Role of Lipoprotein-Associated Phospholipase A2 in Atherosclerosis
Biology, Epidemiology, and Possible Therapeutic Target

Andrew Zalewski, Colin Macphee

Abstract—The development of atherosclerotic vascular disease is invariably linked to the formation of bioactive lipid mediators and accompanying vascular inflammation. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is an enzyme that is produced by inflammatory cells, co-travels with circulating low-density lipoprotein (LDL), and hydrolyzes oxidized phospholipids in LDL. Its biological role has been controversial with initial reports purporting atheroprotective effects of Lp-PLA2 thought to be a consequence of degrading platelet-activating factor and removing polar phospholipids in modified LDL. Recent studies, however, focused on pro-inflammatory role of Lp-PLA2 mediated by products of the Lp-PLA2 reaction (lysophosphatidylcholine and oxidized nonesterified fatty acids). These bioactive lipid mediators, which are generated in lesion-prone vasculature and to a lesser extent in the circulation (eg, in electronegative LDL), are known to elicit several inflammatory responses. The proinflammatory action of Lp-PLA2 is also supported by a number of epidemiology studies suggesting that the circulating level of the enzyme is an independent predictor of cardiovascular events, despite some attenuation of the effect by inclusion of LDL, the primary carrier of Lp-PLA2, in the analysis. These observations provide a rationale to explore whether inhibiting Lp-PLA2 activity and consequent interference with the formation of bioactive lipid mediators will abrogate inflammation associated with atherosclerosis, produce favorable changes in intermediate cardiovascular end points (eg, biomarkers, imaging, and endothelial function), and ultimately reduce cardiovascular events in high-risk patients. (Arterioscler Thromb Vasc Biol. 2005;25:923-931.)

Key Words: atherosclerosis ■ inflammation ■ lipoprotein-associated phospholipase A2
initiation, progression, and destabilization of atheroma. This evidence notwithstanding, no current cardiovascular therapy is primarily used to mitigate low-grade inflammation commonly observed in individuals at risk for future events. Statins lower circulating inflammatory biomarkers, although the clinical relevance of so-called pleiotropic effects extending beyond concomitant low-density lipoprotein (LDL)-lowering remains unclear. In this context, the need to identify complementary approaches for patients at high risk is predicated by the continued accrual of clinical events despite contemporary therapies, including aggressive treatment with statins (Figure 1).#!

“Atherosclerosis-Specific” Inflammatory Pathways

From the therapeutic standpoint, the challenge has been to identify an inflammatory pathway that is “atherosclerosis-specific,” whereby therapeutic intervention would result in vascular benefit without affecting the patient’s ability to mount host defense (eg, during infection). In this context, the hydrolysis of oxidized phospholipids in LDL that is mediated by lipoprotein-associated phospholipase A₂ (Lp-PLA₂) may represent an appropriate pathway for testing the inflammation hypothesis. LDL oxidation results in a range of modifications affecting phospholipid and apolipoprotein B (apoB) components that render this molecule distinct from its native form. These reactions include formation of lipid hydroperoxides and aldehydes (eg, malondialdehyde, 4-hydroxynonenal) that react with lysine residues of apoB, altering the physicochemical properties of LDL. Elevated levels of circulating oxidized LDL are associated with morphological evidence of plaque vulnerability, endothelial dysfunction, and are higher in patients presenting with acute coronary syndromes. Several pro-inflammatory phospholipids that display wide differences in the structure of the modified polyunsaturated fatty acids at the sn-2 position, increase in minimally oxidized LDL analyzed in vitro, stimulate leukocyte–endothelial cell interactions, and accumulate in aortas of cholesterol-fed rabbits. Until recently, oxidative modification of LDL was assumed to yield a final product responsible for several reactions involved in atherogenesis. However, oxidative modification of polyunsaturated fatty acids in the sn-2 position of phospholipids within LDL molecules renders them susceptible to hydrolysis by Lp-PLA₂, yielding 2 additional products: lysophosphatidylcholine (lysoPC) and oxidized non-esterified fatty acids (NEFA) (Figure 2). The process of oxidative modification also yields other biologically active phospholipids, including 1-palmitoyl-2-(5,6-epoxyisoprostane E2)-sn-glycero-3-phosphorylcholine (lysoPC) and oxidized non-esterified fatty acids (NEFA) (Figure 2). The process of oxidative modification also yields other biologically active phospholipids, including 1-palmitoyl-2-(5,6-epoxyisoprostane E2)-sn-glycero-3-phosphorylcholine, that lack oxidative truncation of the polyunsaturated fatty acids at the sn-2 position. Individual phospholipids differ in their pro-inflammatory effects in vitro. The accumulation of several oxidized phospholipids and lysoPC has been reported in experimental models of atherosclerosis, further raising the prospect of their involvement in pro-inflammatory processes in vivo. Research in this field has been confounded by the complexity of phospholipid biochem-

