Upregulation of Aldose Reductase During Foam Cell Formation as Possible Link Among Diabetes, Hyperlipidemia, and Atherosclerosis

Christian A. Gleissner, John M. Sanders, Jerry Nadler, Klaus Ley

Objective—Aldose reductase (AR) is the rate-limiting enzyme of the polyol pathway. In diabetes, it is related to microvascular complications. We discovered AR expression in foam cells by gene chip screening and hypothesized that it may be relevant in atherosclerosis.

Methods and Results—AR gene expression and activity were found to be increased in human blood monocyte-derived macrophages during foam cell formation induced by oxidized LDL (oxLDL, 100 μg/mL). AR activity as photometrically determined by NADPH consumption was effectively inhibited by the AR inhibitor epalrestat. oxLDL-dependent AR upregulation was further increased under hyperglycemic conditions (30 mmol/L D-glucose) as compared to osmotic control, suggesting a synergistic effect of hyperlipidemia and hyperglycemia. AR was also upregulated by 4-hydroxynonenal, a constituent of oxLDL. Upregulation was blocked by an antibody to CD36. AR inhibition resulted in reduction of oxLDL-induced intracellular oxidative stress as determined by 2′,7′-dichlorofluorescein diacetate (H2DCFDA) fluorescence, indicating that proinflammatory effects of oxLDL are partly mediated by AR. Immunohistochemistry showed AR expression in CD68+ human atherosclerotic plaque macrophages.

Conclusions—These data show that oxLDL-induced upregulation of AR in human macrophages is proinflammatory in foam cells and may represent a potential link among hyperlipidemia, atherosclerosis, and diabetes mellitus. (Arterioscler Thromb Vasc Biol. 2008;28:1137-1143)

Key Words: atherosclerosis • diabetes mellitus • lipoproteins • macrophage • plaque

Diabetes mellitus represents one of the major risk factors for atherosclerosis.1 Mechanisms by which diabetes perturbs cellular integrity include formation of advanced glycation end products (AGE), activation of protein kinase C (PKC), upregulation of 12/15-lipoxygenase, and increased flux through the hexosamine or the polyol pathway.2,3,3a AGE formation may result in cross-linking and subsequent conformational changes of many proteins, increased inflammatory signaling, and oxidative stress in various cell types including macrophages and endothelial cells.3 Similarly, activation of PKC isoforms leads to endothelial dysfunction by activation of NADPH oxidase, enhanced vascular permeability through upregulation of vascular endothelial growth factor, and thrombosis by increasing plasminogen activator inhibitor (PAI)-1 levels.4 The contribution of the polyol pathway to diabetes-induced atherogenesis is currently not completely understood.

The polyol pathway includes aldose reductase (AR, AKR1B1), which is the rate-limiting enzyme, and sorbitol dehydrogenase (SDH, SORD).3 Its physiological role is controversial. AR activity has been proposed to be protective against oxidative stress by detoxifying lipid peroxidation products, eg, in vasculitis,5,6 but inhibiting AR does not increase lipid peroxidation products.7 By contrast, AR activity has also been related to greater oxidative stress and increased damage during brain ischemia in mice.8 In keeping with a proinflammatory role of AR, AR null mice exhibit reduced oxidative stress and are protected from ischemic injury.8

The main physiological substrates of the polyol pathway are aldehydes, but sugars like glucose or galactose have also been shown to be metabolized by AR.7 With rising intracellular glucose levels as seen in diabetics, glucose can be shunted into the polyol pathway resulting in sorbitol production, which is subsequently metabolized by sorbitol dehydrogenase to fructose.3 This leads to increased AGE formation attributable to increased fructose levels and increased oxidative stress attributable to consumption of NADPH, which is needed to regenerate glutathione.3 Thus, the polyol pathway has been implicated in microvascular diabetic complications like cataract,10 nephropathy,11 and neuropathy.12 Pharmacological inhibition of AR has been shown to improve nerve...
conduction velocity and symptoms of polyneuropathy.13 Recently, the polyol pathway has been linked to atherosclerosis, as overexpression of human AR in LDL receptor–deficient diabetic mice (which physiologically display only low AR expression) increased atherosclerotic lesions.14 However, the mechanisms by which AR promotes atherosclerosis remain still to be elucidated.

In a study of gene expression during foam cell formation by gene chip analysis, we found a significant increase of AR mRNA expression after treatment of primary human blood monocyte-derived macrophages with oxidized low density lipoprotein (oxLDL).15 We therefore hypothesized that increased AR expression in human foam cells may represent a novel proinflammatory mechanism by which oxLDL increases oxidative stress and which may link 2 of the major risk factors for atherosclerosis, diabetes and hyperlipidemia.

Materials and Methods

Macrophages and Foam Cells

Macrophages were derived from monocytes isolated from either peripheral blood or buffy coats provided by the Virginia Blood Services (Richmond, Va) as described previously.13 The study was approved by the institutional review committee. All subjects gave informed consent. Blood was drawn from 15 healthy individuals (8 female, 7 male, age 20 to 40 years). Blood monocytes were differentiated to macrophages by macrophage colony stimulating factor (M-CSF) or platelet factor-4 (CXCL4) for 6 days and exposed to vehicle, oxLDL (Biomedical Technologies), or 4-hydroxynonenal (4-HNE, Sigma) as indicated. For receptor blocking experiments, cells were preincubated with mAb to CD36 antibody (clone CB38) written.

