Coexpression of CLA-1 and Human PDZK1 in Murine Liver Modulates HDL Cholesterol Metabolism

Hidenori Komori, Hidenori Arai, Terumi Kashima, Thierry Huby, Toru Kita, Yukihiro Ueda

Objective—In rodents scavenger receptor class B type I (SR-BI) is a key molecule for selective uptake of cholesteryl ester from high-density lipoprotein (HDL). This study was aimed to clarify the role of the human SR-BI/CD36 and LIMPII Analogues-1 (CLA-1) as a molecular target of selective uptake of cholesteryl ester from HDL in vivo.

Methods and Results—To clarify the function and regulation of CLA-1 in vivo we produced CLA-1 BAC transgenic mice. In spite of abundant hepatic RNA expression of CLA-1, CLA-1 BAC transgenic mice had no significant effect on mouse HDL cholesterol. Although coexpression of a human scaffolding protein PDZK1 along with CLA-1 enhanced hepatic CLA-1 expression, it did not affect mouse HDL cholesterol levels, either. However, in the presence of human apoA-1, HDL cholesterol level and size were significantly reduced in CLA-1 transgenic mice, and its reduction was more pronounced in CLA-1/human PDZK1 double transgenic mouse.

Conclusions—We established a mouse model to study human reverse cholesterol transport by expressing CLA-1, human PDZK1, and human apoA-I gene. Our results imply that enhancing CLA-1 expression by human PDZK1 in the liver can modulate human HDL cholesterol metabolism and possibly enhance reverse cholesterol transport to prevent the progression of atherosclerosis in human. (Arterioscler Thromb Vasc Biol. 2008;28:1298-1303)

Key Words: lipoproteins · receptor · transgenic model · apolipoproteins · genetically altered mice

The inverse correlation between plasma high-density lipoprotein (HDL) cholesterol levels and the risk of the coronary heart disease has been established.1,2 HDL is an antiatherogenic lipoprotein involved in the reverse cholesterol transport (RCT) system where HDL removes excess cholesteryl ester (CE) from peripheral tissues and carries it back to the liver. Therefore, establishing a new therapeutic strategy which can enhance RCT is of great benefit to prevent the development of coronary heart disease.

One of the candidate molecules for RCT is scavenger receptor class B type I (SR-BI). SR-BI was first cloned in 1994 as a modified low-density lipoprotein (LDL) receptor.3,4 In 1996 this receptor was found to be an HDL receptor that mediates selective uptake of CE from HDL to the liver.5,6 SR-BI interacts with HDL via apoA-I, which is a major apolipoprotein on HDL molecules,7 and is necessary for mediating CE uptake.8,9

We and others showed that increasing the expression of SR-BI in the liver enhances RCT resulting in a decrease of atheromatous lesion formation in spite of the decreased plasma levels of HDL cholesterol.10–13 In contrast, decreased expression of SR-BI stimulates the lesion formation in spite of increased HDL cholesterol levels.14–16 Thus, in rodents SR-BI is a key molecule as an HDL receptor in the liver affecting RCT and the pathogenesis of atherosclerosis. These observations suggest SR-BI as a molecular target for antiatherosclerosis therapy.

However, the RCT system in human is more complicated than in rodents, and it has been hard to study the role of SR-BI in human because of the presence of CE transfer protein (CETP). The human homologue of SR-BI was independently cloned as CD36 and LIMPII analogous-1 (CLA-1).17,18 CLA-1 functions as a receptor for HDL as well as LDL, VLDL, modified LDL, hepatitis C virus (HCV) in vitro.19–22 In human CLA-1 is expressed in liver, adrenal gland, testis, and macrophages in the atherosclerotic lesion.20,22,23 However, the physiological function and the regulation of this molecule still remain unknown.

Tissue expression of SR-BI is regulated both transcriptionally and posttranscriptionally. PDZK1 was cloned as an associating protein with SR-BI stabilizing SR-BI protein on the hepatocyte.24 PDZK1 is found in liver, kidney, small intestine, pancreas, adrenal cortex, gastrointestinal tract, and testis in human tissue samples.25 PDZK1 is a 70-kDa protein composed of 4 functional PDZ domains that play an important role in the transport, localization, assembly, and scaffolding of membrane proteins. Coexpression of hamster SR-BI and rat PDZK1 in CHO cells increases SR-BI expression.24 In

Original received October 11, 2007; final version accepted March 20, 2008.

