Coronary Artery Atherosclerosis Is Related to Reduced Regional Left Ventricular Function in Individuals Without History of Clinical Cardiovascular Disease

The Multiethnic Study of Atherosclerosis

Thor Edvardsen, Robert Dettano, Boaz D. Rosen, J. Jeffrey Carr, Kiang Liu, Shenghan Lai, Steven Shea, Li Pan, David A. Bluemke, João A.C. Lima

Objective—We investigated whether regional coronary calcium score by computed tomography is related to regional left ventricular systolic function measured by MRI tagging in participants of the Multiethnic Study of Atherosclerosis.

Methods and Results—The Multiethnic Study of Atherosclerosis is a prospective observational study of men and women without a history of previous heart disease from 4 ethnic groups. Calcium scores were measured separately for the left anterior descend (LAD), left circumflex (LCX), and right (RCA) coronary arteries. Left ventricular strain and strain rate were determined by tagged MRI in the corresponding vascular territories of the coronary vessels in 509 participants. Greater coronary calcification in the LAD, LCX, and right RCA coronary arteries were related to worse function in their respective perfusion. Anterior wall strain rate was \(-1.37\pm0.41\) when LAD calcium was zero versus \(-1.17\pm0.24\) 1/s in the highest quartile of calcium score (P<0.001). Similar relationships were evident in the LCX and RCA regions. Participants with 1- and 2-vessel coronary artery calcium had better myocardial function in the remote area compared with the territory supplied by the diseased artery.

Conclusions—High-local calcium score is related to regional dysfunction in the corresponding coronary territory among individuals without a history of previous heart disease. These results indicate a link between atherosclerosis and subclinical regional left ventricular dysfunction. (Arterioscler Thromb Vasc Biol. 2006;26:206-211.)

Key Words: atherosclerosis ■ coronary circulation ■ calcification ■ MRI ■ myocardial function

Left ventricular dilatation and global dysfunction in patients without signs or symptoms of heart failure have been directly linked to the eventual development of symptomatic congestive heart failure in clinical and epidemiologic studies.1,2 These structural and functional alterations of the left ventricle are currently considered as subclinical manifestations of heart failure.3 In the United States and Europe, coronary artery disease is the leading cause of left ventricular dysfunction and heart failure.4 Moreover, because coronary atherosclerosis is the most important primary etiologic factor underlying heart failure, it is expected that myocardial dysfunction would begin as a regional process, later progressing to global ventricular failure and symptomatic congestive disease. However, the relationship between subclinical atherosclerosis and subclinical myocardial dysfunction remains undefined.

MRI offers a unique opportunity to assess regional left ventricular function in a detailed and quantitative manner through myocardial tagging.5,6 MRI tagging is an accurate and objective method for assessing regional myocardial dysfunction.7,8 Similarly, coronary calcification measured by computed tomography (CT) is considered to be a specific and quantifiable subclinical marker of coronary atherosclerosis.9,10 CT also allows for separate assessments of coronary calcification in the 3 main coronary arterial trees supplying the human left ventricle; namely, the left anterior descending (LAD), left circumflex (LCX), and right (RCA) coronary arteries. Therefore, the main hypothesis of this study is that regional coronary calcium scores are related to regional myocardial dysfunction defined by MRI tagging in the corresponding myocardial territories of individuals without any history of clinical cardiac disease. We investigated this hypothesis in the Multiethnic Study of Atherosclerosis (MESA).

Methods

MESA is a prospective, population-based observational cohort study of men and women free of a history or symptoms of clinical...
TABLE 1. Exclusion Criteria for MESA