The authors had full access to the data and take responsibility for its integrity. All authors have read and agreed to the manuscript as written.

Gene Chip Experiments

RNA was extracted from cells using the RNEasy kit (Qiagen) according to the manufacturer’s instructions. Gene expression was measured in duplicates at the University of Virginia Gene Expression Core Facility using Affymetrix equipment and H133A chips as described. Gene expression data are available at the NCBI gene expression and hybridization array data repository (http://www.ncbi.nlm.nih.gov/geo/, series GSE7138).

Real-Time Polymerase Chain Reaction

Total RNA was isolated from cultured macrophages and foam cells using the RNEasy Mini Kit with DNase treatment. Reverse transcription was performed with the Omniscript RT Kit (both Qiagen). Gene expression was measured using iQ SYBR green supermix in an iCycler iQ Real-Time Detection System (both BioRad). Product specificity was ascertained by melting curve analysis and initially by electrophoresis on agarose gels. Primers were purchased from Integrated DNA Technologies. Primer sequences were as follows: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) forward 5'-GGCTCATGACCACAGTCCAT-3', reverse 5'GCTTCACTCCTCACAACCCTTCT-3', aldose reductase (AKR1B1) forward 5'-AGTCCGCAATGGTGGTCCCC-3', reverse 5'-GGATTAACTTCCTCGTGAAGT-3'. All samples were run in duplicates. Values were determined using iCycler iQ Real-Time Detection System software (version 3.1; Bio-Rad). Relative gene expression was calculated as described previously using GAPDH as housekeeping gene.16

Aldose Reductase Activity Assay and Inhibition Experiments

AR activity was measured photometrically as described previously5,19 (see supplemental materials). For AR inhibition experiments, epalrestat (Sequoia Research Products) was used. The dosage was chosen based on the IC\textsubscript{50} (ranging from 0.01220 to 0.021 μmol/L21) and effective inhibition of AR activity in monocyte-derived macrophages. For AR inhibition experiments, epalrestat was added to the culture medium at a concentration of 0.2 μmol/L 24 hours before addition of oxLDL, which completely inhibited AR activity.

Oxidative Stress Assay

Generation of reactive oxygen species was measured as described previously using 2'7'-dichlorfluoresceine diacetate (H\textsubscript{2}DCFDA), a dye which converts to fluorescent 2'7'-dichlorofluorescein (DCF) in the presence of reactive oxygen species22 (see supplemental data).

Immunohistochemistry

Human coronary arteries were obtained from the University of Virginia Department of Pathology/Tissue bank and were stained for AR, CD68, or smooth muscle α-actin. Immunofluorescence was performed to determine colocalization of AR with CD68 or smooth muscle α-actin (for details of staining procedure see supplemental materials). Coronary arteries from 8 donors were studied, 2 of whom were diabetic.

Statistics

Differences between the groups were evaluated by 2-tailed t test or 1-way ANOVA followed by a posthoc Tukey test. The exact details of gene array data analysis have been described previously16 (see supplemental materials). Generally, P<0.05 was considered statistically significant. Data are presented as mean±SEM. Statistical analysis was performed using PRISM (GraphPad).

The authors had full access to the data and take responsibility for its integrity. All authors have read and agreed to the manuscript as written.

Results

AR Expression in Human Macrophages Is Increased During oxLDL-Dependent Foam Cell Formation

Cell culture of human blood–derived monocytes with M-CSF (100 ng/mL) or CXCL4 (100 ng/mL) for 6 days resulted in macrophage formation. Large scale analysis of gene expression using Affymetrix gene HU133A arrays revealed a significant increase of AR mRNA in macrophages generated with either M-CSF or CXCL4 as compared to peripheral blood mononuclear cells (PBMCs) or monocytes (P<0.0001). Incubation of monocyte-derived macrophages with 100 μg/mL mmLDL or oxLDL for 48 hours reproducibly resulted in foam cell formation as assessed by oil red O staining (supplemental Figure IB). AR gene expression was further increased during foam cell formation caused by oxLDL but not by mmLDL (P=0.10 for M-CSF, P<0.0001 for CXCL4) (supplemental Figure IIA). A full set of other genes significantly regulated during foam cell formation by Affymetrix chip analysis is given in supplemental Table I.

The time course of oxLDL-dependent upregulation of AR mRNA was investigated by real-time PCR revealing an early peak 4 to 6 hours after addition of oxLDL. The peak reached about 60% and 80% above baseline in macrophages generated with M-CSF or CXCL4, respectively (P<0.01 in both cases, Figure 1A and supplemental Figure IIB). A second increase was seen between 24 and 48 hours.

To investigate whether increased AR gene expression was accompanied by functional changes, AR activity was determined in macrophages generated with M-CSF or CXCL4
before and 48 hours after addition of oxLDL. AR activity was significantly increased in oxLDL-treated macrophages irrespective of the growth factor used for differentiation (P < 0.01). Treatment of macrophages with epalrestat (0.2 mol/L) resulted in complete inhibition of AR activity in both cases (Figure 1B and supplemental Figure IIC).