From the Departments of Cardiovascular Medicine (H.K., T.K., Y.U.) and Geriatric Medicine (H.A.), Kyoto University Graduate School of Medicine, Japan; Shiga Medical Center Research Institute (T.K.), Moriyama, Japan; and INSERM U551 (T.H.), Dyslipoproteinemia and Atherosclerosis Research Unit, Hôpital de la Pitié, Paris, France. Present address for Y.U.: Kei-Han-Na Hospital, Hirakata, Japan.

Correspondence to Hidenori Arai, MD, PhD, Department of Geriatric Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan. E-mail harai@kuhp.kyoto-u.ac.jp

Arterioscler Thromb Vasc Biol is available at http://atvb.ahajournals.org DOI: 10.1161/ATVBAHA.108.165845

1298
contrast, hepatic downregulation of PDZK1 with fibrates, MAP17 transgenic mouse, and PDZK1-deleted mice showed decreased hepatic SR-BI protein expression posttranscriptionally.26–28 Interestingly, PDZK1-deletion mice show dramatically reduced hepatic SR-BI expression along with increased plasma cholesterol levels.26,29 Thus in the liver, but not in steroidogenic tissues,26 posttranscriptional control of SR-BI proteins expression depends on the presence of PDZK1 in rodents.

To explore the function and the regulatory mechanism of CLA-1 in vivo, we generated CLA-1 transgenic and human PDZK1 transgenic mouse by introducing human BAC clones. Then we produced double transgenic mouse coexpressing CLA-1 and human PDZK1 to enhance hepatic CLA-1 expression. We investigated CLA-1 expression in the liver along with PDZK1 and their effect on HDL metabolism.

Methods

Bacterial Artificial Chromozome Isolation and Generating Transgenic Mouse

Bacterial artificial chromozome (BAC) clone 265I19 containing full length of the 75-Kb CLA-1 gene as well as 70-Kb upstream and 25-Kb downstream sequence (Figure 1A) was obtained from Research Genetics by polymerase chain reaction (PCR) screening. BAC was isolated by alkali method and the backbone, pBELOBAC11, was removed by pulsed field gel (PFG) electrophoresis. The linearized fragment was purified by phenol-chloroform extraction and then by dialyzing against an injection buffer (10 mmol/L Tris-HCl pH 7.5; 1 mmol/L EDTA; 100 mmol/L NaCl) through Millipore type VS 0.025-mm membrane (Millipore). Purified DNA was diluted to 5.0 μg/mL for pronuclear injection into FVB mouse fertilized embryos (B.L. Hogan, *Manipulating the Mouse Embryo: A Laboratory Manual*, Cold Springs Harbor Express). By the same method the 180-kb genomic DNA fragment containing the full-length sequence of human PDZK1 with both 34-kbp upstream of exon 1 and 109 kbp downstream of exon 10 (Figure 2A) isolated as BAC clone 354F1 was used to generate human PDZK1 transgenic mouse.

Other Genetically Engineered Mice

SR-BI-deleted (SR-BI^{−/−}) mouse was generated as described.30 Human apoA-I transgenic mouse (h- apoA_I^{Tg})³¹ and apoA-I–deleted mouse (m- apoA_I^{Tg})³² were obtained from the Jackson Laboratory (Bar Harbor, Me). All transgenics were established in an FVB strain, and SR-BI^{−/−} and m- apoA_I^{Tg} mice were back-crossed with FVB mice at least 6 generations, respectively, so that all mice used in the current study have FVB genetic background. All animals in the current study were caged in Kyoto University Animal Facility, which is air-conditioned with controlled light-cycle, and were manipulated along with the Animal Welfare Regulations of Japanese government.

Plasma Lipid and HDL Particle Analysis

At the age of 8 weeks after fed normal chow, blood samples of female mouse were collected by tail vein bleeding in EDTA-coated Microtainer tube (Becton Dickinson and Company). Samples were centrifuged at 7500g for 5 minutes and stored at −80°C until analysis. Plasma total (TC) and free cholesterol (FC) was determined by cholesterol oxidase method using Cholesterol E-test Wako (Wako) for TC and Free Cholesterol E-test Wako for FC. Esterified cholesterol (CE) concentration was calculated by subtracting FC from TC. Plasma levels of HDL cholesterol were evaluated by measuring cholesterol after precipitating the apolipoprotein B containing fraction with 6.5% polyethylene glycol (PEG).33 Cholesterol profile in plasma lipoproteins was analyzed by a dual detection high-performance liquid chromatography (HPLC) system with 2 tandem TSKgel Lipopropak_{XL} columns according to the method of Usui et al (Lipidsearch System, Skylight Biotech Inc).34
Results