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td><45 or >84 years</td>
</tr>
<tr>
<td>Physician-diagnosed heart attack</td>
<td></td>
</tr>
<tr>
<td>Physician-diagnosed angina or taking nitroglycerin</td>
<td></td>
</tr>
<tr>
<td>Physician-diagnosed stroke or TIA</td>
<td></td>
</tr>
<tr>
<td>Physician-diagnosed heart failure</td>
<td></td>
</tr>
<tr>
<td>Current atrial fibrillation</td>
<td></td>
</tr>
<tr>
<td>Having undergone procedures related to cardiovascular disease</td>
<td></td>
</tr>
<tr>
<td>Active treatment for cancer</td>
<td></td>
</tr>
<tr>
<td>Pregnancy</td>
<td></td>
</tr>
<tr>
<td>Any serious medical condition that would prevent long-term participation</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>>300 pounds</td>
</tr>
<tr>
<td>Cognitive inability as judged by the interviewer</td>
<td></td>
</tr>
<tr>
<td>Living in a nursing home or on the waiting list for a nursing home</td>
<td></td>
</tr>
<tr>
<td>Plans to leave the community within 5 years</td>
<td></td>
</tr>
<tr>
<td>Language barrier (speaks other than English, Spanish, Cantonese, or Mandarin)</td>
<td></td>
</tr>
<tr>
<td>Chest CT scan in the past year</td>
<td></td>
</tr>
</tbody>
</table>

cardiovascular disease at study enrollment. Study design and population characteristics have been described in greater detail elsewhere.\(^{11}\) Briefly, 6814 men and women from 4 different ethnic groups (white, African-American, Hispanic, and Chinese), aged 45 to 85 years at baseline, were enrolled in MESA. The exclusion criteria in MESA are listed in Table 1. Participants with known clinical disease were not recruited, and eligibility was determined from self-reported information. Of those, 509 participants underwent both tagged MRI and CT scanning the same day at 6 different centers (Wake Forest University, Winston-Salem, NC; Columbia University, New York, NY; Johns Hopkins University, Baltimore, MD; University of Minnesota, MN; Northwestern University, Chicago, IL; and University of California at Los Angeles, Torrance, CA) between July 2000 and September 2002. These individuals were included in the regional function analyses.

All of the MESA participants gave informed consent for the study protocol. The Institutional Review Boards in all of the MESA Field Centers, MRI, and CT Reading Centers approved this protocol.

CT Protocol

All of the MESA participants underwent measurement of coronary artery calcium score using either 4-detector row CT (MDCT) or electron beam CT (EBCT) at the baseline examination. All of the EBCT (University of California Los Angeles, Columbia University, and Northwestern University) and MDCT scans were prospectively triggered.

EBCT was performed on Imatron C-150 ultrafast scanners with a 100-ms exposure and 35-cm field view. For the sites that used EBCT, parameters were: 130 kVp, 630 mA, scan time of 100 ms, 3-mm collimation, and sharp reconstruction filter. For EBCT scans, prospective cardiac gating was used with scanner triggering at 80% of the electrocardiographic RR interval.

MDCT was performed on either GE Light Speed or Siemens Volume Zoom scanners with 330-ms and 361-ms exposure, respectively, and 35-cm field of view.\(^{12,13}\) Participants were scanned twice in succession. At Wake Forest University, a GE Light Speed was used with 120 kVp, 200 mA, 0.8-s scan, 4×2.5-mm collimation, sequential axial scans, segmented reconstruction, and standard filter. Johns Hopkins University and the University of Minnesota used Siemens Volume Zoom at 140 kVp, 139 mA, 0.361-s scan, 4×2.5-mm collimation, sequential axial scans with prospective cardiac gating, and standard filter reconstruction.

The results of the 2 scans were averaged. Calcium scores among scanning centers and between participants were adjusted with a standard calcium phantom scanned simultaneously with the partici-
levels to test a possible threshold effect. ANOVA methods with Bonferroni corrections were used to test possible differences among the groups. A paired t-test was used to compare left ventricle (LV) function (strain and strain rate) in the calcified and noncalcified regions in patients with 1- and 2-vessel coronary calcium. Proportions were compared with the use of \(\chi^2 \) tests. The log normal–transformed calcium scores were used for regression analyses that are based on the assumption of normality. Multiple linear regression was used to study the relationship between global [ejection fraction (EF)] and regional LV function (strain and strain rate) and log-transformed total and regional calcium scores (SPSS v 12.0). Variables that might influence on the regional myocardial function were entered into the regression model including age, gender, race, systolic blood pressure, left ventricular end diastolic mass index, heart rate, and diabetes. All of the reported \(P \) values are 2-sided with the \(\alpha \) level set at 0.05.