Molecular Mechanism of oxLDL-Induced AR Upregulation
To investigate the mechanisms by which oxLDL upregulates AR gene expression, different constituents of oxLDL were tested for their ability to upregulate AR in macrophages. Previous studies have reported increased AR expression in rat vascular smooth muscle cells or human lymphocytes after stimulation with 4-hydroxynonenal (4-HNE), a constituent of oxLDL, displaying a peak at a 4-HNE concentration of 5 mol/L. We confirm this finding in macrophages (Figure 2A). To identify the receptor involved, we used a blocking mAb against the scavenger receptor CD36, which accounts for up to two thirds of oxLDL uptake by macrophages. Anti-CD36 antibody significantly reduced oxLDL-induced AR upregulation (Figure 2B).

oxLDL-Dependent AR Upregulation Depends on Hyperglycemic Conditions
As mentioned previously, AR expression has been shown to be of clinical importance in diabetic individuals. To assess the effects of oxLDL on AR expression and activity not only under standard cell culture conditions with a glucose concentration of 17.5 mmol/L, but also under normoglycemic and hyperglycemic conditions, AR expression and activity were measured with 5 mmol/L glucose or 30 mmol/L glucose in the culture media. Real-time PCR revealed a significant increase of AR gene expression under hyperglycemic as compared to normoglycemic conditions (P < 0.05). Under hyperglycemic conditions, stimulation of macrophages with oxLDL resulted in a significant increase of AR gene expression (P < 0.05; Figure 3A). Exposure of macrophages to oxLDL resulted in a 10-fold increase of AR activity under hyperglycemic, but not normoglycemic conditions (P < 0.01). The activity increase exceeded the increase in mRNA expression levels (Figure 3B).

oxLDL-Dependent AR Upregulation Is Not Related to Increased Gene Expression of Proinflammatory Mediators but to Oxidative Stress in Macrophages
AR expression has been related to expression of proinflammatory cytokines induced by lipopolysaccharide (LPS) in mouse peritoneal macrophages. However, exposure of macrophages to oxLDL under the conditions applied in this study did not result in increased gene expression of inflammatory mediators like tumor necrosis factor (TNF)-α, interleukin (IL)-6, or IL-1β (supplemental Figure III).

oxLDL has been described to increase production of reactive oxygen species in macrophages. AR activity in...
foam cells may represent a proinflammatory mechanism, by which oxLDL increases oxidative stress in the macrophage. To test this hypothesis, intracellular oxidative stress was measured in macrophages under different conditions using 2,7-dichlorofluorescein, a dye which displays increased fluorescence intensity in the presence of reactive oxygen species. Exposure of macrophages to oxLDL (100 µg/ml) for 48 hours resulted in a significant increase of DCF fluorescence under normoglycemic (5 mmol/L) as well as under hyperglycemic (30 mmol/L) conditions (mean±SEM, *P<0.001). Under hyperglycemia, oxLDL induced an 8-fold increase of DCF fluorescence, compared to 5-fold under normoglycemic conditions (Figure 4). Pretreatment of macrophages with epalrestat (0.2 µmol/L) for 24 hours before and throughout exposure to oxLDL resulted in a statistically significant (P<0.01) reduction of ROS formation under hyperglycemic conditions. Treatment of macrophages with epalrestat alone did not have any effect. These findings suggest that under hyperglycemic conditions ≈20% to 30% of the oxidative stress in macrophage foam cells is attributable to AR activity.

AR Is Expressed in Macrophages in Human Atherosclerotic Plaque

To assess the relevance of our findings for the pathogenesis of atherosclerosis, AR expression in human atherosclerotic plaque was investigated. Immunohistochemistry revealed that AR was abundantly expressed in a wide range of cells in the vascular wall, mostly vascular smooth muscle cells, including cells in atherosclerotic plaques (Figure 5A). AR expression in macrophage foam cells was verified by immunofluorescence demonstrating colocalization of CD68 and AR in atherosclerotic lesions (Figure 5B). AR was also colocalized with CD68 in macrophages in the vascular adventitia and perivascular adipose tissue (Figure 5B). Colocalization with smooth muscle α-actin confirmed AR expression in vascular smooth muscle cells, which had been described previously26 (Figure 5C). The proportion of AR-expressing macrophages ranged from 75% to 100% and was similar in the adventitia, perivascular adipose tissue, and within the atherosclerotic lesions (supplemental Figure IV).

Discussion

This article describes the discovery of increased aldose reductase (AR) gene expression and activity in macrophages during foam cell formation induced by oxLDL in the presence of high glucose. AR was similarly upregulated by 4-hydroxynonenal, a constituent of oxLDL. Most of the oxLDL-induced upregulation of AR expression was blocked by mAb to CD36. Inhibition of AR using the pharmacological inhibitor epalrestat indicates that AR upregulation accounts for about 20% of oxLDL-induced oxidative stress.

Figure 3. High glucose levels and oxLDL have synergistic effects on AR expression and activity. A, Gene expression in macrophages treated with oxLDL for 48 hours under normoglycemic (glucose 5 mmol/L) or hyperglycemic (glucose 30 mmol/L) conditions. B, AR activity in macrophages treated with oxLDL under normoglycemic or hyperglycemic conditions (mean±SEM, *P<0.05).

