Simvastatin Given for 3 Days Can Inhibit Thrombin Generation and Activation of Factor V and Enhance Factor Va Inactivation in Hypercholesterolemic Patients

To the Editor:

The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, or statins, have been reported to exert multiple cholesterol-independent actions, including inhibition of blood coagulation, most likely attributable to downregulation of tissue factor (TF) expression. Previously, we have demonstrated that simvastatin inhibits blood clotting after a 3-month simvastatin therapy. It is unknown how rapidly statin administration can influence thrombin formation, factor (F)V activation, and the proteolytic degradation of FVa. The aim of the current study was to assess early effects of statins on coagulant reactions.

Fourteen men (mean age, 54.6 years) with LDL cholesterol levels \(\geq 3.4 \) mmol/L (130 mg/dL), who were treated with low-dose aspirin (75 mg/d), participated in the study after giving informed written consent. At baseline and after 3 days of simvastatin administration (40 mg/d), coagulant reactions were assessed in blood collected every 30 seconds at the site of microvascular injury, as previously described. Using quantitative Western blotting, we evaluated the time-courses of FVa generation and FVa inactivation, along with thrombin formation. We also determined lipid profiles, C-reactive protein (CRP) levels, fibrinogen, and thrombin-antithrombin complexes (TAT) in peripheral venous blood (Dade Behring) with data expressed as mean±SEM. Paired t test and Wilcoxon signed ranks test were used when appropriate to compare the differences before and after simvastatin treatment. Spearman rank correlation coefficients were calculated to test the association between two variables.

A 3-day simvastatin administration significantly retarded prothrombin activation (\(P=0.002; \) Figure, A) and FVa heavy (\(P=0.027; \) Figure, B) and light chains (\(P=0.033; \) data not shown) at the site of hemostatic plug formation. Plasma TAT levels showed a tendency toward lower posttreatment values (\(P=0.1 \)), and fibrinogen was unchanged. After simvastatin use, thrombin generation at the site of injury slowed from 0.258±0.017 to 0.176±0.014 nmol/L/s (\(P=0.006 \)), whereas the maximum rate of FVa heavy chain forma-

Representative immunoblots showing the formation of thrombin B-chain, prethrombin 2, and prothrombin fragment 1 + 2 (F1 + 2) (A) and the formation of factor Va heavy chain (FVaHC) and FVa inactivation (B). Consecutive 30-second blood samples, collected from standardized skin incisions, were separated on a 4% to 12% linear gradient SDS-PAGE gel under reducing conditions. Three prothrombin products (A) were probed with a burro polyclonal antibody, which recognizes prethrombin 2, fragment 2, and thrombin B-chain. The FV bands (B) were stained with a murine monoclonal antibody against FVaHC (residues 307 to 506). Molecular standards were marked on the left. Lines A, samples collected before simvastatin administration; lines B, samples taken after 3 doses of simvastatin (40 mg/d).
tion decreased by 21.4% to 0.023±0.002 nmol/L/s (P=0.01), with similar 20.2% reductions for FVa light chain (P=0.008). Simvastatin accelerated FVa inactivation by 60 seconds (P=0.005; Figure, B) and the activated protein C (APC)-mediated release of the 30-kDa fragment of FVa heavy chain (residues 307 to 506) proceeded at a higher rate (0.026±0.002 versus 0.032±0.002 nmol/L/s; P=0.021). Simvastatin did not affect the generation of the 97-kDa fragment of FVa heavy chain (Figure, B).

None of these effects were associated with lipid variables (data not shown). There were significant correlations between CRP reductions (from 2.71±0.55 to 1.98±0.48 mg/L; P=0.0003) and the magnitude of changes in thrombin B-chain (r=0.6; P=0.001) and FVa formation (r=0.44; P=0.008), along with those in FVa inactivation (r=−0.54; P=0.004).

The major finding of this current study is that simvastatin at 40 mg daily given for only 3 days resulted in significant reductions in thrombin formation, associated with delayed FVa generation and accelerated APC-mediated FVa inactivation. The magnitude of these effects was similar to that observed after 90 days of therapy with this statin.2 The anticoagulant effects of any statin within first days of its administration have not been reported, nor has it been observed that statin-induced CRP reductions correlated with alterations in the rates of coagulant reactions. These data are consistent with the concept that inflammation is closely linked to coagulation.

The rapid enhancement of FVa proteolytic degradation by APC in response to simvastatin is likely attributable to increased thrombomodulin expression on endothelial cells by statins, as shown by Masamura et al.4 Moreover, our data suggest that because aspirin alone can inhibit blood clotting,3 the combination of simvastatin with aspirin exerts additional anticoagulant effects.

In conclusion, inhibition of blood coagulation at the site of vascular injury occurs as early as after a 3-day simvastatin administration, which might help explain early clinical benefits from statin use.

Anetta Undas
Magdalena Celinska-Löwenhoff
Kathleen E. Brummel-Ziedins
Jan Brozek
Andrew Szczeklik
Kenneth G. Mann

Department of Medicine (A.U., M.C.-L., J.B., A.S.)
Jagiellonian University School of Medicine
Krakow, Poland
and the Department of Biochemistry (K.E.B.-Z., K.G.M.)
University of Vermont, Burlington

Simvastatin Given for 3 Days Can Inhibit Thrombin Generation and Activation of Factor V and Enhance Factor Va Inactivation in Hypercholesterolemic Patients

Anetta Undas, Magdalena Celinska-Löwenhoff, Kathleen E. Brummel-Ziedins, Jan Brozek, Andrew Szczeklik and Kenneth G. Mann

Arterioscler Thromb Vasc Biol. 2005;25:1524-1525
doi: 10.1161/01.ATV.0000168913.25278.38

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/25/7/1524

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Arteriosclerosis, Thrombosis, and Vascular Biology* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Arteriosclerosis, Thrombosis, and Vascular Biology* is online at:
http://atvb.ahajournals.org//subscriptions/