Results

The study population consisted of 136 white, 85 African-American, 222 Hispanic, and 66 Chinese subjects. The 509 individuals studied had a mean total coronary calcium score of 529±203 U. The results in this study did not differ significantly when using calcium volume or mass scores. The Hispanic participants were younger than the white and Chinese groups (63.5±9.6 versus 68.6±8.7 years, \(P<0.001 \), and 69.4±8.0 years, \(P<0.001 \), respectively).

Global Measures of Coronary Calcium and Left Ventricular Function

Demographic data from the subset of MESA participants who had the MRI tagging study are shown in Table 2. Calcium scores greater than zero were found in 284 (56%) participants, were more common in men than in women (61% versus 49%; \(P<0.01 \), and were associated with greater age (70±8 versus 62±9 years; \(P<0.001 \)) when compared with participants with zero scores.

Participants with positive calcium scores had similar EF and stroke volume as those with zero calcium scores. EF was similar in participants with 1- and 2-vessel coronary calcification (68±7% versus 68±9%; \(P=0.88 \)).

Coronary Calcification and Regional Left Ventricular Function

Positive calcium scores were present in the LAD, LCX, and RCA coronary arteries in 257 (50%), 163 (32%), and 156 (31%), respectively. Eighteen percent of subjects had detectable calcium in 1 artery, 17% in 2 arteries, and 19% in all 3 major coronary arteries. We did not find ethnicity-related differences regarding the distribution of coronary calcium in the separate arterial trees.

The group with calcium score above zero showed reduced regional myocardial function compared with the group with zero calcium score. The differences between the 2 groups at the basal LV level were moderate. Importantly, the most apical levels showed decreased strain and strain rate in each myocardial segment with calcium score above zero. The differences were \(-1.5±0.4\) versus \(-1.3±0.4\) (\(P<0.01 \)) in the LAD area, \(-1.5±0.5\) versus \(-1.4±0.4\) (\(P<0.01 \)) in the LCX area, and \(-1.4±0.5\) versus \(-1.2±0.4\) in the RCA area. The regional LV function in the calcified territory was impaired compared with regional LV function in the noncalcified territory in participants with 1-vessel coronary calcium \((-1.5±0.4\) versus \(-1.3±0.3\) L/s; \(P<0.01 \)). The same pattern was found for strain measurements and in participants with 2-vessel calcification (Table 3).

Moreover, when participants with positive calcium scores are subdivided according to the degree of coronary calcification, those in the higher quartiles have additional reductions
in regional function as compared with those in the lower quartiles (Figure 2). These differences in myocardial function were even more pronounced when comparing participants in the highest coronary calcification quartile with those with zero calcium scores: LAD territory \(-1.37\pm0.41\) versus \(-1.17\pm0.24\) L/s \((P<0.001)\), LCX \(-1.54\pm0.53\) versus \(-1.09\pm0.45\) L/s \((P<0.001)\), and RCA \(-1.37\pm0.44\) versus \(-1.09\pm0.24\) L/s \((P<0.001)\), respectively.

The relationship between regional calcium score and regional myocardial function was also demonstrated by multiple linear regressions. After adjustment for age, gender, race, systolic blood pressure, left ventricular end diastolic mass index, heart rate, and diabetes, the most important variable predictive of regional dysfunction indexed as reduced strain rate in all of the coronary territories was the respective coronary calcium score (Table 4).

Discussion

To our knowledge, this is the first study showing a direct relationship between local coronary atherosclerosis and regional left ventricular dysfunction in a population of individuals without a history of heart disease. We found that coronary calcium scores were associated with reduced function in the corresponding myocardial perfusion territories of MESA participants. These relationships indicate that subclinical myocardial damage induced by atherosclerosis may occur earlier than previously suspected.

