Angiotensin II Stimulates Protein Kinase D–Dependent Histone Deacetylase 5 Phosphorylation and Nuclear Export Leading to Vascular Smooth Muscle Cell Hypertrophy

Xiangbin Xu, Chang-Hoon Ha, Chelsea Wong, Weiyee Wang, Angelika Hausser, Klaus Pfizenmaier, Eric N. Olson, Timothy A. McKinsey, Zheng-Gen Jin

Background—Angiotensin II (Ang II) induces the phenotypic modulation and hypertrophy of vascular smooth muscle cells (VSMCs), which is implicated in the pathogenesis of hypertension, atherosclerosis, and diabetes. In this study, we tested the hypothesis that histone deacetylases 5 (HDAC5) and its signal pathway play a role in Ang II–induced VSMC hypertrophy.

Methods and Results—VSMCs were isolated from the thoracic aortas of male Sprague-Dawley rats and treated with Ang II. We found that Ang II rapidly stimulated phosphorylation of HDAC5 at Serine259/498 residues in a time- and dose-dependent manner. Ang II receptor-1, protein kinase C, and protein kinase D1 (PKD1) mediated HDAC5 phosphorylation. Furthermore, we observed that Ang II stimulated HDAC5 nuclear export, which was dependent on its PKD1-dependent phosphorylation. Consequently, both inhibiting PKD1 and HDAC5 Serine259/498 to Alanine mutant significantly attenuated Ang II–induced myocyte enhancer factor-2 (MEF2) transcriptional activity and protein synthesis in VSMCs.

Conclusion—These findings demonstrate for the first time that PKD1-dependent HDAC5 phosphorylation and nuclear export mediates Ang II–induced MEF2 activation and VSMC hypertrophy, and suggest that PKD1 and HDAC5 may emerge as potential targets for the treatment of pathological vascular hypertrophy. (Arterioscler Thromb Vasc Biol. 2007;27:2355-2362.)

Key Words: angiotensin vascular smooth muscle cells histone deacetylases 5 protein kinase D hypertrophy

The renin-angiotensin system is a central component of the physiological and pathological responses of cardiovascular system. Angiotensin II (Ang II), the primary effecting hormone in this system, plays critical roles in mediating cardiovascular diseases such as hypertension, atherosclerosis, and diabetes. Mounting evidence shows that Ang II activation of the Ang II receptor 1 (AT1) contributes to pathological vascular remodeling, largely by stimulating vascular smooth muscle cells (VSMCs) hypertrophy. However, the molecular mechanisms by which Ang II stimulates VSMC hypertrophy are not fully understood.

Histone acetylation/deacetylation has emerged as a fundamental mechanism for the control of gene expression. Histone acetyltransferases stimulate transcription through acetylation of histones, resulting in relaxation of nucleosomes; but histone deacetylases (HDACs) deacetylate histone and repress transcription by condensing the chromatin. In particular, class II HDACs have been shown to interact with myocyte enhancer factor 2 (MEF2) and play an important role in the repression of cardiac hypertrophy. For example, mutant mice lacking either HDAC5 or HDAC9 develop extremely enlarged hearts in response to pathological signals. However, little is known of the role of class II HDACs in VSMC hypertrophy.

PKD1, also called PKCμ, is a newly identified serine/threonine kinase. PKD1 is mainly activated by a signal pathway, which involves phospholipase C activation, production of diacylglycerol, and activation of classical/novel protein kinase C (PKC). PKC-mediated phosphorylation of 2 conserved serine residues (Ser744 and Ser748) in the activation loop of PKD1 is essential for its activation. PKD1 activation results in its autophosphorylation at the Ser916 site. In addition, binding of diacylglycerol to the regulatory domain of PKD1 contributes both to PKD1 activation and to PKD1 subcellular localization. Important discoveries have been made regarding the roles of PKD1 in cell growth, survival, motility, and protein trafficking. Most recently it has been proposed that PKD1 may control gene transcription via the regulation of class II HDACs in T lymphocytes.