Gene Expression and Lipid Profile of CLA-1 BAC Transgenic Mouse

To clarify the function of CLA-1 in vivo we generated CLA-1 transgenic mouse. The inclusion of endogenous regulatory elements within the BAC transgene allows assessment of physiological tissue distribution and regulation of CLA-1 (Figure 1A). The CLA-1 BAC clone does not contain any other genes. To confirm the expression of the transgene in various tissues of CLA-1 transgenic mice (CLA-1 TG), RNase protection assays were performed (Figure 1B). Under physiological regulation by the human promoter, the expression pattern of CLA-1 was quite similar to that of the mouse SR-BI gene. Expression of the CLA-1 gene was high in liver, adrenal gland, intestine, and ovary. CLA-1 was also expressed in macrophages of CLA-1 TG (Figure 1C).

To investigate the effect of the transgene on lipid metabolism, plasma levels of total cholesterol (TC) and HDL cholesterol (HDL-C) were determined. Plasma TC levels of 10 transgenic mice were not significantly decreased compared with those of the littermate (WT) animals (CLA-1 TG: 86.5 ± 12.1 mg/dL versus WT 99.5 ± 9.5 mg/dL; n.s.). No significant difference was found in plasma HDL-C levels (CLA-1 TG 53.1 ± 23.0 mg/dL versus WT 63.9 ± 10.8 mg/dL; n.s.), either. Although we have established 2 independent transgenic lines, there was no difference in cholesterol levels in both lines. There was no gender difference of cholesterol levels in these mice. Thus CLA-1 expression in addition to endogenous SR-BI did not affect plasma cholesterol levels.

CLA-1 Protein Expression Was Increased by Coexpression of Human PDZK1 in Liver

Because PDZK1 is an important regulator for SR-BI expression, we assumed that expression of human PDZK1 can be effective for the expression and function of CLA-1. To this end we first produced human PDZK1 BAC transgenic mouse (h-PDZK1). The BAC fragment including the whole human PDZK1 gene with 34-kb upstream and 110-kb downstream sequences was prepared for microinjection (Figure 2A). To evaluate the expression pattern of PDZK1 transgene and to distinguish it from the endogenous PDZK1 gene, we performed RT-PCR in various tissues of h-PDZK1 mice. Similar to endogenous PDZK1 expression in liver, kidney, and intestine, the human PDZK1 transgene was expressed in liver, kidney, adrenal gland, and ovary (Figure 2B), which is consistent to the previous report.24 Neither human nor mouse PDZK1, however, was not expressed in macrophages (data not shown).

To assess the effect of human PDZK1 expression on hepatic CLA-1 expression, we then produced CLA-1/h-PDZK1 double transgenic mouse and performed immunoblotting analysis of hepatic CLA-1 in these mice (Figure 3A). To exclude the effect of endogenous SR-BI and its cross-

reaction to the SR-BI/CLA-1 antibody, we introduced the CLA-1 transgene in SR-BI+/− mice, producing SR-BI+/−/CLA-1 and SR-BI+/−/CLA-1/h-PDZK1 mice. Because the PDZK1 antibody does not distinguish between human and mouse PDZK1, the band corresponding to PDZK1 in h-PDZK1 mouse represent the sum of endogenous and transgenic expression. Compared with SR-BI expression in WT mice, SR-BI+/−/CLA-1 mouse expressed a significantly lower level of CLA-1 protein in the liver (Figure 3B). However, introduction of the PDZK1 transgene (SR-BI+/−/CLA-1/h-PDZK1 mice) significantly increased expression of human PDZK1 protein along with CLA-1 protein expression. Thus human PDZK1 expression in the liver enhanced hepatic CLA-1 protein expression.

Species Difference in apoA-I–SR-BI Interaction on CE Uptake

To determine whether CLA-1 can regulate HDL-C metabolism in the presence of human PDZK1, we measured cholesterol levels in these mice (Table). HDL-C was increased by approximately 2 folds in the absence of SR-BI or CLA-1 (WT: 96.3 ± 17.3 mg/dL versus SR-BI+/−: 209.0 ± 17.8 mg/dL; P < 0.05). However, introducing lower levels of CLA-1 (SR-
Table. Plasma Cholesterol Levels in Transgenic Mice

