Activated protein C (APC) has been reported to improve survival in patients with severe sepsis. Protein C (PC) is physiologically activated on the endothelial cell surface by the key procoagulant enzyme thrombin, and APC downregulates thrombin formation in a negative feedback loop. This anticoagulant effect of APC is unlikely to explain its benefit in systemic inflammation because other anticoagulants did not improve survival in septic patients. How the protective effects of APC in systemic inflammation are mediated has thus received a considerable amount of attention in recent years.

PAR1 signaling is required for protective effects of APC. In mouse models of stroke and endotoxemia EPCR-dependent N terminus that acts as a tethered activation ligand. Importantly, Enzymatic cleavage of PAR1 exposes a new extracellular to a family of 7-transmembrane G protein–coupled receptors. PAR1 is the prototypical thrombin receptor and belongs on the cell surface, and EPCR binding enhances activation binds both PC and APC. EPCR recruits and positions PC/APC of APC. PAR1 by APC but also modify downstream responses through other mechanisms.

EPCR is a transmembrane receptor with a very short cytoplasmic domain and an extracellular domain that binds both PC and APC. EPCR recuits and positions PC/APC on the cell surface, and EPCR binding enhances activation of PC. PAR1 is the prototypical thrombin receptor and belongs to a family of 7-transmembrane G protein–coupled receptors. Enzymatic cleavage of PAR1 exposes a new extracellular N terminus that acts as a tethered activation ligand. Importantly, in mouse models of stroke and endotoxemia EPCR-dependent PAR1 signaling is required for protective effects of APC. However, it is unknown which cellular effects of APC lead to protection in vivo, and it remains possible that mechanisms independent of EPCR-PAR1 also contribute to protective effects of APC.

In the December 2007 issue of *Arteriosclerosis, Thrombosis, and Vascular Biology*, O’Brien and colleagues report that the downregulation of TRAIL by APC binds to EPCR through its Gla domain. To ultimately prove that the responses do not require EPCR binding, APC variants with a deleted or mutated Gla domain could be used. Furthermore, experiments using cell lines lacking
EPCR could be used to definitely establish the role of EPCR in responses to wild-type APC.

Another possibility put forth by the authors is that a not yet identified coreceptor is involved in the PAR1-dependent downregulation of TRAIL by APC. EPCR colocalizes with PAR1 in lipid rafts, and ligand binding to EPCR may modulate its compartmentalization and affect downstream signaling responses. A novel coreceptor may also localize APC in specific microdomains where different signaling complexes are assembled and where PAR1-dependent signaling specifically and efficiently downregulates TRAIL expression. The identification of such novel cofactor for APC-PAR1 signaling will be required to test this model in future studies.

Role of the Sphingosine-1 Phosphate Pathway in Mediating APC Effects

Sphingosine 1-phosphate (S1P) is a biologically active lipid that is generated by cellular sphingosine kinases (SK) and S1P signaling is mediated by the S1P receptor family of seven-transmembrane G-protein-coupled receptors. S1P can induce responses in endothelial cells that resemble APC-mediated responses, including enhanced barrier function, antiapoptotic effects, and downregulation of adhesion molecules. Indeed, EPCR-dependent protective effects of APC on the barrier integrity of an endothelial cell monolayer have been shown previously to require SK activity and expression of the S1P receptor-1 (S1P1). The current study by O’Brien et al shows that SK and S1P1 are required for the downregulation of TRAIL by APC. These novel data implicate crossactivation of the S1P pathway in potentially antiapoptotic effects of APC signaling for the first time.

It will be interesting to establish the role of S1P signaling in other responses to APC, including protective effects on staurosporine-induced apoptosis, adhesion molecule expression, and most importantly in beneficial effects of APC in models of systemic inflammation. Infusion of S1P1 has been shown to be protective in models of endotoxin-induced acute lung injury and it is possible that protective in vivo effects of APC require crossactivation of this pathway, including the activation of endothelial cell S1P1. Even if S1P pathway crossactivation is indeed a general requirement for responses to APC in tissue culture, S1P receptor agonists and APC signaling will target different cell populations in vivo. This is because of the fact that in vivo the PC pathway depends on expression of cellular cofactors such as EPCR and thrombomodulin. The relative specificity of PC pathway signaling for endothelial cells may avoid detrimental side effects of S1P receptor activation in other cell types, eg, direct effects on lymphocyte migration, in the treatment of inflammatory conditions.

Clearly, very little is known with regard to the mechanism of S1P receptor crossactivation by APC. How exactly do SK and S1P1 contribute to the signaling? Given that plasma contains large amounts of S1P, it is difficult to explain how the S1P pathway can be relevant for APC signaling. Perhaps autocrine S1P1-dependent signaling of endothelial cell-produced and locally secreted S1P is more efficient compared with plasma S1P, which is expected to be largely bound to plasma proteins. Alternatively, APC has been shown to induce colocalization of EPCR with S1P1, and S1P1 may be activated through other mechanisms that do not necessarily involve S1P binding, eg, cross-phosphorylation events.

In conclusion, the new results identify TRAIL downregulation as a novel APC-mediated response and they highlight that novel receptors and signaling pathways may be involved in protective APC signaling in endothelial cells. A better mechanistic understanding of how cells sense the proteolytic activity of APC in their microenvironment and how they respond may eventually lead to novel approaches to treat patients with sepsis and other disorders where the inflammatory response plays a key role, including myocardial infarction and stroke.

Disclosures

None.
References


Protective Signaling Pathways of Activated Protein C in Endothelial Cells
Matthias Riewald and Reto A. Schuepbach

doi: 10.1161/ATVBAHA.107.157321

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2007 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/28/1/1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org/subscriptions/