Original received May 25, 2007; final version accepted August 27, 2007.
From the Cardiovascular Research Institute and Department of Medicine (X.X., C.H.H., C.W., Z.G.J.), University of Rochester School of Medicine, NY; Institute of Cell Biology and Immunology (A.H., K.P.), University of Stuttgart, Germany; Myogen (T.A.M.) Inc, Westminster, Colorado; and the Department of Molecular Biology (E.N.O.), University of Texas Southwestern Medical Center at Dallas.
X.X. and C.H.H. contributed equally for this study.
Correspondence to Zheng-Gen Jin, Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 679, Rochester, NY 14642. E-mail zheng-gen_jin@urmc.rochester.edu
© 2007 American Heart Association, Inc.

Arterioscler Thromb Vasc Biol is available at http://atvb.ahajournals.org DOI: 10.1161/ATVBAHA.107.151704
and in cardiac cells. However, the specific substrates and function for PKD1 in VSMCs remain unclear.

Here, we describe that Ang II rapidly stimulates HDAC5 phosphorylation in rat aortic VSMCs. Moreover, PKD1, which is activated in a PKC-dependent manner after Ang II stimulation, mediates HDAC5 phosphorylation that subsequently leads to HDAC5 nuclear export and to the MEF2 dependent transcriptional activation. Based on our findings, we suggest that PKD1 and HDAC5 are implicated in Ang II–induced VSMC hypertrophy.

Materials and Methods

The materials and methods used in this study are fully described in the supplemental material (available online at http://atvb.ahajournals.org). Briefly, primary cultures of VSMCs were obtained from the thoracic aortas of male Sprague-Dawley rats. Growth arrested VSMCs were stimulated with Ang II as indicated. Western blot analysis was performed in total cell lysates, and HDAC5 subcellular localization study was performed in VSMCs infected with GFP-tagged HDAC5 using a fluorescence microscope. VSMC hypertrophy was analyzed by [3H]leucine incorporation.

Results

Ang II Induces HDAC5 Phosphorylation in VSMCs

To examine the potential role of HDAC5 in Ang II signaling and function, we first studied the phosphorylation of HDAC5 at Ser259/498 residues in VSMCs in response to Ang II stimulation. Phosphorylation of HDAC5 was determined by using a phosphospecific HDAC5 antibody, which recognizes HDAC5 only when phosphorylated at Ser259/498. Exposure to VSMCs to Ang II (100 nmol/L) rapidly induced phosphorylation of HDAC5 within 45 seconds (Figure 1A). HDAC5 phosphorylation reached a maximum between 2 and 40 minutes and returned to basal line after 90 minutes (Figure 1A). This response was dose-dependent, with a threshold of 1 nmol/L and a maximum effect occurring at 100 nmol/L Ang II (Figure 1B). The levels of HDAC5 and β-actin expression were detected by Western blots using the antibodies for HDAC5 and β-actin, respectively. During the course of Ang II stimulation, there was no significant change of HDAC5 expression in VSMCs, and the levels of β-actin showed the equal loading in each samples (Figure 1).

AT1 Receptor Mediates Ang II–Induced HDAC5 Phosphorylation

Two types of Ang II receptors, AT1 and AT2, were identified in VSMCs, which belong to the superfamily of G protein–coupled receptors. To determine which subtype of Ang II receptors mediates HDAC5 phosphorylation in VSMCs, we examined the effect of specific receptor antagonists on HDAC5 phosphorylation. Cells were pretreated for 30 minutes with either losartan (5 μmol/L), a specific antagonist for AT1, or PD123319 (10 μmol/L), an antagonist for AT2, and then stimulated with Ang II (100 nmol/L) for 5 minutes. As shown in Figure 2A, losartan completely blocked Ang II–induced HDAC5 phosphorylation, whereas PD123319 had no effect. These results suggest that AT1, but not AT2, mediates Ang II–induced HDAC5 phosphorylation in rat VSMCs.