Figure 1. Kaplan–Meier estimates of the incidence of primary end point (all-cause mortality or a major cardiovascular event) in PROVE IT-TIMI 22 trial. Patients presenting with acute coronary syndrome experience a high rate of events despite aggressive management, including coronary revascularization (~70%), lipid-lowering therapy (100%), antiplatelet drugs (~90%), β-blockers (85%), and other guideline-mandated treatments. Even those allocated to treatment with a high dose of atorvastatin continued to experience a 22% event rate at 24 months after the index event (adapted with permission from Cannon et al. N Engl J Med. 2004).#!

Figure 2. Schematic representation of the proposed pro-atherogenic mechanism of Lp-PLA₂ in the vessel wall. Lp-PLA₂ binds to apoB on LDL, its primary carrier, which delivers Lp-PLA₂ to lesion-prone segments of the arterial wall. Subsequent LDL oxidation leads to formation of truncated phospholipid in the sn-2 position, which is susceptible to enzymatic hydrolysis by Lp-PLA₂. This results in generation of 2 bioactive lipid mediators, lysophosphatidylcholine (lysoPC) and oxidized non-esterified fatty acids (NEFA), that are proposed to play an important role in homing of inflammatory cells into lesion-prone areas and local increases in inflammatory mediators. The influx of inflammatory cells that express Lp-PLA₂ increases its concentration in the vessel wall. Bioactive lipid mediators generated by Lp-PLA₂ are also cytotoxic to macrophages, which may facilitate the formation of a necrotic lipid core in advanced atherosclerotic lesions.
Lp-PLA₂: Functional Characteristics

Lp-PLA₂ belongs to the expanding superfamily of structurally diverse phospholipase A₂ enzymes described elsewhere in detail. First cloned in 1995, Lp-PLA₂ is a 45-kDa protein with 441 amino acids that is distinct from other members of the phospholipase A₂ family in that it is calcium-independent. The secreted isoform was first identified on the basis of its ability to degrade platelet-activating factor (PAF), hence it is also known as PAF-acetylhydrolase. In contrast to other phospholipase A₂ enzymes, Lp-PLA₂ acts preferentially on water-soluble polar phospholipids with oxidatively truncated sn-2 chains, lacking enzymatic activity on naturally occurring long-chain fatty acids in phospholipids found in cellular membranes.

The biological role of Lp-PLA₂ has been controversial with seemingly contradictory anti- or pro-atherogenic functions being proposed. The anti-atherogenic properties of Lp-PLA₂ were suggested because of the enzymatic catabolism of biologically active oxidized phospholipids in LDL and degradation of the unrelated polar phospholipid, PAF. To this end, Lp-PLA₂ was reported to alter biological properties of minimally modified LDL by abrogating the ability of LDL to promote endothelial cell binding of monocytes. In addition, a number of studies have shown that minimally modified LDL containing oxidized phospholipids induce chemotaxis and monocyte adhesion to endothelial cells. Recent findings, however, have ascribed several anti-inflammatory properties to oxidized phospholipids, which illustrates the complexity of this field.

In contrast, the pro-atherogenic function of Lp-PLA₂ is thought to arise from the formation of downstream inflammatory mediators derived from oxidized phospholipids. This view is supported by experimental evidence suggesting that the products of Lp-PLA₂ activity on oxidized phospholipids (lysoPC and oxidized NEFA) elicit several potentially pro-atherogenic effects (Table 1). The link between Lp-PLA₂ and vascular disease that would display rupture-prone plaques, and the difficulty in establishing a causal link between specific lipid mediators within the vessel wall and clinical events.

