Cathepsin K and Metabolic Abnormalities in Schizophrenia

To the Editor:

We read with much interest in the September issue of Arteriosclerosis, Thrombosis, and Vascular Biology the article by Yang et al entitled “Deficiency and Inhibition of Cathepsin K Reduce Body Weight Gain and Increase Glucose Metabolism in Mice.” The authors demonstrate a direct participation of cathepsin K (CatK) in mouse body weight gain and glucose metabolism. Furthermore, a strong increase in CatK mRNA was found after adipogenesis of human preadipocytes, whereas inhibition of CatK activity blocked the lipid accumulation in human and mouse preadipocytes. Thus, this study suggests an essential role of CatK in adipogenesis and body weight gain. These data are exciting with regard to the well-known yet poorly understood side effects of neuroleptic treatment of individuals with schizophrenia. Long-term treatment with atypical (and, to a lesser extent, typical) neuroleptics is frequently accompanied by the development of the “metabolic syndrome,” which is characterized by visceral obesity, type 2 diabetes, elevated lipid levels and hypertension, and decreased sensitivity to insulin, and which is the main cause for incompliance of the patients (for review see Sacks2).

Recently, it was found that the cath K gene belongs to the very few ones, which are linked to schizophrenia, are downregulated in its expression by the psychotropic substance amphetamine, but are upregulated by typical and atypical neuroleptics. In studies on postmortem brains of schizophrenics we could show that, compared to control cases, there is a significant increase in cerebral catK protein expression in the CNS of chronic schizophrenics who had received long-term treatment with neuroleptics. The consequences of this finding were not very clear to us at that time. We speculated that there might be implications on the cerebral opioid metabolism in schizophrenia (which has now been substantiated in a series of new experiments) and on bone metabolism of the patients. Now, the recent data of Yang and colleagues on the putative role of catK in adipocyte metabolism add an unforeseen aspect to the complex issue of possible consequences of upregulated catK activity in schizophrenia, namely its putative contribution to metabolic abnormalities. Undoubtedly, adipose tissue reacts in many ways on chronic neuroleptic treatment to enhance adiposity (for review see Cooper et al5). However, the newly discovered substantial role of the cysteine protease catK in lipid and glucose metabolism, together with the known metabolic complications observed in schizophrenia after neuroleptic treatment, bring about a testable hypothesis on its pathophysiologic function in that (1) an upregulation of catK expression should also take place in extracerebral tissues and bodily fluids (including adipose tissue) of chronic schizophrenics during/after medication, and (2) selective inhibition of the enzyme should lead to a certain “normalization” of the deviant lipid and glucose metabolism. However, the latter aspect should certainly be tested in an animal paradigm. If so, inhibition of catK might be a promising new tool to counteract the medication-induced metabolic complications in schizophrenia.

Disclosures

None.

Hans-Gert Bernstein
Bernhard Bogerts
Department of Psychiatry
Otto-v.-Guericke University of Magdeburg, Germany

Uwe Lendeckel
Institute of Medical Biochemistry and Molecular Biology
Ernst-Moritz-Arndt University Greifswald, Germany


© 2008 American Heart Association, Inc.
Arterioscler Thromb Vasc Biol is available at http://atvb.ahajournals.org
DOI: 10.1161/ATVBAHA.108.178160
e163
Cathepsin K and Metabolic Abnormalities in Schizophrenia
Hans-Gert Bernstein, Bernhard Bogerts and Uwe Lendeckel

doi: 10.1161/ATVBAHA.108.178160
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/28/12/e163

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at: http://atvb.ahajournals.org//subscriptions/