Prior clinical and epidemiologic studies on the natural history of heart failure have focused on global indices of left ventricular dilatation and dysfunction to examine the transition from subclinical to symptomatic disease.\(^1,2\) Those studies demonstrated that the progression can be delayed by therapy but is fundamentally irreversible.\(^19,20\) The pathophysiology of the processes that precede global enlargement and dysfunction have been investigated mainly in patients who develop congestive heart failure as a consequence of clinically documented myocardial infarction.\(^21,22\) In those patients, regional myocardial damage resulting from either a single large infarct or from cumulative damage caused by multiple small infarcts triggers a series of structural alterations and compensatory mechanisms, which ultimately lead to left ventricular dilatation, eccentric hypertrophy, and remodeling.\(^23\) However, as many as half of the first coronary events have been reported to be clinically silent.\(^24\) Additionally, chronic coronary artery disease may lead to congestive heart failure in the absence of discrete episodes of myocardial infarction, through pathways that may or may not be similar to those documented in patients who have a clinical history of myocardial infarction.\(^25\) Our findings support the theory that chronic myocardial injury is directly related to the degree of upstream coronary atherosclerosis in individuals free of cardiovascular disease. This mechanism may underlie the dysfunctional process that is often seen in patients with coronary artery disease but no history of discrete previous myocardial infarction.

Global Left Ventricular Function

Coronary calcium score measured by fast CT has been demonstrated to correlate strongly with histological measurements of calcified plaque, total plaque burden, as well as prevalence of coronary stenoses by coronary angiography.\(^10,26\) However, increased calcium score was not associated with declines in ejection fraction or stroke volume in this study. Whereas decreased global left ventricular function may

Table 3. Myocardial Function in Regions With and Without Coronary Calcium in Patients With 1 and 2 Vessel Calcification

<table>
<thead>
<tr>
<th>Variable</th>
<th>One Vessel Coronary Calcification</th>
<th>Two Vessel Coronary Calcification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Region With Calcium (>0)</td>
<td>Regions Without Calcium</td>
</tr>
<tr>
<td>Strain rate, 1/s</td>
<td>(-1.3\pm0.3^*)</td>
<td>(-1.5\pm0.4)</td>
</tr>
<tr>
<td>Strain, %</td>
<td>(-16.4\pm3.7^*)</td>
<td>(-17.7\pm3.0)</td>
</tr>
</tbody>
</table>

\(^*P<0.01; \dagger P<0.05.\)

Figure 2. Participants with positive calcium score in the LAD, LCX, and RCA arterial trees divided into quartiles by level of calcium score. Participants with a higher regional calcium score demonstrate lower regional myocardial function by strain rates in the different myocardial segments. Values given are mean strain rates, and black bars indicate SD.
TABLE 4. Predictors of Regional Myocardial Function in Participants in the LAD (n=229), LCX (n=163), and RCA (n=144) Territories, Respectively

<table>
<thead>
<tr>
<th>Predictors</th>
<th>LAD</th>
<th>Correlation Coefficient</th>
<th>P Value</th>
<th>LCX</th>
<th>Correlation Coefficient</th>
<th>P Value</th>
<th>RCA</th>
<th>Correlation Coefficient</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCAC</td>
<td>0.247</td>
<td><0.001</td>
<td></td>
<td>0.333</td>
<td><0.001</td>
<td></td>
<td>0.310</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.148</td>
<td>0.027</td>
<td></td>
<td>0.094</td>
<td>0.238</td>
<td></td>
<td>0.119</td>
<td>0.163</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>-0.091</td>
<td>0.211</td>
<td></td>
<td>-0.255</td>
<td>0.005</td>
<td></td>
<td>-0.027</td>
<td>0.773</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td>0.144</td>
<td>0.024</td>
<td></td>
<td>0.174</td>
<td>0.027</td>
<td></td>
<td>0.122</td>
<td>0.152</td>
<td></td>
</tr>
<tr>
<td>LVEDM</td>
<td>0.282</td>
<td><0.001</td>
<td></td>
<td>0.210</td>
<td>0.019</td>
<td></td>
<td>0.278</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>SBP</td>
<td>0.004</td>
<td>0.946</td>
<td></td>
<td>0.048</td>
<td>0.540</td>
<td></td>
<td>-0.026</td>
<td>0.755</td>
<td></td>
</tr>
<tr>
<td>Heart rate</td>
<td>0.078</td>
<td>0.206</td>
<td></td>
<td>0.014</td>
<td>0.851</td>
<td></td>
<td>0.158</td>
<td>0.055</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>0.006</td>
<td>0.927</td>
<td></td>
<td>0.039</td>
<td>0.614</td>
<td></td>
<td>-0.094</td>
<td>0.242</td>
<td></td>
</tr>
</tbody>
</table>

The perfusion areas are divided according to standard perfusion territories as described in the Methods. RCAC indicates regional coronary calcium score (log-transformed calcium score units); LVEDM, left ventricular end diastolic mass; SBP, systolic blood pressure. Mean±SD.