TABLE 1. Biological Effects of Putative Inflammatory and Proatherogenic Products Derived From Enzymatic Hydrolysis of LDL-Associated Oxidized Phospholipids

<table>
<thead>
<tr>
<th>Mediator</th>
<th>Cellular Target</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>LysoPC</td>
<td>Endothelial cells</td>
<td>Homing of inflammatory cells: upregulation of adhesive molecules (VCAM-1/ICAM-1) and MCP-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Formation of inflammatory mediators: activation of Ca²⁺-dependent PLA₂ enzymes and arachidonic acid release</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Functional responses: impaired proliferation/migration and reduced NO-dependent vasodilation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cytotoxicity: apoptosis</td>
</tr>
<tr>
<td>Smooth muscle cells</td>
<td>Homing of inflammatory cells: upregulation of MCP-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oxidative stress: NADPH oxidase activation and ROS-dependent ERK1/2 phosphorylation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Functional responses: increased growth factor gene expression, proliferation, and migration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LDL retention: upregulation of biglycan core protein and elongation of GAG chains</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cytotoxicity: apoptosis</td>
</tr>
<tr>
<td>Monocytes/macrophages</td>
<td>Formation of inflammatory mediators: upregulation of cytokines (IL-1β), Ca²⁺-dependent PLA₂ enzymes, and arachidonic acid release</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Functional responses: increased chemotaxis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cytotoxicity: increased cellular permeability and apoptosis</td>
</tr>
<tr>
<td>T cells</td>
<td></td>
<td>Functional responses: increased chemotaxis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Immune response: interferon-γ upregulation</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>Oxidative stress: NADPH oxidase activation and myeloperoxidase release</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Functional responses: increased chemotaxis, elastase release</td>
</tr>
<tr>
<td>oxNEFA</td>
<td>Monocytes/macrophages</td>
<td>Cytotoxicity: increased cellular permeability and apoptosis</td>
</tr>
</tbody>
</table>

GAG indicates glycosaminoglycan; ICAM-1, intercellular adhesive molecule-1; IL-1β, interleukin-1β; LysoPC, lyosphatidylcholine; MCP-1, monocyte chemoattractant protein-1; NO, nitric oxide; oxNEFA, oxidized nonesterified fatty acids; PLA₂, phospholipase A₂; ROS, reactive oxygen species; VCAM-1, vascular cell adhesive molecule-1.
and putative toxicity of downstream lipid mediators is strengthened by the observations that selective inhibition of this enzyme prevented lysoPC and NEFA generation in oxidized LDL, resulting in inhibition of monocyte chemotaxis and protection of macrophages against apoptotic death.50,52 The recent discovery of a high-affinity G2A receptor for lysoPC in macrophages, lymphocytes, and lipid-rich human atherosclerotic lesions has provided additional evidence for the mechanism by which the molecules derived from hydrolysis of oxidized LDL exert their biological activity.54,55 In particular, Lp-PLA\textsubscript{2}—derived lysoPC species (16:0/18:0/18:1) compete for binding with the G2A receptor. The interaction of this receptor with lysoPC activates an intracellular signal transduction cascade (extracellular signal regulated kinase mitogen-activated protein kinase) and induces inflammatory cell migration.54

Medical Genetics of Lp-PLA\textsubscript{2}

The gene for Lp-PLA\textsubscript{2} (PLA2G7) has 12 exons and is located on chromosome 6p21.2 to 12. Several missense polymorphisms within the coding regions of PLA2G7 have been described with some variants noted mainly in certain ethnic groups (eg, Val279Phe variant is common in Japanese, Turks, and Korygzes but absent in whites). Studies of functional polymorphisms (“the experiment of nature”) could provide insights into the biological role of this enzyme, although the reports to date are contradictory. The Val279Phe variant is associated with reduced levels of Lp-PLA\textsubscript{2} in 27% of heterozygous Japanese and complete absence of Lp-PLA\textsubscript{2} in 4% of homozygous individuals caused by a defect in enzyme secretion.56,57 Several studies suggest a higher prevalence of cardiovascular disease in Japanese carriers of this variant, although some of these investigations were underpowered and showed no differential effect between heterozygotes and homozygotes (ie, no gene dose effect).58–61 In fact, the largest study of genetic polymorphisms failed to identify an association between the Val279Phe variant and the risk of myocardial infarction.66 These contradictory findings, arguing against (Val279Phe) or supporting (Ala379Val) the concept of therapeutic inhibition regarding the role of Lp-PLA\textsubscript{2} in HDL particles, because