<table>
<thead>
<tr>
<th>ApoA-I Genotype</th>
<th>SR-BI^{+/+}</th>
<th>SR-BI^{+/−}</th>
<th>SR-BI^{+/−}/CLA-1</th>
<th>SR-BI^{+/−}/CLA-1/h-PDZK1</th>
</tr>
</thead>
<tbody>
<tr>
<td>mapoAI^{+/+}</td>
<td>TC</td>
<td>111.3±15.1* (-53%)</td>
<td>234.0±18.8</td>
<td>215.8±20.5 (-8%)</td>
</tr>
<tr>
<td></td>
<td>HDL-C</td>
<td>96.3±17.3* (-54%)</td>
<td>209.0±17.8</td>
<td>194.7±22.8 (-7%)</td>
</tr>
<tr>
<td></td>
<td>CE</td>
<td>79.9±6.7* (-35%)</td>
<td>123.7±32.6</td>
<td>143.1±14.0 (+16%)</td>
</tr>
<tr>
<td></td>
<td>FC</td>
<td>31.4±2.6* (-72%)</td>
<td>110.3±29.1</td>
<td>72.7±7.1 (-34%)</td>
</tr>
<tr>
<td>mapoAI^{+/−}/hapoAI^{−/−}</td>
<td>TC</td>
<td>162.1±16.5† (-72%)</td>
<td>580.2±85.5</td>
<td>359.8±42.5† (-38%)</td>
</tr>
<tr>
<td></td>
<td>HDL-C</td>
<td>147.9±15.4† (-73%)</td>
<td>557.3±38.3</td>
<td>339.8±36.9† (-39%)</td>
</tr>
<tr>
<td></td>
<td>CE</td>
<td>114.4±5.5† (-67%)</td>
<td>342.6±90.9</td>
<td>235.2±40.9† (-31%)</td>
</tr>
<tr>
<td></td>
<td>FC</td>
<td>47.7±2.3† (-80%)</td>
<td>237.6±63.0</td>
<td>124.6±21.7† (-48%)</td>
</tr>
</tbody>
</table>

Values are expressed as means±SD (mg/dL). TC indicates total cholesterol; HDL-C, HDL cholesterol; CE, esterified cholesterol; FC, free cholesterol; mapoAI, mouse apoA-I; hapoAI, human apoA-I.

*P<0.05 vs mapoAI^{+/+}/SR-BI^{+/−}; †P<0.05 vs mapoAI^{+/−}/hapoAI/SR-BI^{+/−}.

(−%) percent reduction compared to the value of SR-BI^{+/−} in each apoA-I genotype.

Discussion

In this study we have established a mouse model to study human RCT by coexpressing of CLA-1, human PDZK1, and human apoA-I gene and found that CLA-1 expression plays an important role in plasma HDL cholesterol metabolism in vivo. Therefore, this model would be a useful tool to study the function of human CLA-1 and its effect on HDL metabolism. Because we have used BAC clones for transgenic mice to obtain physiological levels of expression, this could be another advantage for in vivo study.

Upregulating hepatic SR-BI can prevent atherosclerosis by accelerating RCT in rodents. However, RCT is more complicated in human. Human has another mechanism to transfer CLA-1 into HDL particles in vivo.
CE in HDL particles to the liver, which is mediated by CETP. In CETP-deficient patients, HDL-C levels are higher than people with CETP, suggesting that SR-BI–dependent RCT is less important in human lipid metabolism than in rodents. However, there is a huge variability in HDL cholesterol levels in those patients, also suggesting a role of CLA-1 and other molecules in RCT in human. Therefore, by introducing CETP in this model we might be able to produce a model that resembles human RCT.

Ikemoto et al show that PDZK1 can bind its N-terminal PDZ domain to the C terminus of SR-BI in vitro and in vivo and suggest that PDZK1 contributes to the proper sorting and delivery of SR-BI to the plasma membrane in hepatocytes as well as to its stability and function in the liver.24 We have shown that expression of human PDZK1 enhanced CLA-1 protein expression compared with the mice expressing only CLA-1. Our animal model coexpressing both CLA-1 and human PDZK1 demonstrates that human PDZK1 is an important enhancer of CLA-1 expression in the liver. For the interaction between SR-BI and PDZK1 4 C-terminal amino acids of SR-BI are essential, which are preserved completely in various species. Despite containing the same 4 C-terminal amino acids mouse PDZK1 could not fully stabilize CLA-1 in the liver. These species difference may be caused by a higher constructive change of protein for the molecular interaction. Similarly different SR-BI reaction to the drugs between human and mouse might be explained by the species-specific involvement of PDZK1.