PKCs Are Involved in Ang II–Induced HDAC5 Phosphorylation

To determine whether AT1-mediated PKC activation is involved in Ang II–mediated HDAC5 phosphorylation in
VSMCs, we examined the effect of PKC inhibitors on HDAC5 phosphorylation. Quiescent cells were pretreated with general PKC inhibitors GF109203X (0.3, 1, 3 μM) or Go6983 (0.3, 1, 3 μM) for 30 minutes before exposure to Ang II (100 nmol/L) for 5 minutes. As shown in Figure 2B and 2C, both GF109203X and Go6983 dose-dependently blocked HDAC5 phosphorylation. In addition, we found that the phosphatidylinositol-3-kinase (PI3K) inhibitors wortmannin and LY294002, calcium chelator BAPTA/AM, or calmodulin kinase (CaMK) inhibitors KN62 and KN93, had no effects on Ang II–induced HDAC5 phosphorylation (data not shown). Together, these results suggest that PKC, but not PI3K- and calcium-dependent signal pathways, is involved in the Ang II–stimulated PKD1 activation in VSMCs.

PKD Specifically Mediates Ang II–Induced HDAC5 Phosphorylation

Ang II Induces PKC-Dependent PKD Activation in VSMCs

Because PKC activation leads to PKD phosphorylation and activation in several cell types, we decided to examine the potential role of PKD in Ang II–induced HDAC5 phosphorylation in VSMCs. We first observed that Ang II induced PKD1 phosphorylation both at Ser744/748 (activation sites) and at Ser916 (autophosphorylation site) in a time- and dose-dependent manner (Figure 3A and 3B), which is resembled to the patterns of HDAC5 phosphorylation (Figure 1). Furthermore, PKC inhibitors GF109203X and Go6983 dose-dependently inhibited Ang II–stimulated PKD1 activation (Figure 3C and 3D), which is consistent with the notion that PKD1 activation is PKC-dependent. Again, PI3K- and calcium-dependent signal pathways are not involved in the Ang II–stimulated PKD1 activation in VSMCs (data not shown).

PKD Inhibitor Go6976 Blocked Ang II–Induced HDAC5 Phosphorylation

The rapid and prominent phosphorylation of HDAC5 and PKD1 by Ang II prompted us to examine whether activation of PKD1 contributed to Ang II–induced HDAC5 phosphorylation. Go6976 has been reported to inhibit both PKD1 activation and calcium-dependent PKC activation. Because we have shown that Ang II–induced PKD activation and HDAC5 phosphorylation are calcium-independent, Go6976 is useful as PKD inhibitor for our studies. VSMCs were pretreated with various concentrations of Go6976 for 30 minutes, followed by stimulation with Ang II (100 nmol/L) for 5 minutes. As shown in Figure 3E, Go6976 dose-dependently inhibited Ang II–triggered HDAC5 phosphorylation in VSMCs, suggesting that PKD1 is involved in this process.

Knockdown PKD1 by siRNA Attenuated Ang II–Induced HDAC5 Phosphorylation

To substantiate the role of PKD1 in Ang II–induced HDAC5 phosphorylation, we knocked down endogenous PKD1 in VSMCs using siRNA. Transfection of PKD1 siRNA in rat VSMCs significantly reduced PKD1 protein expression without affecting the expression of HDAC5 and β-actin (Figure 3F). Silencing PKD1 by siRNA significantly inhibited Ang II–induced HDAC5 phosphorylation (Figure 3F), indicating that PKD1 is required for HDAC5 phosphorylation by Ang II in VSMCs.

PKD1 Kinase-Negative Mutant Inhibited Ang II–Induced HDAC5 Phosphorylation

To further determine whether PKD1 activation mediates HDAC5 phosphorylation by Ang II, we generated and tested adenovirus expressing GFP-tagged PKD1 kinase-negative mutant (GFP-PKD1-KN) on Ang II–induced HDAC5 phosphorylation. As shown in Figure 3G, infection of VSMCs with adenoviruses encoding GFP-PKD1-KN markedly decreased PMA-induced phosphorylation (supplemental data). Taken together, these results strongly suggest that PKD1 mediates Ang II–induced HDAC5 phosphorylation in VSMCs.

