Letter to the Editor

Decreased Atherosclerosis in Mice Deficient in Tumor Necrosis Factor-α Receptor-II (p75)

To the Editor:

Tumor Necrosis Factor-α (TNF-α) induces a variety of proatherogenic molecules, and inhibition of TNF-α in apoE-/- mice results in diminished atherosclerosis suggesting the involvement of TNF-α in atherogenesis. TNF-α elicits its effects by activating 2 cell-surface receptors, namely p55 and p75. Earlier, Blessing et al reported that apoE-/- mice lacking p55 fed a chow diet did not show altered lesion progression or plaque composition. Recently, we showed that p75 is required for TNF-α-induced leukocyte–endothelial cell interaction and inflammation in vivo. Because inflammation plays an integral role in atherogenesis, we tested whether the proatherogenic activity of TNF-α was mediated by p75. We determined the role of p75 in atherogenesis using apoE-/- mice lacking p75 receptor. We generated p75-/-apoE-/-, p75-/-apoE-/-, and p75+/+apoE-/- littermates by sister-brother mating of p75+/+apoE-/- parents. Atherosclerotic lesion areas in aortic roots were measured after staining with Oil red O in 16-week-old chow diet-fed female mice. As shown in the Figure, the p75-/-apoE-/- mice had a mean lesion area of 125 000±32 000 mm² (n=10). Lesion area in the hemizygous p75+/+apoE-/- mice was 116 000±48 000 mm² (n=10), which was similar to that in the p75+/+apoE-/- mice, suggesting that one copy of the p75 gene is sufficient to promote its proatherosclerotic effect. The p75+/+apoE-/- mice had a mean lesion area of 72 000±28 000 mm² (n=10), representing a 43% reduction in lesion area compared with the p75+/+apoE-/- mice (P<0.01), and a 37% decrease compared with the p75+/+apoE-/- mice (P<0.05). Body weights, lipid composition, and total plasma cholesterol were similar in the p75+/+apoE-/- and p75+/+apoE-/- genotypes. Our results are not consistent with the earlier observation by Schreyer et al in which the lack of p75 did not alter atherosclerosis development. However, this group used a distinct model, in which C57BL/6 mice were fed a high-fat, high-cholesterol, cholate-containing diet. The apoE-/- model is more robust, yielding larger lesions in a shorter time period. Our results indicate that the proatherogenic effect of TNF-α is primarily mediated via the activation of p75 in apoE-/- mice.

We wished to determine whether p75 activity shifts the homeostasis of cytokine production toward an inflammatory phenotype. We used a Multiplex assay system (LINCOpex kit, Linco Research Inc) to measure 22 cytokines from the plasma of individual chow-fed female p75+/+apoE-/- (n=4) and p75+/+apoE-/- mice (n=4) at 16 weeks of age. As shown in the Table, we identified significant increases in the levels of TNF-α and interleukin (IL)-17 (both are proinflammatory cytokines), and in the levels of the antiinflammatory cytokine IL-10 in the p75+/+apoE-/- mice. The TNF-α level was elevated 2.2-fold, the IL-17 level was elevated 2.0 fold, and the IL-10 level was elevated by 1.8-fold in the p75+/+apoE-/- mice compared with p75+/+apoE-/- mice. Furthermore, we identified a significant 42% decrease in the plasma level of the proinflammatory cytokine IL-1β in the p75+/+apoE-/- mice. The plasma levels of TNF-α, IL-17, IL-1β, and IL-10 were undetectable in the age-matched p75+/+apoE-/- mice, suggesting that the lack of the apoE gene caused an upregulation of TNF-α, IL-17, IL-1β, and IL-10 with p75 having a regulatory role in the process. Because p75+/+apoE-/- mice developed smaller atherosclerotic lesions than p75+/+apoE-/- mice, it is possible that the upregulation of IL-10 accompanied by the downregulation of IL-1β could override the proinflammatory activity of IL-17 in the p75+/+apoE-/- mice.

In conclusion, we have demonstrated that TNF-α receptor p75-deficiency in apoE-/- mice reduced atherosclerotic lesion development in the aortic root. This reduction in the lesion size is associated with altered plasma cytokine production, but without an effect on plasma cholesterol levels.

Acknowledgments

We thank Dr Richard Morton for the plasma lipid composition analysis, and Dr Nick Tripoulas for help in designing the animal breeding strategy.

Sources of Funding

NIH Grant HL29582 (P.E.D.) and NIH Research Center Award RR-00080 (Perinatal Clinical Research Center at the Cleveland MetroHealth Hospital) supported this work.

Disclosures

None.

Unni M. Chandrasekharan

Lori Mavarakis

Jonathan D. Smith

Paul E. DiCorletto

Department of Cell Biology

Lerner Research Institute and

Cleveland Clinic Lerner College of Medicine

Case Western Reserve University

Cleveland, Ohio

Tracy L. Bonfield

Department of Pulmonary Medicine

Lerner Research Institute and

Cleveland Clinic Lerner College of Medicine

Case Western Reserve University

Cleveland, Ohio

DOI: 10.1161/01.ATV.0000255551.33365.22
Letter to the Editor: Decreased Atherosclerosis in Mice Deficient in Tumor Necrosis Factor-α Receptor-II (p75)

Unni M. Chandrasekharan, Lori Mavrakis, Jonathan D. Smith, Paul E. DiCorleto and Tracy L. Bonfield

Arterioscler Thromb Vasc Biol. 2007;27:E16-E17
doi: 10.1161/01.ATV.0000255551.33365.22
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2007 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/27/3/E16

An erratum has been published regarding this article. Please see the attached page for:
/content/27/4/e26.full.pdf

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org/subscriptions/
Correction

In the letter by Chandrasekharan et al in the March 2007 issue (Arterioscler Thromb Vasc Biol. 2007;27:e16–e17), the order of authorship was listed incorrectly. The correct order should have been:

Unni M. Chandrasekharan
Lori Mavrakis
Department of Cell Biology
Lerner Research Institute and Cleveland Clinic Lerner College of Medicine
Case Western Reserve University
Cleveland, Ohio

Tracy L. Bonfield
Department of Pulmonary Medicine
Lerner Research Institute and Cleveland Clinic Lerner College of Medicine
Case Western Reserve University
Cleveland, Ohio

Jonathan D. Smith
Paul E. DiCorleto
Department of Cell Biology
Lerner Research Institute and Cleveland Clinic Lerner College of Medicine
Case Western Reserve University
Cleveland, Ohio

The authors regret this error.