Figure 4. oxLDL-induced AR upregulation causes increased formation of reactive oxygen species. Macrophages generated under (A) normoglycemic or (B) hyperglycemic conditions were treated with vehicle (unstimulated) or oxLDL with or without 24-hour pretreatment with epalrestat. Cells were stained with 2',7'-dichlorofluorescein diacetate (10 µmol/L) for 30 minutes, and fluorescence was determined by flow cytometry (mean±SEM of fold change over untreated cells, **P<0.01, ***P<0.001).
Figure 5. AR expression in atherosclerotic lesions. A, Immunohistochemistry demonstrating expression of CD68 (macrophages), smooth muscle α-actin (smooth muscle cells), and AR in atherosclerotic lesions of human coronary artery. 100× and 400× magnification. B, Immunofluorescence demonstrating colocalization of CD68 (green) and AR (red) in cells in atherosclerotic lesions, adventitia, and perivascular adipose tissue of human coronary artery. DAPI (blue) is shown as nuclear stain. *Indicates the lumen of the vessel, 400× magnification. C, Immunofluorescence demonstrating colocalization of smooth muscle α-actin (red) and AR (green) in cells in atherosclerotic lesions in human coronary artery. *Indicates the lumen of the vessel, 400× magnification.
AR expression in macrophages in atherosclerotic lesions and the vascular adventitia suggests that macrophage AR may represent a link among diabetes, hyperlipidemia and atherosclerosis.

In diabetics, glucose is shunted into the polyol pathway and thus converted by AR into sorbitol and subsequently to fructose by sorbitol dehydrogenase. For several reasons, this is considered harmful: First, activation of AR results in decreased NADPH levels leading to reduced regeneration of glutathione which is a key protective factor against oxidative stress. Reduced NADPH levels may also lead to increased levels of 12-hydroperoxyeicosatetraenoic acid (12-HPETE), which cannot be reduced to less toxic 12-hydroxyeicosatetraenoic (12-HETE) by glutathione peroxidase. In increased fructose levels cause increased advanced glycation end products, which interfere with many cellular processes.

AR expression and activity have been described in various tissues including the lens of the eye, kidney, and nerve in several animal models including rat, rabbit, and pig. A causal relation between metabolization of glucose by AR and diabetic complications was shown in several animal models of cataract and renal dysfunction or neuropathy. AR activity has been associated with cataract, nephropathy, and polyneuropathy in diabetic patients. Clinical studies have demonstrated that AR inhibition reduces symptoms of diabetic neuropathy. In the vasculature, AR is expressed in rat smooth muscle cells as demonstrated in rats and human umbilical vein endothelial cells. Furthermore, AR expression was found in smooth muscle cells and mononuclear cells in vivo in human temporal artery specimens from patients with giant cell arteritis.

A potential role for AR in atherosclerosis was demonstrated in LDL receptor knock-out mice overexpressing human AR. Normoglycemic AR overexpressing Ldlr/H11002 mice fed a Western diet did not display increased atherosclerotic lesions as compared to Ldlr/Z mice not expressing human AR. However, a significant increase in lesion size was demonstrated in the AR-overexpressing mice after streptozotocin injection, which induces diabetes by selectively killing pancreatic β cells, supporting a pathogenic role of the polyol pathway for atherosclerosis in diabetes.

The mechanism described here may at least partially account for increased atherosclerosis in this mouse model. Macrophages harvested from human atherosclerotic plaques by laser capture microdissection showed 75% increased AR mRNA expression as measured by gene chip analysis (Volger OL et al, http://www.ncbi.nlm.nih.gov/geo/, series GSE7074), supporting a role for the polyol pathway in human atherosclerosis.

Our findings that oxLDL-induced AR upregulation increases oxidative stress suggest that the harmful effects clearly outweigh any potentially beneficial role of the polyol pathway. The protective effects of AR inhibition on ROS formation seem to be more pronounced under hyperglycemic conditions, suggesting that harmful effects of AR require oxLDL as well as elevated glucose levels. AR accounts for 20% to 30% of oxidative stress as demonstrated by the significant reduction of oxidative stress after inhibition of AR with epalrestat. Other prooxidant pathways like lipooxygenases, cyclooxygenases, and NADPH oxidase are likely to contribute the remaining oxidative stress.

AR gene regulation involves 3 osmotic response elements and 1 androgen response element; there may also be 1 glucose response element. Accordingly, increased AR expression under hyperglycemic conditions has been shown in different cell types. Here, we extend this finding to human monocyte-derived macrophages. According to our results, 4-HNE is a key constituent of oxLDL responsible for AR upregulation. This is consistent with previous data demonstrating 4-HNE-dependent AR upregulation in PBL. The fact that blocking experiments using antibody against CD36—a scavenger receptor responsible for about two thirds of oxLDL uptake into macrophages—resulted in a significant inhibition of oxLDL-induced AR upregulation suggests that uptake of oxLDL mediated by CD36 is necessary for AR upregulation.

In conclusion, we demonstrate hyperglycemia-related up-regulation of AR gene expression and activity as a new proinflammatory mechanism of oxLDL in human macrophages with potential relevance for atherogenesis, thereby identifying a potential link between 2 of the most important atherosclerotic risk factors, namely diabetes and hyperlipidemia.