Ang II Stimulates HDAC5 Nuclear Export via PKD-Dependent Phosphorylation

To determine the consequence of HDAC5 phosphorylation, we studied the effect of Ang II on HDAC5 subcellular localization...
in VSMCs. We infected VSMCs with adenovirus expressing GFP-tagged HDAC5-WT. As shown in Figure 4A, before treatment of Ang II, GFP-HDAC5 was located primarily in the nuclei of VSMCs, which allow us to conveniently assess the possible nuclear export of HDAC5. HDAC5 nuclear export was seen at 1 hour after Ang II stimulation (Figure 4A). Striking nuclear export of HDAC5 in the cells was observed by 2 hours after addition of Ang II and maintained for several hours (Figure 4A). After 6 hours of Ang II treatment, GFP-HDAC5 was gradually shuttled back to the nuclei from cytoplasm (Figure 4A). These results clearly demonstrate that Ang II stimulates the nucleocytoplasmic shuttling of HDAC5 in VSMCs.
To further define the signaling pathways leading to Ang II–induced nuclear export of HDAC5, we examined the effects of PKC inhibitors and activators on nuclear export of HDAC5 in VSMCs. Inhibition of PKCs by GF109203X and Go6983 blocked Ang II–induced HDAC5 nuclear export, whereas PKC activator PMA (200 nmol/L for 3 hours treatment) strongly stimulated HDAC5 nuclear export (Figure 4B), suggesting PKCs are involved in HDAC5 nuclear export in VSMCs. Consistent with the critical role of PKD1 in Ang II–induced HDAC5 phosphorylation, PKD inhibitor Go6976 (1/μmol/L) also blocked Ang II–induced HDAC5 nuclear export (Figure 4B). Taken together, these results suggest that a PKC–PKD1–dependent pathway stimulates nuclear export of HDAC5 in VSMCs.

To determine whether the phosphorylation of HDAC5 at Ser259/498 residues is required for Ang II–induced HDAC5 nuclear export, we studied subcellular localization of GFP-HDAC5-S/A mutant. VSMCs were infected with adenoviruses encoding GFP, GFP-HDAC5-WT, or GFP-HDAC5-S/A. In basal condition without Ang II stimulation, both GFP-HDAC5-WT and GFP-HDAC5-S/A were localized in the nuclei of VSMCs, whereas GFP alone was distributed in both nuclei and cytoplasm (Figure 4C). After Ang II stimulation for 3 hours, GFP-HDAC5-WT was shuttled to cytoplasm from nuclei (Figure 4C). In contrast, GFP-HDAC5-S/A remained in the nuclei after Ang II stimulation, suggesting the requisite role of phosphorylation at Ser259/498 residues for HDAC5 nuclear export (Figure 4C). No significant localization change of GFP was observed in the cells transfected with adenovirus encoding GFP, verifying the specificity for HDAC5 nucleocytoplasmic shuttling in response to Ang II. Moreover, knocking down PKD1 expression by siRNA also greatly attenuated PMA-induced nuclear export of HDAC5 in VSMCs (supplemental data).

PKD1 and HDAC5 Are Involved in Ang II–Induced MEF2 Transcriptional Activity

To determine the potential role of HDAC5 in Ang II regulation of MEF2 transcriptional activation in VSMCs, we transfected VSMCs with 3×MEF2-luciferase reporter plasmid and then infected adenovirus encoding LacZ or Flag-tagged HDAC5-S/A. Ang II significantly increased MEF2 transcriptional activity in VSMCs (Figure 5A). Interestingly,
HADC5-S/A mutant abolished such increase of MEF2 transcriptional activation by Ang II (Figure 5A), suggesting nuclear-retaining HDAC5 negatively regulates Ang II–stimulated MEF2 transcriptional activity. Furthermore, PKD1 was also involved in Ang II–induced MEF2 transcriptional activity because pretreatment of the cells with PKD inhibitor Go6976 for 30 minutes significantly inhibited Ang II–induced MEF2 transcriptional activation in VSMCs (Figure 5B).

PKD1 and HDAC5 Are Implicated in Ang II–Stimulated VSMC Hypertrophy

To further gain insights into the functional role of PKD1 and HDAC5 in Ang II signaling, we examined whether PKD1 and HDAC5 are involved in Ang II–stimulated VSMC hypertrophy. VSMCs were infected cells with adenoviruses encoding GFP, GFP-HDAC5-S/A or GFP-PKD1-KN, or pretreated cells with PKD inhibitor Go6976. As shown in Figure 6, Ang II significantly increased [3H]leucine incorporation. Overexpression of GFP-HDAC5-S/A and GFP-PKD1-KN significantly inhibited Ang II–stimulated [3H]leucine incorporation (Figure 6A and 6B). Similarly, inhibiting PKD1 by Go6976 suppressed Ang II–induced [3H]leucine incorporation (Figure 6C). These results suggest that PKD1 and HDAC5 play an important role for Ang II–induced VSMC hypertrophy.