Distribution of Circulating and Vascular Lp-PLA\textsubscript{2}

Although Lp-PLA\textsubscript{2} is expressed in many tissues, the enzyme in circulation is derived from hematopoietic cells. A study of carriers of functional Val279Phe mutation of Lp-PLA\textsubscript{2} who underwent allogeneic bone marrow transplantation established that plasma levels of Lp-PLA\textsubscript{2} are determined by the genotype of the donors’ hematopoietic cells.76 In humans, \textasciitilde70% to 80% of the enzyme is associated with LDL because of specific protein–protein interactions between the N-terminus of Lp-PLA\textsubscript{2} and the C-terminus of apoB.77 The association of the remaining secreted enzyme with the phospholipid moiety of HDL is poorly understood, although posttranslational modifications of human Lp-PLA\textsubscript{2} may be involved.78 Among different LDL particles, Lp-PLA\textsubscript{2} preferentially associates with smaller and denser fractions that are believed to be more pro-atherogenic.79 Other researchers have focused on the electronegative subfraction of circulating LDL that exhibits signs of modifications, contains \textasciitilde5-fold higher Lp-PLA\textsubscript{2} activity, and is enriched in products of the Lp-PLA\textsubscript{2} reaction (ie, lysoPC and NEFA).80,81 Electronegative LDL induces inflammatory gene expression and adhesion of monocytes to endothelial surface that is consistent with potential pro-atherogenic effects of Lp-PLA\textsubscript{2}.82,83 Species differences in amino acid sequences in both Lp-PLA\textsubscript{2} and apoB are responsible for the predominant association of Lp-PLA\textsubscript{2} with HDL in several animal species (eg, mouse, dog, and rabbit). This raises still-unanswered questions regarding the role of Lp-PLA\textsubscript{2} in HDL particles, because
several preclinical studies suggest an atheroprotective role of HDL-associated enzyme.84,85 Both studies used adenovirus-mediated gene transfer of human enzyme in mice, resulting in ectopic expression (ie, in liver as opposed to natural leukocyte expression), with the majority of Lp-PLA2 presumably residing on HDL. Interestingly, a later study by the same group showed that in dyslipidemic obese, LDL receptor knockout, leptin-deficient, double-mutant mice with greatly accelerated disease, plasma Lp-PLA2 levels were elevated because of a much higher level of enzyme (in this instance naturally generated) associated with apoB-containing lipoproteins.86 A very similar observation was demonstrated in atherosclerosis-prone mice lacking both the LDL receptor and the ability to edit apoB mRNA (reverse-transcription polymerase chain reaction and microarrays) and protein (immunohistochemistry and activity assay) have been noted in carotid plaque (Figure 3).87 In this case, the increase in apoB-associated Lp-PLA2 was associated with accelerated atherosclerosis. The situation in genetically engineered mice is clearly complex and requires better understanding. The paucity of simple models of atherosclerosis with a human-like lipoprotein profile and corresponding Lp-PLA2 distribution underscores the challenges in the testing of Lp-PLA2 inhibitors.

In human atherosclerotic lesions, 2 main sources of Lp-PLA2 can be identified, including that which is brought into the intima bound to LDL (from the circulation), and that which is synthesized de novo by plaque inflammatory cells (macrophages, T cells, mast cells). High levels of Lp-PLA2 mRNA (reverse-transcription polymerase chain reaction and microarrays) and protein (immunohistochemistry and activity assay) have been noted in carotid plaque (Figure 3).88 In coronary lesions, positive Lp-PLA2 immunostaining is particularly notable in macrophages within thin-cap fibro-atheroma that is present in 60% of victims of sudden cardiac death.89,90

TABLE 2. Plasma Levels of Lp-PLA2 and the Risk of Cardiovascular Events in Primary Prevention Population69–74

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Cases/Noncases</th>
<th>End Point</th>
<th>Follow-Up</th>
<th>Lp-PLA2 Assay</th>
<th>Lp-PLA2 Cases vs Noncases</th>
<th>Adjusted HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOSCOPS</td>
<td>Nested case-control</td>
<td>580/1160</td>
<td>CHD death, MI, revascularization</td>
<td>5</td>
<td>Mass</td>
<td>Higher</td>
<td>1.18 (1.05–1.33; P=0.005)*</td>
</tr>
<tr>
<td>WHS</td>
<td>Nested case-control</td>
<td>123/123</td>
<td>CHD death, MI, stroke</td>
<td>3</td>
<td>Mass</td>
<td>Higher</td>
<td>1.17 (0.45–3.05; NS)†</td>
</tr>
<tr>
<td>ARIC</td>
<td>Case cohort</td>
<td>608/740</td>
<td>CHD death, MI, revascularization</td>
<td>6</td>
<td>Mass</td>
<td>Higher</td>
<td>1.15 (0.81–1.63; NS)‡</td>
</tr>
<tr>
<td>MONICA</td>
<td>Cohort</td>
<td>194/766</td>
<td>Ischemic stroke</td>
<td>6</td>
<td>Mass</td>
<td>Higher</td>
<td>1.93 (1.14–3.27; P=0.015)‡</td>
</tr>
<tr>
<td>Rotterdam</td>
<td>Case cohort</td>
<td>308/1822</td>
<td>CHD death, MI</td>
<td>7</td>
<td>Activity</td>
<td>Higher</td>
<td>1.96 (1.25–3.09; P=0.021)†</td>
</tr>
<tr>
<td></td>
<td></td>
<td>110/1822</td>
<td>Ischemic stroke</td>
<td>6</td>
<td>Activity</td>
<td>Higher</td>
<td>1.95 (1.02–3.73; P=0.041)†</td>
</tr>
</tbody>
</table>

