Editorial

Lipoxygenase Pathways as Mediators of Early Inflammatory Events in Atherosclerosis

Colin D. Funk

Oxidative modification of low density lipoproteins has been a leading hypothesis in atherogenesis, and throughout the 1990’s there was intense interest in the discovery of pathways leading to this modification. In a commentary to an article dealing with 12/15-lipoxygenase gene disruption in the atherosclerotic apolipoprotein E (apoE)-deficient mouse model in 1999, Daniel Steinberg declared “at last direct evidence that lipoxygenases play a role in atherosclerosis.” Since this article seven years ago, the lipoxygenase pathway involvement in atherogenesis has become rather more complicated.

See page 1260

Lipoxygenases are non-heme iron-containing enzymes that catalyze the stereospecific incorporation of molecular oxygen into polyunsaturated fatty acids with a 1,4-cis, cis-pentadiene motif. With respect to atherosclerosis 2 of the 6 (human)/7 (mice) lipoxygenase family members have received the most attention because of their expression patterns in inflammatory cells and in some settings within endothelial cells; these are the 12/15-lipoxygenase (12/15-LO; also known as the leukocyte-type 12-lipoxygenase and 15-lipoxygenase-1) and 5-lipoxygenase. 12/15-LO catalyzes the transformation of free arachidonic acid to 12-hydroperoxyeicosatetraenoic acid (12-HPETE) and 15-HPETE. These products are reduced to the corresponding hydroxy derivatives 12-HETE and 15-HETE by cellular peroxidases. Mice lacking 12/15-LO show a reduction of 12-HETE and 15-HETE levels as well as decreased magnitude of the monocyte adhesion event in response to 12(S)-HETE challenge. These results suggest that 12/15-LO is a key regulatory enzyme in monocyte adhesion and the formation of atherosclerotic lesions.

The next important step will be to establish the connection between the enhanced ICAM-1 induction by 12(S)-HETE and atherogenesis. The case for ICAM-1 involvement in mediating early atherogenic events is unclear with some groups reporting that ICAM-1 deficiency reduces lesion development in apoE-deficient mice, whereas another team of investigators contends evidence that vascular cell adhesion molecule (VCAM)-1, not ICAM-1, is important in early atherogenesis. Returning to the complicated area of lipoxygenases in atherosclerosis mentioned in the first paragraph, the role for 12/15-LO in atherogenesis has been
verified in three different mouse models (apoE, LDL-R, and apobec-1/LDL-R deficiency) by at least three research groups and studies suggest a role for 12/15-LO expressing bone marrow–derived cells (eg, macrophages) in preference to endothelial cells in the proatherogenic role.\(^\text{1,4,18,19}\) However, other investigators have shown that the human 15-LO pathway and transgenic 15-LO macrophage overexpressing rabbits may contribute antiinflammatory compounds like lipoxins and lead to a reduction in atherosclerosis.\(^\text{20,21}\)

To further complicate matters there have been a substantial number of studies in the past few years implicating the 5-LO pathway in atherogenesis in humans and mice with a large number of inconsistencies between studies (reviewed in refs. 22, 23). 5-LO–derived leukotriene B\(_4\) appears to influence early atherosclerotic events in mouse studies perhaps also by mediating monocyte adhesion and recruitment via monocyte chemoattractant protein-1 (MCP-1).\(^\text{24–27}\) However, lesion development resulting from complete loss of leukotriene biosynthesis (both LTB\(_4\) and the cysteinyl leukotrienes LTC\(_4\), LTD\(_4\), and LTE\(_4\)) does not appear to substantially impact atherosclerosis in a variety of fat feeding and mid-to-long-term experiments in both apoE- and LDL-R–deficient states.\(^\text{28}\)

Integrating the biological activities of the 5-LO and 12/15-LO pathways into a unified paradigm for early atherogenic events should be the goal for researchers in this area over the next few years. Hedrick and colleagues’ experiments to elucidate the intracellular signaling events in the 12/15-LO pathway are important steps forward toward this goal.

Acknowledgments
This work was supported by grants from the Canadian Institutes of Health Research and the Heart and Stroke Foundation of Ontario. C.F. is a holder of a Tier I Canada Research Chair in Molecular, Cellular, and Physiological Medicine and Career Investigator Award from the Heart and Stroke Foundation of Canada.

References

15. Bourdillon MC, Poston RN, Covacho C, Chignier E, Bricca G, McGregor JL. ICAM-1 deficiency reduces atherosclerotic lesions in double-
knockout mice (ApoE\(^{-/-}\)/ICAM-1\(^{-/-}\)) fed a fat or a chow diet.

P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency sub-
stantially protects against atherosclerosis in apolipoprotein E-deficient

17. Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, Davis V,
Gutierrez-Ramos JC, Connelly PW, Milstone DS. A major role for

18. George J, Afek A, Shaish A, Levkovitz H, Bloom N, Cyrus T, Zhao L,
Funk CD, Sigal E, Harats D. 12/15-Lipoxigenase gene disruption
attenuates atherogenesis in LDL receptor-deficient mice. *Circulation.*

19. Huo Y, Zhao L, Hyman MC, Shashkin P, Harry BL, Burcin T, Forlow SB,
Starck MA, Smith DF, Clarke S, Srinivasan S, Hedrick CC, Pratico D,
Witzum JL, Nadler JL, Funk CD, Ley K. Critical role of macrophage
12/15-lipoxygenase for atherosclerosis in apolipoprotein E-deficient
2004;110:3156.

20. Levy BD, Clish CB, Schmidt B, Gronert K, Serhan CN. Lipid mediator
class switching during acute inflammation: signals in resolution.

21. Shen J, Herderick E, Cornhill JF, Zsigmond E, Kim HS, Kuhn H, Guevara
NV, Chan L. Macrophage-mediated 15-lipoxygenase expression protects

22. Funk CD. Leukotriene modifiers as potential therapeutics for cardiovas-

23. Lotzer K, Funk CD, Habenicht AJ. The 5-lipoxygenase pathway in
arterial wall biology and atherosclerosis. *Biochim Biophys Acta.*

SJ. Leukotriene B4 receptor antagonism reduces monocytic foam cells in

Tseng MT, Haribabu B. Role of leukotriene B4 receptors in the develop-
ment of atherosclerosis: potential mechanisms. *Arterioscler Thromb
Vasc Biol.* 2004;24:369–375.

Aikawa ER, Chen JQ, Huang P, Freeman MW, Moore KJ, Luster AD,
Gerszten RE. Inhibition of atherogenesis in BLT1-deficient mice reveals
a role for LTB4 and BLT1 in smooth muscle cell recruitment.

27. Huang L, Zhao A, Wong F, Ayala JM, Struthers M, Ujjainwalla F, Wright
SD, Springer MS, Evans J, Cui J. Leukotriene B4 strongly increases
monocyte chemoattractant protein-1 in human monocytes. *Arterioscler

Schmidt S, Spanbroek R, Lotzer K, Huang L, Cui J, Rader DJ, Evans JF,
Habenicht AJ, Funk CD. The 5-lipoxygenase pathway promotes patho-
966–973.
Lipoxygenase Pathways as Mediators of Early Inflammatory Events in Atherosclerosis
Colin D. Funk

Arterioscler Thromb Vasc Biol. 2006;26:1204-1206
doi: 10.1161/01.ATV.0000222960.43792.ff
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2006 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/26/6/1204

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org/subscriptions/