Acknowledgments
We thank Dr Nancy Harthun, University of Virginia, Charlottesville for providing carotid endarterectomy specimens, Dr Maria-Beatriz Lopes, University of Virginia, Charlottesville for providing postmortem coronary artery specimens, and Dr Aruni Bhatnagar, University of Kentucky, Louisville for providing an antibody against human aldose reductase.

Sources of Funding
This work was supported by the Deutsche Forschungsgemeinschaft (grant GL599/1-1 to C.A.G.), by NIH grant HL58108 (to K.L.), and by NIH grant HL55798 (to K.L. and J.L.N.).

Disclosures
None.

References

Upregulation of Aldose Reductase During Foam Cell Formation as Possible Link Among Diabetes, Hyperlipidemia, and Atherosclerosis

Christian A. Gleissner, John M. Sanders, Jerry Nadler and Klaus Ley

Arterioscler Thromb Vasc Biol. 2008;28:1137-1143; originally published online May 1, 2008; doi: 10.1161/ATVBAHA.107.158295

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/28/6/1137

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2008/05/21/ATVBAHA.107.158295.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Arteriosclerosis, Thrombosis, and Vascular Biology* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Arteriosclerosis, Thrombosis, and Vascular Biology* is online at:
http://atvb.ahajournals.org//subscriptions/
Materials and Methods

Macrophages and foam cells: Mixed peripheral blood mononuclear cells (PBMCs) were isolated by Histopaque 1.077 (Sigma Diagnostics, St. Louis, MO) and washed twice with PBS containing 0.02% EDTA (Sigma Diagnostics, St. Louis, MO). Subsequently, monocytes were isolated using a negative selection monocyte isolation kit and LS columns (both Miltenyi Biotec, Bergisch Gladbach, Germany). The purity of monocytes was >97% as determined by flow cytometry using anti-CD14 antibody (Figure S1A).

Monocytes were cultured in Macrophage Serum-Free Medium (Invitrogen, Carlsbad, CA) in the presence of 1% media supplement nutridoma-SP (Roche Molecular Biochemicals, Indianapolis, IN), penicillin (100 u/mL), streptomycin (1 mg/mL, both Sigma Diagnostics, St. Louis, MO) and macrophage colony-stimulating factor (M-CSF) or CXCL4 (100 ng/mL, both Peprotech, Rocky Hill, NJ) for 6 days. This standard macrophage cell culture medium has a final glucose concentration of 17.5 mM. Macrophages were then incubated with minimally modified LDL (mmLDL, a kind gift from Joseph Witztum, San Diego, CA) or oxidized LDL (oxLDL, Biomedical Technologies, Stoughton, MA) at a concentration of 100 µg/mL for up to 48 hours to induce foam cell formation. Controls were incubated with medium only.

Foam cell formation was verified by oil red O staining. Therefore, cells were fixed in 1 % paraformaldehyde over night at 4°C. Cells were then washed twice with PBS and incubated with 70% isopropanol for 2 minutes. Oil red O staining was performed with 0.5%
oil red O (Sigma Diagnostics, St. Louis, MO) in 60% isopropanol for 10 minutes followed by counterstaining with Mayer’s hematoxylin (Sigma Diagnostics, St. Louis, MO) for 5 minutes (Figure S1B).

For experiments under normo- and hyperglycemic conditions, cells were cultured in glucose-deficient medium (glucose-free RPMI 1640 (Invitrogen, Carlsbad, CA) +10% dialyzed FCS (HyClone, Logan, UT)) supplemented with either 30 mM D-glucose or 5 mM D-glucose plus 25 mM L-glucose as osmotic control (both Sigma, St. Louis, MO).

Aldose reductase activity assay: Aldose reductase enzyme activity was measured spectrophotometrically by determination of the decrease in absorbance at 340 nm in absence and presence of glyceraldehyde as substrate reflecting the consumption of NADPH in either cell lysates or cell culture supernatants. The total assay volume of 1000 µl contained 730 µl sodium phosphate buffer (100 mM, pH 7.0), 50 µl NADPH (1.6 mM, both Sigma Diagnostics, St. Louis, MO), 20 µl diphenylhydantoin (10 mM), and 100 µl of enzyme solution. To start the reaction, 10 µl DL-glyceraldehyde (100 mM, Sigma Diagnostics, St. Louis, MO) were added and the absorption at 340 nm was measured at 25°C for 3 minutes. Glyceraldehyde was dedimerized for 10 mins at 85°C before assay. Diphenylhydantoin was added to inhibit unspecific metabolism of glyceraldehydes by aldehyde dehydrogenase. Absorbance values were corrected for blanks containing all components of the reaction except the substrate. AR activity was normalized to protein content as measured photometrically and expressed in mU/µg (nmol NADPH oxidized per minute per µg protein).
Oxidative stress assay: Macrophages were exposed to 100 µg/mL oxLDL for 48 hours, with or without pre-treatment with 0.2 µM epalrestat for 24 hours. Cells were then washed with PBS and incubated with 2’7’-dichlorofluoresceine diacetate (H$_2$DCFDA, 10 µM, Invitrogen, Carlsbad, CA) at 37°C for 30 minutes. After an additional wash step with PBS, cells were harvested by scraping and fluorescence was assessed using a FACS Calibur instrument (BD Biosciences, Franklin Lakes, NJ). Results were expressed as fold change of geometric means over unstimulated cells.