Our data indicate that CLA-1 can selectively uptake CE from HDL containing human apoA-I, suggesting a species difference in apoA-I–SR-BI interaction in the CE uptake mechanism, in spite of its high levels of homology by 80% amino acid identity between mouse SR-BI and CLA-1. It is not clearly known which site of apoA-I is critical for the binding to SR-BI because apoA-I contains multiple regions with amphipatic α-helical repeats, which can bind to SR-BI.7 Comparing amino acids sequences between human and mouse apoA-I, the carboxyl-terminal region (residue 185 to 243) shows 60% identity between human and mouse, whereas the amino-terminal region (residue 1 to 43) and the central core region (residue 68 to 185) have 72% identity. The carboxyl terminus of apoA-I is involved in protein-lipid interaction, which is critical for the initial rapid binding to HDL, cholesterol efflux from the plasma membrane, and binding to the receptor.99 Gong et al have reported that the difference of mean hydrophobicity in the helical segment may be responsible for lower efficiency of mouse apoA-I in its stability and lipid binding than of human apoA-I.40 Thus the constructive difference in the carboxyl terminus may affect the conformation of HDL and contribute to species-specific binding.

We have demonstrated that FC was decreased by the expression of CLA-1 and human-PDZK1, but not CE in mice with mouse apoA-I. SR-BI has been reported to mediate not only selective uptake of HDL-CE but also bidirectional transfer of FC between HDL and cells.41,42 SR-BI–mediated cellular uptake of FC and CE correlates with the expression level of SR-BI in different cell lines.41 In vivo SR-BI promotes the uptake of HDL-FC and facilitates the rapid clearance of HDL-FC by the liver into bile.43 However, FC efflux mediated by SR-BI seems to occur independently of acceptor binding to SR-BI.44 Therefore, it is conceivable that CLA-1 could mediate the uptake of FC from HDL particles independent of species-specific apoA-I. In vitro study is necessary to address this issue.

Hepatitis C virus (HCV) is known to infect hepatocytes via CLA-1. However, mouse SR-BI is not able to bind E2, the envelope glycoprotein of HCV.21 Because of the species specificity of HCV infection as we found in apoA-I interaction, HCV infection can be studied in vivo only in a chimpanzee model. Therefore, our murine model expressing CLA-1 can be a useful model to study the mechanism of HCV infection.

In conclusion our data implicate that CLA-1 could modulate HDL cholesterol metabolism in human as an HDL receptor in the liver and that CLA-1 and PDZK1 are possible molecular targets for atherothrombotic strategies in human.

Sources of Funding
This work was partially supported by a research grant from Otsuka Pharmaceutical Co Ltd. (Tokyo, Japan) for Y. Ueda. This work was supported by a Grant-in-Aid for Scientific Research (c) to Y. Ueda (NO. 18590984) from the Ministry of Education, Science, Sports, Culture, and Technology of Japan.

Disclosures
None.

References
CLA-1 Modulates HDL Cholesterol Metabolism

19. Calvo D, Gomez-Coronado D, Lasuncion MA, Vega MA. CLA-1 is an 85-kDa plasma membrane glycoprotein that acts as a high-affinity receptor for both native (HDL, LDL, and VLDL) and modified (OxLDL and AcLDL) lipoproteins. *Arterioscler Thromb Vasc Biol*. 1997;17:2341–2349.

Coexpression of CLA-1 and Human PDZK1 in Murine Liver Modulates HDL Cholesterol Metabolism
Hidenori Komori, Hidenori Arai, Terumi Kashima, Thierry Huby, Toru Kita and Yukihioko Ueda

Arterioscler Thromb Vasc Biol. 2008;28:1298-1303; originally published online April 10, 2008
doi: 10.1161/ATVBAHA.108.165845
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/28/7/1298

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2008/06/09/ATVBAHA.108.165845.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/
Materials and Methods