Discussion

The present study demonstrates that Ang II induces HDAC5 phosphorylation and nuclear export via PKC-PKD1 pathway in VSMCs, which results in an increase of MEF2 transcriptional activity and consequent VSMC hypertrophy. First, we showed that Ang II rapidly and strongly stimulated HDAC5 phosphorylation at Ser259/498 residues in a time- and dose-dependent manner in rat VSMCs. Furthermore, Ang II–induced HDAC5 phosphorylation is mediated through a signal pathway that involves AT1 receptor, PKC and PKD1, and this pathway plays a pivotal role for HDAC5 nuclear export and MEF2 transcriptional activation. Importantly, PKD1- and HDAC5-dependent responses contribute to regulation of Ang II–induced [3H]leucine incorporation into VSMCs to cause cell hypertrophy. In addition, we also found that PKD1-HDAC5 are involved in Ang II–induced smooth muscle α-actin expression (supplemental data). These cumulative observations for the first time reveal a novel role of PKD1 and HDAC5 in Ang II–induced signal transduction and VSMC hypertrophy, which may represent an important...
mechanism for Ang II effects on vascular remodeling observed in animal models and in human.

Acetylation of chromatin proteins and transcription factors is part of a complex signaling system that is largely involved in the control of gene expression. Histone acetyltransferases and HDACs act in an opposing manner to control the acetylation state of nucleosomal histones. The present study uncovers a new role of HDAC5 as a key regulator for Ang II–induced VSMC hypertrophy. We found that Ang II promotes phosphorylation of two serine 259/498 residues in HDAC5, which have been shown to be the docking sites for the 14-3-3 chaperone protein. Binding of 14-3-3 to HDAC5 may disrupt its association with MEF2 transcriptional factors and triggers HDAC5 export from the nucleus to the cytoplasm, thus freeing MEF2 to activate subordinate genes that govern VSMC hypertrophic growth. Inconsistent with this notion, we observed that Ang II induced HDAC5 translocation from the nuclei to cytoplasm, and increased MEF2 transcriptional activity. Mutation of these serine sites to alanine (HDAC5-S/A mutant) blocked HDAC5 nuclearcytoplasmic shuttling and MEF2 transcriptional activation in response to Ang II. Furthermore, HDAC5-S/A mutant inhibited Ang II–stimulated increase of [H]leucine incorporation in VSMCs. It has been shown that the induction of smooth muscle α-actin is involved in Ang II–induced VSMC hypertrophy. Our supplemental data showed that smooth muscle α-actin expression is regulated by PKD1-HDAC5 pathway because both PKD1-KN and HDAC5-S/A attenuated an increase of smooth muscle α-actin mRNA in VSMCs in response to Ang II (supplemental data). These results are consistent with recent report that HDAC5 is involved in platelet-derived growth factor–BB–induced suppression of smooth muscle α-actin expression in VSMCs. Expression of smooth muscle α-actin is controlled by the transcriptional factor, serum response factor, and its coactivator, myocardin. Since HDAC5 directly interacts and inhibits myocardin, the dissociation of myocardin from HDAC5 through PKD1-dependent phosphorylation and nuclear export of HDAC5 might be one of possible mechanisms by which Ang II stimulates smooth muscle α-actin expression. Further studies are needed to understand a potential role of PKD1-HDAC5 pathway in the transcriptional regulation of hypertrophic genes, in particular MEF2-dependent genes. Collectively, our findings demonstrate that the signal-resistant form of HDAC5 functions as a potent repressor of Ang II–induced VSMC hypertrophy, suggesting that phosphorylation of HDAC5 is a requisite step in the process of derepressing VSMC growth genes and that the antihypertrophic action of endogenous HDAC5 in VSMCs is overcome by Ang II–signaling pathways that culminate in nuclear export of this transcriptional repressor in VSMCs.