Immunohistochemistry: Five µm paraffin sections of coronary arteries were used. Following heat induced antigen retrieval using antigen unmasking solution (Vector Laboratories, Burlingame, CA) tissue sections were either incubated with antibodies against aldose reductase (a kind gift from Dr. Aruni Bhatnagar, University of Kentucky, Louisville, KY; for later experiments SC-17732, Santa Cruz Biotechnology, Santa Cruz, CA), CD 68 (clone KP-1, Santa Cruz Biotechnology, Santa Cruz, CA) or α-smooth muscle actin (clone alpha sm-1, Novocastra Laboratories, Norwell, MA). Antibodies were detected using the ABC method (Vector Laboratories). Antibodies were visualized using DAB (DAKO corporation, Carpinteria, CA). Sections were then counterstained with hematoxylin (Richard-Allan Scientific, Kalamazoo, MI). Sections were analyzed for light microscopy using an Olympus BX51 microscope and Image Pro Plus 3.0 software (Media Cybernetics, Silver Spring, MD).

For fluorescence microscopy was performed after heat induced antigen retrieval using antigen unmasking solution. Sections were co-incubated with either antibodies against
aldose reductase (SC-17732) and CD68-Alex Fluor-488 (clone KP-1, both Santa Cruz Biotechnology, Santa Cruz, CA) or aldose reductase and smooth muscle α-actin-Cy3 conjugated (clone IA-4, Sigma Diagnostics, St. Louis, MO). For CD68 and aldose reductase, aldose reductase was detected using donkey anti-Goat Alexa Fluor 555 (Molecular Probes, Carlsbad, CA). For SMA and aldose reductase, AR was detected using Donkey anti-Goat Alexa Fluor 488 (Molecular Probes, Carlsbad, CA). All slides were cover-slipped using Vector Shield Hardset with DAPI (Vector Laboratories, Burlingame, CA). Sections were analyzed by fluorescence microscopy (Olympus BX51 microscope) and Image Pro Plus 3.0 software (Media Cybernetics, Silver Spring, MD).

For quantification of AR positive macrophages in atherosclerotic plaques and adventitia AR positive and CD68 positive cells were counted in at least four fields of vision at a magnification of 400X and the proportion of AR positive cells out of CD68 positive cells was calculated.

Statistical analysis of gene arrays: The exact details of gene array data analysis have been described previously. Briefly, after exclusion of internal controls, gene expression was normalized and log-transformed. The local pooled error (LPE) test for differential expression discovery under two conditions and the heterogeneous error model (HEM) for differential expression discovery under multiple conditions were applied using the open-source statistical software R (www.r-project.com).
Supplementary tables

Table S1: Genes most strongly up- or downregulated by oxLDL in monocyte-derived macrophages. Given are Affymetrix H133A gene chip probe set ID, gene symbols, gene titles, false discovery rate (FDR) and fold change in oxLDL versus untreated cells in macrophages generated with either MCSF or CXCL4.

<table>
<thead>
<tr>
<th>Probe set ID</th>
<th>Gene Symbol</th>
<th>Gene Title</th>
<th>FDR</th>
<th>Fold change MCSF</th>
<th>Fold change CXCL4</th>
</tr>
</thead>
<tbody>
<tr>
<td>207533_at</td>
<td>CCL1</td>
<td>chemokine (C-C motif) ligand 1</td>
<td><0.001</td>
<td>0.34</td>
<td>0.04</td>
</tr>
<tr>
<td>204103_at</td>
<td>CCL4</td>
<td>chemokine (C-C motif) ligand 4</td>
<td>0.028</td>
<td>0.54</td>
<td>0.57</td>
</tr>
<tr>
<td>212659_s_at</td>
<td>IL1RN</td>
<td>interleukin 1 receptor antagonist</td>
<td>0.009</td>
<td>2.02</td>
<td>2.56</td>
</tr>
<tr>
<td>216243_s_at</td>
<td>IL1RN</td>
<td>interleukin 1 receptor antagonist</td>
<td>0.015</td>
<td>1.94</td>
<td>1.79</td>
</tr>
<tr>
<td>212657_s_at</td>
<td>IL1RN</td>
<td>interleukin 1 receptor antagonist</td>
<td>0.009</td>
<td>1.92</td>
<td>1.84</td>
</tr>
<tr>
<td>206975_at</td>
<td>LTA</td>
<td>lymphotoxin alpha (TNF superfamily, member 1)</td>
<td>0.015</td>
<td>0.17</td>
<td>0.04</td>
</tr>
<tr>
<td>207339_s_at</td>
<td>LTB</td>
<td>lymphotoxin beta (TNF superfamily, member 3)</td>
<td><0.001</td>
<td>0.37</td>
<td>0.13</td>
</tr>
<tr>
<td>218856_at</td>
<td>TNFRSF21</td>
<td>tumor necrosis factor receptor superfamily, member 21</td>
<td><0.001</td>
<td>4.22</td>
<td>3.22</td>
</tr>
<tr>
<td>214228_x_at</td>
<td>TNFRSF4</td>
<td>tumor necrosis factor receptor superfamily, member 4</td>
<td>0.009</td>
<td>0.43</td>
<td>0.31</td>
</tr>
<tr>
<td>207426_s_at</td>
<td>TNFSF4</td>
<td>tumor necrosis factor (ligand) superfamily, member 4 (tax-transcriptionally activated glycoprotein 1, 34kDa)</td>
<td>0.021</td>
<td>0.45</td>
<td>0.26</td>
</tr>
<tr>
<td>206508_at</td>
<td>TNFSF7</td>
<td>tumor necrosis factor (ligand) superfamily, member 7</td>
<td>0.009</td>
<td>0.41</td>
<td>0.45</td>
</tr>
<tr>
<td>206365_at</td>
<td>XCL1</td>
<td>chemokine (C motif) ligand 1</td>
<td><0.001</td>
<td>0.41</td>
<td>0.36</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description</td>
<td>p-value 1</td>
<td>Fold Change 1</td>
<td>Fold Change 2</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>-----------</td>
<td>---------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>206366_x_at</td>
<td>XCL1 chemokine (C motif) ligand 1</td>
<td><0.001</td>
<td>0.37</td>
<td>0.17</td>
<td></td>
</tr>
</tbody>
</table>