ARIC indicates the Atherosclerosis Risk In Communities study; CHD, coronary heart disease; CRP, C-reactive protein; HR, hazard ratio adjusted for age, smoking, diabetes mellitus, gender, systolic blood pressure, LDL cholesterol (or total cholesterol/HDL or non-HDL cholesterol), high-sensitivity CRP and other variables; MI, myocardial infarction; MONICA, the MONToring of trends and determinants in CVArdiovascular disease in men in Augsburg survey; WhS, the Women’s Health Study; WOSCOPS, the West Of Scotland Coronary Prevention Study.

*Increase of 1 SD.
†With the lowest quartile as the reference.
‡With the lowest tertile as the reference.
¶In population with baseline LDL<130 mg/dL.

Modulation of Circulating and Vascular Lp-PLA2

A rapid increase in plasma or tissue levels of Lp-PLA2 is observed in animals challenged with lipopolysaccharide to mimic the host response to infection.91 Lipopolysaccharide-induced effects are mediated by toll-like receptor 4 on the surface of macrophages and the activation of p38MAPK pathway that ultimately results in transcriptional upregulation of Lp-PLA2.92 Outside the acute phase response, smaller variations in plasma Lp-PLA2 levels are likely determined by chronic activation of peripheral blood mononuclear cells and circulating levels of LDL. Treatment with statins or fenofibrate lowers Lp-PLA2 activity by 20% to 30% (from concomitant reductions in LDL levels) without an effect on de novo synthesis and secretion of Lp-PLA2 by macrophages.93,94 Lipoprotein fractionation studies suggest a predominant decrease in Lp-PLA2 associated with dense LDL. Not surprisingly, high doses of atorvastatin lower the total amount of oxidized phospholipids in plasma that are recognized by the murine monoclonal antibody E06. Interestingly, the enrichment of a smaller pool of apoB100 particles with the enrichment of a smaller pool of apoB100 particles with variations in plasma Lp-PLA2 levels is likely determined by chronic activation of peripheral blood mononuclear cells and circulating levels of LDL. Treatment with statins or fenofibrate lowers Lp-PLA2 activity by 20% to 30% (from concomitant reductions in LDL levels) without an effect on de novo synthesis and secretion of Lp-PLA2 by macrophages.93,94 Lipoprotein fractionation studies suggest a predominant decrease in Lp-PLA2 associated with dense LDL. Not surprisingly, high doses of atorvastatin lower the total amount of oxidized phospholipids in plasma that are recognized by the murine monoclonal antibody E06. Interestingly, the enrichment of a smaller pool of apoB100 particles with these substrates for the Lp-PLA2 reaction has been noted.95 This may represent the efflux of oxidized phospholipid from the vessel wall with the subsequent binding to apoB.95 Although the clinical relevance of this finding remains unclear, it also illustrates a potential for synergy between statins and specific Lp-PLA2 inhibitors for further risk reduction.

The discovery of potent Lp-PLA2 inhibitors has allowed testing of their ability to lower enzyme activity in plasma and, more importantly, at vascular sites (Figure 2). Studies in healthy volunteers demonstrated that several orally bioavailable inhibitors of Lp-PLA2 reduce circulating enzyme activity in a dose-dependent manner up to 95%. In patients undergoing carotid endarterectomy, one of these compounds (480848) showed a dose-dependent inhibition of Lp-PLA2.
activity in plasma and atherosclerotic plaque, with a maximal
dose resulting in an 80% inhibition of the enzyme activity
after only 14 days of dosing. Unraveling the consequences
of intraplaque reductions in the enzyme activity will require
additional and longer studies; nevertheless, these early clinical
findings provide the evidence that a potent inhibitor of
Lp-PLA2 is able to penetrate the lesion and exert intravascular
pharmacodynamic effects.