PKD1 is a member of a family of cytosolic serine/threonine protein kinases and highly expressed in vascular cells. However, the functional roles of PKD1 in vascular cells are largely unknown. In present study, we showed for the first time that PKD1 mediates Ang II–induced HDAC5 phosphorylation and nuclear export in VSMCs and suggest that PKD1 is implicated in VSMC hypertrophy. The critical role of PKD1 for HDAC5 phosphorylation by Ang II was tested with 3 different strategies in our studies. Either pretreatment cells with PKD inhibitor Gö6976, or siRNA knockdown of PKD1 expression, or infection of adenovirus expressing PKD1-KN, blocked Ang II–induced HDAC5 phosphorylation. Inhibiting PKD1 also abolished Ang II–stimulated HDAC5 nuclear export, MEF2 transcriptional activity, and [H]leucine incorporation in VSMCs. These results strongly suggest that PKD1 plays a critical role in HDAC5 phosphorylation to VSMC hypertrophy in response to Ang II. In agreement with PKC-dependent PKD1 activation, we also showed that PKC inhibitors GF109203X and Gö6983 blocked PKD1 activation, and abolished Ang II–induced HDAC5 phosphorylation and nuclear export. Moreover, we found that PMA-induced phosphorylation and nuclear export of HDAC5 were attenuated by inhibition of PKD1 (supplemental data), further demonstrating PKD1 is downstream of PKC signaling. In addition, we observed that Ang II–dependent phosphorylation of HDAC5 in VSMCs is resistant to calcium chelator BAPTA/AM, CaMK inhibitors KN93 and KN62. Collectively, our results suggest that the PKC-PKD1 pathway, but not the calcium-dependent CaMK pathway, is involved in Ang II–induced HDAC5 phosphorylation in VSMCs. Taken together, our present findings suggest that PKD1 is critical for mediating Ang II–induced HDAC5 phosphorylation and VSMC hypertrophy.

In summary, we have demonstrated that Ang II induced PKD1-dependent HDAC5 phosphorylation and nuclear export, and PKD1-HDAC5 pathway is involved in Ang II–stimulated MEF2 transcriptional activity and VSMC hypertrophy. Further studies to define the specific genes regulated by PKD1-HDAC5 pathway and the functional role of PKD1 and HDAC5 in experimental animal models promise to provide new insight into the molecular underpinnings of pathological vascular remodeling in hypertension, atherosclerosis, and diabetes.

Acknowledgements
We are grateful to Dr. Chen Yan for helping the assay of [H]leucine incorporation and to Dr. Joseph Miano for providing 3×MEF2 reporter construct.

Sources of Funding
This work was supported by the National Institute of Health, National Heart, Lung, and Blood Institute Grant RO1 HL-080611 (to Z.G.J.), National Institute of Diabetes and Digestive and Kidney Diseases-Heart, Lung, and Blood Institute Grant RO1 HL-080611 (to Z.G.J.), the American Diabetes Association Career Development Award 1-06-CD-13 (to Z.G.J.), and from the Deutsche Forschungsgemeinschaft grant SFB495 (to A.H. and K.P.). Z.G.J. was a recipient of 2006 Thomas R. Lee Award from the American Diabetes Association.

Disclosures
None.

References
Angiotensin II Stimulates Protein Kinase D-Dependent Histone Deacetylase 5 Phosphorylation and Nuclear Export Leading to Vascular Smooth Muscle Cell Hypertrophy
Xiangbin Xu, Chang-Hoon Ha, Chelsea Wong, Weiye Wang, Angelika Hausser, Klaus Pfizenmaier, Eric N. Olson, Timothy A. McKinsey and Zheng-Gen Jin

Arterioscler Thromb Vasc Biol. 2007;27:2355-2362; originally published online September 6, 2007;
doi: 10.1161/ATVBAHA.107.151704
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2007 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/27/11/2355

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2007/10/18/ATVBAHA.107.151704.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/
Supplement information

Materials and Methods

Materials
The antibodies for HDAC5, phospho-PKD (Ser744/748) and phospho-PKD (Ser916) were purchased from Cell Signaling Technologies. Antibodies for PKD1 and β-actin were from Santa Cruz, Inc. Antibody for phospho-HDAC5 (Ser259/498) was generated as described previously. Ang II was from ICN Biomedicals. Losartan, PD123319, GF109203X, Gö6983, Gö6976, wortmannin, LY294002, BAPTA/AM, KN62 and KN93 were from Calbiochem. Other chemical were purchased from Sigma.