Genes related to lipid metabolism

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Description</th>
<th>p-value 1</th>
<th>Fold Change 1</th>
<th>Fold Change 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>203504_s_at</td>
<td>ABCA1 ATP-binding cassette, sub-family A (ABC1), member 1</td>
<td><0.001</td>
<td>2.37</td>
<td>1.71</td>
</tr>
<tr>
<td>203505_at</td>
<td>ABCA1 ATP-binding cassette, sub-family A (ABC1), member 1</td>
<td><0.001</td>
<td>2.21</td>
<td>2.62</td>
</tr>
<tr>
<td>204567_s_at</td>
<td>ABCG1 ATP-binding cassette, sub-family G (WHITE), member 1</td>
<td><0.001</td>
<td>2.79</td>
<td>2.73</td>
</tr>
<tr>
<td>211113_s_at</td>
<td>ABCG1 ATP-binding cassette, sub-family G (WHITE), member 1</td>
<td><0.001</td>
<td>2.78</td>
<td>2.66</td>
</tr>
<tr>
<td>209122_at</td>
<td>ADFP adipose differentiation-related protein</td>
<td><0.001</td>
<td>2.28</td>
<td>3.60</td>
</tr>
<tr>
<td>213553_x_at</td>
<td>APOC1 apolipoprotein C-I</td>
<td><0.001</td>
<td>2.92</td>
<td>1.79</td>
</tr>
<tr>
<td>208964_s_at</td>
<td>FADS1 fatty acid desaturase 1</td>
<td>0.009</td>
<td>0.45</td>
<td>1.00</td>
</tr>
<tr>
<td>208962_s_at</td>
<td>FADS1 fatty acid desaturase 1</td>
<td><0.001</td>
<td>0.30</td>
<td>1.18</td>
</tr>
<tr>
<td>208963_x_at</td>
<td>FADS1 fatty acid desaturase 1</td>
<td><0.001</td>
<td>0.21</td>
<td>0.69</td>
</tr>
<tr>
<td>202218_s_at</td>
<td>FADS2 fatty acid desaturase 2</td>
<td><0.001</td>
<td>0.21</td>
<td>0.44</td>
</tr>
<tr>
<td>202539_s_at</td>
<td>HMGCR 3-hydroxy-3-methylglutaryl-Coenzyme A reductase</td>
<td><0.001</td>
<td>0.23</td>
<td>0.31</td>
</tr>
<tr>
<td>202540_s_at</td>
<td>HMGCR 3-hydroxy-3-methylglutaryl-Coenzyme A reductase</td>
<td><0.001</td>
<td>0.17</td>
<td>0.29</td>
</tr>
<tr>
<td>221750_at</td>
<td>HMGCS1 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (soluble)</td>
<td><0.001</td>
<td>0.27</td>
<td>0.31</td>
</tr>
<tr>
<td>202068_s_at</td>
<td>LDLR low density lipoprotein receptor (familial hypercholesterolemia)</td>
<td><0.001</td>
<td>0.15</td>
<td>0.46</td>
</tr>
<tr>
<td>202067_s_at</td>
<td>LDLR low density lipoprotein receptor (familial hypercholesterolemia)</td>
<td><0.001</td>
<td>0.05</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Genes related to oxidative stress