Genotyping

Founders were genotyped with DNA extracted from tail pieces. The presence of the target allele in DNA was detected by PCR amplification using primer SRBI F55 5’-ACACCTTGCTGCTGAGGGAGT-3’ in combination with either primer SRBI intron R06 5’-ACTTCCCTATGGAAGGTAAACCGA-3’ or primer SRBI R177 5’-TCTTGAGCACCTGCTGCTTGAT-3’ to define homozygous knockout for SR-BI. Combination with primer mouse apoAI+548R 5’-GAGGATTCAAACCTGGGACACATAGTC-3’ either with mouse apoAI neoF738 5’-TTCCC'TCGTTTTACGGTATCG-3’ or mouse apoAI+283F 5’-CTGGTCTTCCTGACAGGTAGG-3’ were used for determination of intrinsic apoA-I gene deletion. Genotyping for transgenics was determined by PCR with specific 2 primer sets for CLA-1 transgenics; CLA-1 5’endF322 5’ GTCAGAATGCAAGGACGCAA-3’ and 5’endR652 5’ CCCTCTCCTCCTATCGGGA-3’, CLA-1 F2142 5’ TTACACAGGCCTCGGAAAAC-3’ and R2409 5’-CTCAGCCTGGGCACCTATAA-3’; 2 primer sets for human PDZKI transgenics; human PDZK1 5’end F2 5’-CAGAGACAGAATTCCTGAGTGAACG-3’ and 5’end
R2 5’-AAGGCTTTTCTGAGGTCGGTTTA-3’, F1748 5’-TATCATTTGTCTTACAGGCGGCTATT-3’ and R2040 5’-CGGGTTCATGGTATTTATTCTAGCAAC-3’; 1 primer set for human apoA-I transgenics; human apoAI341F 5’-TCCTCTGCCAACACAATGGAC-3’ and 72R 5’-CAAGGCCTGAACCTTGAGCTG-3’, respectively.

RNA isolation and analysis

Animals were deep-anesthetized with 2.5% avertin and sacrificed by cervical dislocation. Total RNAs from different tissues were isolated utilizing Sepazol RNA I (Nacalai Tesque, Kyoto, Japan). RNase protection assays were performed with 10 μg of total RNA using RPA II kit (Ambion, Austin, TX) and 32P-UTP-labeled probes transcribed with MAXIscript-T7 kit (Ambion, Austin, TX) as manufacturer’s protocols. Human PDZK1 and mouse PDZK1 mRNA expression were confirmed by reverse transcription and polymerase chain reaction (RT-PCR) employing One Step RT-PCR Kit (QAIGEN, Chatsworth, CA): 0.5 μg of total RNA was digested with DNase I, reverse-transcribed, and amplified with inter-exonic primer sets species specific for cDNA according to the instruction.

CLA-1 expression in peritoneal macrophage

Macrophages were collected from wild type, SR-BI^{−/−}, SR-BI^{−/−}/CLA-I mice 3days after
intraperitoneal injection of thioglycollate (2.9%, 1.0 ml). Cells were plated onto dishes in DMEM containing 10% FCS. Four hours after plating cells were washed and collected to extract total mRNA by RNAsenaqk (QIAGEN, Chatsworth, CA). Macrophage mRNA were reverse transcribed and RT-PCR was performed using the gene-specific primers for SR-BI, CLA-1 and mouse β-actin.

Protein isolation and Western blotting

Liver was homogenized in ice-cold PBS containing 1% Triton X-100 and a protease inhibitor cocktail (Nakarai, Kyoto, Japan). Lysates were centrifuged at 30,000 g for 15 min at 4°C and protein content determined in the supernatant. Fifteen micrograms of protein were electrophoresed on pre-cast SDS/polyacrylamide gels (4-20% acrylamide; Invitrogen, Carlsbad, CA), and electrically transferred onto nitrocellulose membrane (Protran, Whatman, Brentford, Middlesex). Nonspecific binding sites of the membrane were blocked using defatted milk followed by the addition of mouse monoclonal antibodies against the C-terminus region of rat PDZK1, spanning amino acids 485-504 recognize both mouse and human PDZK1 (kindly provided by Hiroyuki Arai, the University of Tokyo). Immunoblot analysis of SR-BI was performed by rabbit polyclonal antibody against mouse SR-BI (NB400-104, Novus Biologicals, Littleton, CO), which reacts with both mouse SR-BI and CLA-1. The relative amount of primary
antibody was detected with species-specific horseradish peroxidase-conjugated secondary antibody (Sigma Chemical Co., St. Louis, MO) followed by ECL Western blotting detection reagents (Amersham Biotech, Sunnyvale, CA). The bands were quantified by imaging densitometer, Science Lab 99 Image Gauge (Fujifilm, Tokyo, Japan).

Statistical analysis

Results are expressed as means ± SD. The statistical significance of the differences of the mean between groups was evaluated by the one way ANOVA followed by the *post hoc* analysis (Scheffe test) for comparison of two groups. All analyses were performed using SPSS (SPSS Japan, Tokyo, Japan). P values <0.05 are considered to be statistically significant.