Regional Left Ventricular Function

MRI is well suited for the determination of detailed regional left ventricular function through myocardial tagging. Myocardial systolic deformation can be accurately quantified by measurements of myocardial strain and strain rate. The present study reports that coronary atherosclerosis is associated with depressed regional left ventricular function (Figure 2). Potential mechanisms linking local arterial calcification and atherosclerosis to regional ventricular dysfunction include small vessel microembolization, as well as chronic ischemia caused by stenotic atherosclerotic plaques, endothelial dysfunction, or both.

Coronary atherosclerosis can be detected in its subclinical stages by cardiac CT. Relationships between the amount of local coronary calcification and the percentage of coronary luminal narrowing have been demonstrated. Moreover, a recent study by He et al showed a positive relationship between stress myocardial perfusion tomography and calcium score. The authors concluded that coronary calcium score could identify a high-risk group of asymptomatic subjects who had clinically important ischemia. Our study indicates that calcium score measured by cardiac CT (MDCT and EBCT) may identify individuals at an increased risk of developing local left ventricular dysfunction.

Methodological Considerations

The cross-sectional nature of the data reported in this study should be kept in mind when interpreting its results. Moreover, the selection and enrollment of the MESA population was not random, and, therefore, the prevalence of the various risk factors may not exactly reflect the overall population. The history of previous clinical cardiovascular disease was self-reported in MESA. We cannot, therefore, completely exclude that a few number of participants might have experienced overt cardiovascular disease.

Direct comparisons of the 2 different CT methods (MDCT versus EBCT) used in this study have been found satisfactory. Only midwall circumferential strain and strain rate measures were assessed. In our opinion, the midwall strains and strain rates would best represent the regional function of the whole segment in an epidemiologic study of this magnitude. Subendocardial and subepicardial measurements result in more noisy data than midwall analysis.

Finally, this is the first study that correlates calcium scores from separate arterial trees with regional function in the corresponding myocardial territory. We recognize that there is great individual anatomic variability in the coronary arterial territories. Therefore, we have assigned the LV segments to coronary arterial territories in accordance with accepted clinical recommendations. The greatest variability in myocardial blood supply is found in the apical segment, and this segment was, thus, excluded from the analyses. Clinical inferences should await confirmation from longitudinal studies.

In summary, coronary artery calcification is related to regional left ventricular dysfunction in the corresponding perfusion territory among individuals with no history of heart disease. These results indicate a link between subclinical atherosclerosis and subclinical regional left ventricular dysfunction that could represent an early step in the continuum of events relating coronary artery disease to congestive heart failure.

Acknowledgments

This study was supported by the National Heart, Lung, and Blood Institute grant (RO1-HL66075-01) and the MESA study contracts (NO1-HC-9808, NO1-HC-95168, and NO1-HC-95169). J.A.C.L. is also supported by the Reynolds Foundation and T.E. by the Unger-Vetlesen Medical Fund, Jersey and Caroline Museaus Heart Foundation, Norway. We thank the other investigators, the staff, and the participants of the MESA study for their valuable contributions.
full list of participating MESA investigators and institutions can be found at http://www.mesa-nhlbi.org.

References

Coronary Artery Atherosclerosis Is Related to Reduced Regional Left Ventricular Function in Individuals Without History of Clinical Cardiovascular Disease: The Multiethic Study of Atherosclerosis

Thor Edvardsen, Robert Detrano, Boaz D. Rosen, J. Jeffrey Carr, Kiang Liu, Shenghan Lai, Steven Shea, Li Pan, David A. Bluemke and João A.C. Lima

Arterioscler Thromb Vasc Biol. 2006;26:206-211; originally published online November 3, 2005; doi: 10.1161/01.ATV.0000194077.23234.ae

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/26/1/206

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/