Cell Culture and Treatments
VSMCs were isolated from the thoracic aorta of male Sprague-Dawley rats and maintained in DMEM medium containing 10% calf serum, 2 mmol/L l-glutamine, 100 U/mL penicillin, and 100 µg/mL streptomycin, at 37°C as described previously.

Cultured VSMCs at confluence were growth arrested by incubation in serum-free DMEM medium for 24 hours and then stimulated by Ang II as indicated. For the inhibitor studies, cells were pretreated with inhibitors for 30 minutes before the application of Ang II.

Adenoviral Infection of VSMCs
Adenoviruses encoding Flag-tagged HDAC5 wild-type (WT) and S259/498A mutant (SA), and GFP-tagged HDAC5 WT were generated as described previously. Adenovirus expressing GFP-tagged HDAC5 SA mutant, GFP-tagged PKD1 kinase-negative mutant
Role of HDAC5 in Angiotensin II Signaling

(GFP-PKD1 KN) were generated from pCMV-Flag-HDAC5 SA\(^1\) and pEGFP-PKD1 KN\(^3\) using ViraPower Adenoviral Expression System (Invitrogen) according to the manufacturer’s protocol. Adenovirus containing β-galactosidase (LacZ) or GFP was used as a control. VSMCs in DMEM containing 10% FBS were infected with adenovirus expressing indicated proteins for 24 to 48 hours, and then treated with or without inhibitors followed by the application of Ang II.\(^4\)

siRNA Transfection

The siRNA duplex targeting PKD1 and the scrambled siRNA control (a non-targeting siRNA pool) were purchased from Dharmacon, Inc. The sequences of siRNA against rat PKD1 are sense GAAAGAACGCUUCAACAUCUU and antisense 5’-P GAUGUUAGCGUUCUUUCUU. Proliferating VSMCs after seeded into 60 mm dishes for 24 hours were transfected with control siRNA (100 nmol/L) or PKD1 siRNA (100 nmol/L) using Lipofectamine 2000 (Invitrogen) according to the manufacturer's protocol as described previously.\(^4,5\) 48 hours later, cells were exposed to Ang II as indicated, and then cell lysates were subjected to Western blot analysis.

Western Blot Analysis

Cells were harvested and the protein concentrations in the lysates were determined as described previously.\(^4,6\) The protein samples were separated by SDS-PAGE, transferred to nitrocellulose membrane, and incubated with appropriate primary antibodies. After incubating with fluorescence-conjugated secondary antibodies, immunoreactive proteins were visualized by an Odyssey infrared imaging system (LI-COR Biotechnology,
Nebraska). Densitometric analysis of the blots was performed with Odyssey software. Results were normalized by arbitrarily setting the densitometry of control sample to 1.0.

HDAC5 Subcellular Localization Study

For analysis of GFP-HDAC5 localization in VSMCs, cells were plated in the presence of adenovirus (multiplicity of infection, 50 to 100) on 35 mm dishes containing DMEM plus 10% calf serum as previously described. After 24 hours culture, cells were maintained in serum-free DMEM medium for additional 24 hours, and then exposed to various inhibitors (for 30 minutes) prior to Ang II stimulation for indicated times. The cells were washed with PBS and fixed with 3.7% formaldehyde in PBS. Images were captured at a magnification of x60, using a fluorescence microscope (Olympus BX51) equipped with a digital camera and Spot software system (RT Color Diagnostic Instruments).

