is critical for the stabilization and repairing of the myocardial infarcted area. After an early phase of plasticity associated with robust angiogenic response, SMCs were recruited into the neovessels to form muscular arteries and veins, which improve myocardial blood supply and facilitate myocardial repair. Recruitment of SMCs in the myocardial infarcted area is also important for the prevention of neovessel from regression. VEGF is required to initiate neovessel formation, whereas Ang-1–Tie-2 signaling is required for SMC recruitment and neovessel maturation. Importantly, Ang-1–Tie-2 signaling is crucial in their development as stable and leak-resistant neovessels during myocardial ischemia. Data from our laboratory and other investigators revealed that Ang-1 gene transfer improved neovessel density in acute myocardial infarction rat and STZ hyperglycemic mice. Furthermore, Ang-1 gene transfer stabilized the angiogenic response for longer duration, and led to the formation of larger number of matured vascular structures. In light of these findings, we have examined SMC recruitment and neovessel maturation in diabetic d/db mouse using ex vivo and in vivo models. Our data clearly demonstrated that Ang-1–induced SMC recruit-
In summary, our present data demonstrate that, in the absence of VEGF, hyperglycemia disrupts the angiopoietins/Tie-2 balance in favor of Ang-2, and blunts Ang-1–Tie-2 angiogenic signaling, thus leading to the impairment of SMC recruitment, immature neovessel formation, and reduced angiogenesis (Figure 6). Given that disruption of Ang-1–Tie-2 signaling and vascular maturation is an important contributor to the impairment of angiogenesis in diabetes, therefore, rescue of immature vasculature should be considered as a novel therapeutic strategy in treatment of diabetic impaired myocardial collateral and angiogenesis complications.

Sources of Funding

This work was supported by grants from the American Heart Association grant 0556196B and NIH grant DK074995 to J.X. Chen.

Disclosures

None.

References

15. Chen JX, Zeng H, Tuo QH, Yu H, Meyrick B, Aschner JL. NADPH oxidase modulates myocardial Akt, ERK1/2 activation and angiogenesis.

![Diabetes Hyperglycemia](http://atvb.ahajournals.org/)

Figure 6. Current working hypothesis of intracellular mechanisms by which hyperglycemia causes impairment of angiogenesis in diabetes. Hyperglycemia disrupts the angiopoietins/Tie-2 balance in favor of Ang-2 and attenuates Ang-1–Tie-2 angiogenic signaling, thus leading to loss of SMC recruitment, immature neovessel formation, and neovessel regression in the deficiency of VEGF.

- **Diabetes Hyperglycemia**
- **Ang-2** ↑
- **VEGF** ↓
- **Ang-1-Tie-2 signaling** ↓
- **Vascular destabilization**
- **Loss of SMC recruitment**
- **Immature neovessel formation**
- **Vascular regression and impairment of angiogenesis**
after hypoxia/reoxygenation. Am J Physiol Heart Circ Physiol. 2007;292:
H1664–H1674.
17. Chen JX, Zeng H, Lawrence ML, Blackwell TS, Meyrick B. Angiopoietin-1-induced angiogenesis is modulated by endothelial NADPH oxidase. Am J Physiol Heart Circ Physiol. 2006;291:
H1563–H1572.
H948–H956.
31. Lim HS, Lip GY, Blann AD. Angiopoietin-1 and angiopoietin-2 in diabetes mellitus: relationship to VEGF, glycaemic control, endothelial damage/dysfunction and atherosclerosis. Atherosclerosis. 2005;180:
113–118.
Disruption of Ang-1/Tie-2 Signaling Contributes to the Impaired Myocardial Vascular Maturation and Angiogenesis in Type II Diabetic Mice
Jian-Xiong Chen and Amanda Stinnett

Arterioscler Thromb Vasc Biol. 2008;28:1606-1613; originally published online June 12, 2008; doi: 10.1161/ATVBAHA.108.169235

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/28/9/1606

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2008/06/12/ATVBAHA.108.169235.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/
Figure I. Representative images showing that in WT mice, myocardial ischemia for 14 days significantly increased myocardial capillary density, whereas myocardial capillary density was markedly impaired in db/db mice. Endothelial cells in the remote zone of myocardial infarctions were stained with LB4 (green, 10X) and nuclei by DAPI counterstaining (blue, 10x).
Figure II

Figure II. Representative images showing that in WT mice, but not in diabetic db/db mice, myocardial ischemia significantly increased myocardial arteriole formation. SMC in the remote zone of myocardial infarctions was stained with smooth muscle actin (Red, 10X) and nuclei by DAPI counterstaining (blue, 10x).
Figure III. Representative images of vessel outgrowth and quantitative analysis of vessel outgrowth area in WT or db/db mice after being stimulated with Ang-1 for 5 days. Quantitative analysis area of vessel outgrowth revealing that stimulation of aortic rings isolated from WT mice with Ang-1 (250ng/ml) for 5 days led to a significant increase in vessel outgrowth (4X), whereas Ang-1-induced vessel outgrowth was dramatically attenuated in aortic rings isolated from db/db mice. (n=8 mice, *p<0.05).
Figure IV

Figure IV. Left panel: Basal MHMEC migration capacity and Ang-1-induced endothelial cell migration were significantly decreased under HG conditions (n=4, * p< 0.05).

Right panel: Quantitative analysis of the length of sprouts from endothelial cell spheroids. Exposure of MHMEC to HG resulted in a significant decrease in Ang-1-stimulated endothelial cell sprout length (n=4, * p< 0.05).
Figure V. Representative images and quantitative analysis of the length of sprouts from endothelial cell spheroids. Overexpression of Ang-1 in MHMEC significantly increased endothelial cell sprouting under both LG and HG conditions (n=4, * p<0.05).