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Description</th>
<th>p-value 1</th>
<th>Fold Change 1</th>
<th>Fold Change 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>212859_x_at</td>
<td>MT1E metallothionein 1E (functional)</td>
<td><0.001</td>
<td>3.73</td>
<td>3.32</td>
</tr>
<tr>
<td>217165_x_at</td>
<td>MT1F metallothionein 1F (functional)</td>
<td><0.001</td>
<td>4.51</td>
<td>4.37</td>
</tr>
<tr>
<td>213629_x_at</td>
<td>MT1F metallothionein 1F (functional)</td>
<td><0.001</td>
<td>4.24</td>
<td>3.89</td>
</tr>
<tr>
<td>204745_x_at</td>
<td>MT1G metallothionein 1G</td>
<td><0.001</td>
<td>5.07</td>
<td>5.37</td>
</tr>
<tr>
<td>206461_x_at</td>
<td>MT1H metallothionein 1H</td>
<td><0.001</td>
<td>4.99</td>
<td>4.10</td>
</tr>
<tr>
<td>Probe ID</td>
<td>Description</td>
<td>p-value</td>
<td>Fold Change (Sample A)</td>
<td>Fold Change (Sample B)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------</td>
<td>---------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>211456_x_at</td>
<td>MT1H metallothionein 1H</td>
<td><0.001</td>
<td>3.68</td>
<td>3.50</td>
</tr>
<tr>
<td>217546_at</td>
<td>MT1K metallothionein 1K</td>
<td>0.009</td>
<td>21.34</td>
<td>11.19</td>
</tr>
<tr>
<td>204326_x_at</td>
<td>MT1L metallothionein 1L</td>
<td><0.001</td>
<td>5.58</td>
<td>6.16</td>
</tr>
<tr>
<td>208581_x_at</td>
<td>MT1X metallothionein 1X</td>
<td><0.001</td>
<td>3.22</td>
<td>3.15</td>
</tr>
<tr>
<td>212185_x_at</td>
<td>MT2A metallothionein 2A</td>
<td><0.001</td>
<td>2.75</td>
<td>2.68</td>
</tr>
<tr>
<td>216609_at</td>
<td>TXN thioredoxin</td>
<td><0.001</td>
<td>2.84</td>
<td>2.44</td>
</tr>
<tr>
<td>214205_x_at</td>
<td>TXNL2 thioredoxin-like 2</td>
<td><0.001</td>
<td>2.49</td>
<td>2.53</td>
</tr>
</tbody>
</table>
Supplementary figures

Figure S1:

(A) Purity of monocytes obtained by negative isolation as determined by FACS staining for CD14. Forward side scatter (FSC – SSC) plot as well as histogram for FL1 are shown.

(B) Foam cell formation after exposure of monocyte-derived macrophages to oxLDL (100 μg/ml) for 48 hours as determined by oil-O-red staining. Controls were treated with medium for 48 hours.

Figure S2:

(A) AR gene expression in PBMC, monocytes, macrophages and foam cells. PBMC were isolated from healthy donors by gradient, monocytes by negative bead isolation. Macrophages were generated either by six days treatment with M-CSF or CXCL4, cells were then incubated with medium, mmLDL or oxLDL (100 μg/mL each) for an additional two days as indicated. Gene expression was determined by Affymetrix gene chip analysis. (means+SEM, * P<0.05, *** P<0.0001)

(B) Time course of AR gene expression during foam cell formation from macrophages generated with CXCL4 for 6 days. Cells were exposed to oxLDL (100 μg/mL) for 0, 2, 4, 6, 12, 24, and 48 hours (means±SEM, *** P<0.001 versus unstimulated)

(C) AR activity as determined by photometrically measuring NADPH consumption at 340 nm in monocyte-derived macrophages (6 days CXCL4) with and without exposure to oxLDL (100 μg/mL) for two days (means+SEM, ** P<0.01, * P<0.05)
Figure S3:
Gene expression of the pro-inflammatory mediators (A) TNFα (TNFA), (B) IL-6 (IL6), and (C) IL-1β (IL1B) during foam cell formation. Macrophages generated with M-CSF were exposed to vehicle (unst.) or 100 µg/ml oxLDL for 48 hours and gene expression was determined by Affymetrix gene array.

Figure S4: Proportion of AR positive macrophages in plaque and adventitia in seven different donors (n.d. = not determined).
References

Figure S2

A. AR gene expression level (Affymetrix chip, glc 17.5 mM)

B. AR gene expression (n-fold change, RT-PCR, glc 17.5 mM, CXCL4)

C. AR activity (mU/µg protein) (CXCL4, glc 17.5 mM)

Gleissner et al.: Figure S2
Gleissner et al.: Figure S3
Gleissner at al.: Figure S4

Percentage of AR+ macrophages

<table>
<thead>
<tr>
<th>Patient</th>
<th>Percentage</th>
<th>Plaque</th>
<th>Adventitia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pat #1</td>
<td>n.d.</td>
<td>100%</td>
<td>n.d.</td>
</tr>
<tr>
<td>Pat #2</td>
<td>n.d.</td>
<td>50%</td>
<td>n.d.</td>
</tr>
<tr>
<td>Pat #3</td>
<td>n.d.</td>
<td>100%</td>
<td>n.d.</td>
</tr>
<tr>
<td>Pat #4</td>
<td>n.d.</td>
<td>100%</td>
<td>n.d.</td>
</tr>
<tr>
<td>Pat #5</td>
<td>n.d.</td>
<td>100%</td>
<td>n.d.</td>
</tr>
<tr>
<td>Pat #6</td>
<td>n.d.</td>
<td>50%</td>
<td>n.d.</td>
</tr>
<tr>
<td>Pat #7</td>
<td>n.d.</td>
<td>0%</td>
<td>n.d.</td>
</tr>
</tbody>
</table>