Blockade of Angiotensin II Receptors Reduces the Expression of Receptors for Advanced Glycation End Products in Human Endothelial Cells

Masashi Fujita, Hiroko Okuda, Osamu Tsukamoto, Yoshihiro Asano, Yulin Liao Akio Hirata, Jiyoong Kim, Takeshi Miyatsuka, Seiji Takashima, Tetsuo Minamino, Hitonobu Tomoike, Masafumi Kitakaze

Objectives—Receptors for advanced glycation end products (RAGEs) play crucial roles in atherogenesis. Because tumor necrosis factor α (TNFα) is expressed and upregulates RAGE expression in atherosclerotic lesions, the TNFα-RAGE interaction might be involved in the inflammatory process of atherogenesis. On the other hand, an angiotensin II type-1 receptor blocker (ARB), widely used as an antihypertensive drug, has been reported to have also antiatherosclerotic effects. Thus we investigated whether an ARB exerts antiatherosclerotic effects via inhibiting the TNFα-RAGE interaction.

Methods and Results—Stimulation of human endothelial cells with candesartan as well as olmesartan decreased TNFα-induced RAGE expression in both mRNA and protein levels along with the decrease in the activity of nuclear factor κB and the expression of inflammatory mediators such as vascular cell adhesion molecule (VCAM)-1. Both candesartan and olmesartan inhibited the binding of nuclear factor κB to the RAGE gene promoter. Furthermore, gene silencing of RAGE by RNA interference decreased the expression of TNFα-induced VCAM-1 in both mRNA and protein levels.

Conclusions—RAGE contributes at least partially to the TNFα-induced VCAM-1 expression in both mRNA and protein levels. Blockade of angiotensin II receptors might exert antiatherosclerotic effects via reducing TNFα-RAGE interaction. (Arterioscler Thromb Vasc Biol. 2006;26:e138-e142.)

Key Words: angiotensin II type-1 receptor blocker (ARB) ■ receptors for advanced glycation end products (RAGEs) ■ endothelial cell

Web Site Feature

The full-length article can be found on the World Wide Web at http://atvb.ahajournals.org
Blockade of Angiotensin II Receptors Reduces the Expression of Receptors for Advanced Glycation End Products in Human Endothelial Cells

Masashi Fujita, Hiroko Okuda, Osamu Tsukamoto, Yoshihiro Asano, Yulin Liao, Akio Hirata, Jiyoong Kim, Takeshi Miyatsuka, Seiji Takashima, Tetsuo Minamino, Hitonobu Tomoike and Masafumi Kitakaze

Arterioscler Thromb Vasc Biol. 2006;26:2208

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2006 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/26/10/2208

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/