Transient Transfection and Luciferase Reporter Assay

To assess MEF2 transcriptional activation, we used 3xMEF2-dependent reporter gene (from Dr. Joseph Miano) in which three tandem repeats of MEF2 sites were located upstream of the thymidine kinase gene promoter. VSMCs cultured in 24-well were cotransfected with 3xMEF2 luciferase reporter gene, thymidine kinase-renilla-luciferase (an internal control, Promega) using Electroporation (Bio-Rad) and infected with adenovirus encoding LacZ or Flag-HDAC5 SA. At 48 hours posttransfection, cells were treated with Ang II for another 16 hours. The luciferase activities in cell lysates were determined using the Dual-Luciferase Reporter Assay kit (Promega) and Wallac 1420 multilabel counter (PerkinElmer).
Determination of VSMC Hypertrophy

To assess cell hypertrophy, [3H]leucine incorporation in VSMCs was performed as described. Briefly, VSMCs were made quiescent by incubation in serum-free DMEM medium for 48 hours. Cells were incubated with 0.5 µCi/ml [3H] leucine (NEN Life Science Products, Massachusetts) in the presence or absence of 100 nmol/L Ang II. After 24 hours incubation, cells were washed twice with ice-cold PBS, and the proteins were precipitated in 5% trichloroacetic acid. [3H] leucine incorporation was determined using a liquid scintillation counter (Beckman Instruments Inc., California).

RT-PCR.

Total RNA was isolated from cultured endothelial cells using a Total RNA Isolation Kit (Qiagen). First-strand cDNA was synthesized with the SuperScript Preamplification System (Gibco-BRL). cDNA was amplified by PCR for 30 cycle (Applied Biosystem). Primer sequences for rat smooth muscle α-actin are 5’-ACTGGGACGACATGGAAAAG-3’ -3’ and 5’-CATCTCCAGAGTCCAGCACA-3’.

Rat GAPDH served as an internal control. Experiments were repeated three times.

Statistical Analysis

All values are expressed as means ± SEM. The significance of the results was assessed by a paired t-test between two groups. Differences among 3 or more groups were analyzed by contrast analysis, using the SuperANOVA. A p value <0.05 was considered significant.
Role of HDAC5 in Angiotensin II Signaling

References

Figure Legends

Figure S1. PKD1 mediates PMA-induced phosphorylation of HDAC5 in VSMCs.

VSMCs were infected with adenovirus constructs expressing GFP alone or GFP-PKD1-KN for 48 hours, and then stimulated with Ang II (100 nmol/L) for 5 minutes. Western blots showed phosphorylation of HDAC5 at Ser259/498 residues (p-HDAC5). Expression levels of HDAC5 and β-actin in cell lysates were detected with the antibodies of HDAC5 and β-actin, respectively. Representative blots are shown (n=3).

Figure S2. PKD1 mediates PMA-induced nuclear export of HDAC5 in VSMCs.

VSMCs were transfected with scrambled siRNA (control, 100 nmol/L) or PKD1 siRNA (100 nmol/L) for 24 hours, and then infected with adenovirus constructs expressing GFP-HDAC5-WT for additional 24 hours. Then VSMCs were stimulated with Ang II (100 nmol/L) for 3 hours. The cells were fixed and processed for fluorescence microscopy as described in Materials and Methods. The representative images showing the subcellular
localization of GFP-HDAC5-WT were from four separate experiments. Magnification, x60.

Figure S3. PKD1 and HDAC5 are involved in regulation of Ang II-induced smooth muscle α-actin gene expression. VSMCs were infected with adenovirus constructs expressing GFP alone, GFP-HDAC5-S/A or GFP-PKD1-KN for 48 hours, and then stimulated with Ang II (100 nmol/L) for 8 hours. The mRNA was extracted from the cell lysates, and RT-PCR with the primers of smooth muscle α-actin and GADPH (internal control) were performed. The representative images and quantitative data from three-independent experiments were shown.
Fig. S1

<table>
<thead>
<tr>
<th></th>
<th>GFP</th>
<th>GFP-PKD1-KN</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMA</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

- p-HDAC5
- HDAC5
- β-actin

Fig. S2

Control siRNA	PKD1 siRNA
Control | PMA

Fig. S3

<table>
<thead>
<tr>
<th></th>
<th>GFP</th>
<th>GFP-HDAC5-S/A</th>
<th>GFP-PKD1-KN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ang II</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

- SM-α-actin
- GAPDH