Conclusions
Ascribing a role for Lp-PLA2, an enzyme that is produced by
inflammatory cells, is transported on circulating LDL and
hydrolyzes oxidized phospholipids in LDL, has been contro-
versial. Initial investigations focused on its presumed anti-
inflammatory effects caused by degrading PAF and removing
polar phospholipids in modified LDL. Functional evaluation
of Lp-PLA2 in animals is hindered by the predominant
association of Lp-PLA2 with HDL and the absence of
rupture-prone vulnerable plaques in these models of athero-
sclerosis. More recent studies, however, propose a proinflam-
matory role of Lp-PLA2 that mediates formation of noxious
bioactive lipid mediators (lysoPC and oxidized NEFA) in
lesion-prone vasculature and to a lesser extent in the circu-
lation (eg, in electronegative LDL). Additionally, a growing
number of epidemiological studies suggest that Lp-PLA2 is an
independent predictor of cardiovascular events, despite some
attenuation of this relationship by LDL, the primary carrier of
Lp-PLA2. These observations strengthen the rationale to
explore causal links between Lp-PLA2 and plaque vulnera-
bility. Selective Lp-PLA2 inhibition reduces enzyme activity
in human lesions, thus providing a means of interfering with
the production of bioactive lipid mediators. To this end,
future mechanistic studies need to address whether this
approach abrogates inflammation in atherosclerotic tissue and
produces favorable changes in intermediate cardiovascular
end points (eg, imaging and endothelial function). Only a
careful and stepwise approach that builds evidence of causal-
ity between Lp-PLA2 and atherosclerosis and accumulates
clinical safety information will provide the ultimate rationale
for large-scale clinical investigations of selective Lp-PLA2
inhibitors for the purpose of reducing cardiovascular events
in patients at high risk.

Acknowledgments
The authors thank Jeanenne J. Nelson, PhD, for critical review of
epidemiologic results, G. M. Benson, PhD, for helpful comments and
contributing unpublished data, Yi Shi, MD, PhD, and Shawn
O’Brien, for sharing expression data in human atheroma, and Pat G.
Iannuzzelli, PhD, for help with manuscript preparation.

References
1. Khot UN, Khot MB, Bajzer CT, Sapp SK, Ohman EM, Brenner SJ, Ellis
SG, Lincoff AM, Topol EJ. Prevalence of conventional risk factors in
2. Greenland P, Knoll MD, Stamler J, Neaton JD, Dyer AR, Garside DB,
Wilson PW. Major risk factors as antecedents of fatal and nonfatal
coronary heart disease events. JAMA. 2003;290:891–897.
3. Qureshi AI, Suri MF, Kirmani JF, Divani AA. The relative impact of
inadequate primary and secondary prevention on cardiovascular mortality
4. MRC/BHF Heart Protection Study of cholesterol lowering with simva-
statin in 20,536 high-risk individuals: a randomised placebo-controlled
5. Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HA,
Livingstone SJ, Thomason MJ, Mackness MI, Charlton-Menys V, Fuller
JH. Primary prevention of cardiovascular disease with atorvastatin in type
2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS):
multicentre randomised placebo-controlled trial. Lancet. 2004;364:
685–696.
6. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Cir-

Figure 3. Profiling of Lp-PLA2 expression (PLA2G7) in human carotid plaques and
nondiseased vessels by microarrays (Affymetrix human U133A chips). As
depicted by the color-coded grid, yellow indicates greater and blue indicates
lower gene expression. Left, The individual patient samples were ordered along
x-axis and individual genes along y-axis. Right, Examples highlight that Lp-PLA2
(PLA2G7) is significantly upregulated in human carotid atheroma (12.3-fold
increase over nondiseased vessels; \(P < 0.01 \)), whereas secretory calcium-
dependent phospholipase A2 group V (PLA2G5) and group IIA (PLA2G2A) show
no consistent increase in advanced atherosclerotic lesions. Carotid plaque
(n=17) and control nondiseased vessels (n=21), including radial artery and
saphenous vein samples.

Role of Lipoprotein-Associated Phospholipase A2 in Atherosclerosis: Biology, Epidemiology, and Possible Therapeutic Target
Andrew Zalewski and Colin Macphee

Arterioscler Thromb Vasc Biol. 2005;25:923-931; originally published online February 24, 2005;
doi: 10.1161/01.ATV.0000160551.21962.a7
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/25/5/923

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/