Pharmacological Inhibition and Genetic Deficiency of Plasminogen Activator Inhibitor-1 Attenuates Angiotensin II/Salt-Induced Aortic Remodeling

Alec D. Weisberg, Francisco Albornoz, Jane P. Griffin, David L. Crandall, Hassan Elokdah, Agnes B. Fogo, Douglas E. Vaughan, Nancy J. Brown

Objective—To test the hypothesis that pharmacological plasminogen activator inhibitor (PAI)-1 inhibition protects against renin-angiotensin-aldosterone system-induced cardiovascular injury, the effect of a novel orally active small-molecule PAI-1 inhibitor, PAI-039, was examined in a mouse model of angiotensin (Ang) II-induced vascular remodeling and cardiac fibrosis.

Methods and Results—Uninephrectomized male C57BL/6J mice were randomized to vehicle subcutaneous, Ang II (1 μg/h) subcutaneous, vehicle/PAI-039 (1 mg/g chow), or Ang II/PAI-039 during high-salt intake for 8 weeks. Ang II caused significant medial, adventitial, and aortic wall thickening compared with vehicle. PAI-039 attenuated Ang II-induced aortic remodeling without altering the pressor response to Ang II. Ang II increased heart/body weight ratio and cardiac fibrosis. PAI-039 did not attenuate the effect of Ang II on cardiac hypertrophy and increased fibrosis. The effect of PAI-039 on Ang II/salt-induced aortic remodeling and cardiac fibrosis was comparable to the effect of genetic PAI-1 deficiency. Ang II increased aortic mRNA expression of PAI-1, collagen I, collagen III, fibronectin, osteopontin, monocyte chemoattractant protein-1, and F4/80; PAI-039 significantly decreased the Ang II-induced increase in aortic osteopontin expression at 8 weeks.

Conclusions—This study demonstrates that pharmacological inhibition of PAI-1 protects against Ang II-induced aortic remodeling. Future studies are needed to determine whether the interactive effect of Ang II/salt and reduced PAI-1 activity on cardiac fibrosis is species-specific. (Arterioscler Thromb Vasc Biol. 2005;25:365-371.)

Key Words: PAI-1 ■ angiotensin II ■ pharmacological inhibition ■ aortic remodeling ■ cardiac fibrosis
hypertension and perivascular fibrosis. Furthermore, coad-
mimination of an angiotensin-converting enzyme inhibitor
abolishes l-NAME–induced PAI-1 expression and cardiovas-
cular remodeling suggesting that, in this model, activation of
the RAAS promotes cardiovascular injury through PAI-1.

Studies demonstrating that mice genetically deficient in
PAI-1 are protected against perivascular fibrosis suggest that
pharmacological inhibition of PAI-1 may provide similar
protection. In the present study, we test this hypothesis by
examining the effect of a novel oral small-molecule PAI-1
inhibitor, PAI-039, on Ang II-induced cardiovascular injury
in uninephrectomized mice during high-salt intake for 8
weeks. The effect of pharmacological PAI-1 inhibition on
Ang II/salt-induced aortic remodeling and cardiac fibrosis
was compared with the effect of genetic PAI-1 deficiency.

Materials and Methods

Animals

Male C57BL/6J mice were purchased from Charles River Laboratory
(Boston, Mass). Male PAI-1−/− mice on a C57BL/6J background and
C57BL/6J controls were obtained from Jackson Laboratory (Bar
Harbor, Me). Mice were maintained in a temperature-controlled
facility with a fixed light/dark cycle. All animal procedures were
approved by the Vanderbilt University Institutional Animal Care and
Use Committee.

Experimental Design

During the 2-month protocol, 32 8-week-old mice weighing <25
grams with a baseline systolic blood pressure <120 mm Hg were
randomized into 4 experimental groups containing 8 mice each:
vehicle for Ang II, Ang II, vehicle+PAI-039, or Ang II+PAI-039.
Uninephrectomy was performed under anesthesia with pentobarbital
(50 mg/kg intraperitoneal) on all mice at week 0, and each mouse
was implanted with a subcutaneous mini-osmotic pump (Durect
Corporation, Cupertino, Calif) containing either saline or Ang II
injected into 4 experimental groups: vehicle, Ang II, vehicle
for Ang II, or Ang II+PAI-039 (1 mg/g chow) (Calbiochem, La Jolla, Calif). Mice were
fed either regular chow or chow supplemented with PAI-039 (1 mg/g
chow) generously supplied by Wyeth Research. In pilot studies,
this dose of PAI-039 yielded plasma concentrations of 5.5±0.6
µg/mL (n=17) in mice, whereas the in vitro IC50 for PAI-1
inactivation of human PAI-1 is 2.7 µmol/L, or ~1.5 µmol/mL.
Previous drug safety and metabolism studies in rats indicated
that PAI-039 exhibited a lack of significant toxicity such that the no toxic
effect level was set at a dose of 2000 mg/kg per day, which resulted in
a 24-hour exposure of 1508 µg/h/mL, equivalent to 1500-times
the efficacious dose. Mini-osmotic pumps were replaced after 1
month. Mice were supplied 1% saline drinking water ad libitum.
Systolic blood pressure was measured every 2 weeks using tail-cuff
plethysmography (BP-2000 Blood Pressure Analysis
System; Visitech Systems, Apex, NC) in unanesthetized, trained
mice prewarmed for 10 minutes at 35°C. Mice were weighed at the
time of blood pressure measurement. After blood pressure measurement,
30 µL of blood was obtained by femoral artery puncture for measurement of fasting blood glucose and insulin. Mice
were euthanized after 2 months by cervical dislocation. At euthanization,
the renal artery was clamped and blood samples were drawn from the
left ventricle. The base of the heart, the first 2 mm of descending
aorta, and coronal sections of the kidney were fixed in 4% buffered
paraformaldehyde overnight, and then processed and embedded in
paraffin for histological evaluation. The remainder of the heart,
aorta, and kidney were snap-frozen in liquid nitrogen (LN2) for
mRNA analysis.

During the 1-week protocol, an additional 16 mice were random-
ized to the same 4 treatment groups as described. However, these
mice were euthanized after 1 week. Blood was drawn in acidified
citrate for measurement of PAI-1 activity, and the tissues were
harvested for RNA extraction.

To determine the effect of genetic PAI-1 deficiency, 18 wild-type
and 18 PAI-1−/− mice were each randomized after uninephrectomy
into 4 experimental groups: vehicle, Ang II (1 µg/h), aldosterone
(2.8 µg/d by sustained release subcutaneous pellet; Innovative
Research of America, Fla), or Ang II+aldosterone. All mice were
provided chow containing 3.15% sodium, 0.72% potassium (Purina
Mills, Inc, St. Louis, Mo), and water ad libitum. Systolic blood
pressure was measured every 2 weeks and mice were euthanized at
12 weeks.

Histological Study

Investigators blinded to the treatment protocol assessed histopathol-
yogy. Cardiac and renal interstitial fibrosis were scored semi-
quantitatively on Masson trichrome from 0+ to 4+ for each
high-power field, with 0+ indicating no fibrosis, 1+ indicating
<25%, 2+ indicating 25% to 50%, 3+ indicating >50% to 75%,
and 4+ indicating >75% of each high-power field. Glomerular
sclerosis was scored as previously described. To evaluate aortic
adventitial, medial, and left ventricular free wall thickness, Masson
trichrome-stained aortic and cardiac cross-sections were photo-
graphed on a Zeiss AxioScop 40 using MRGrab 1.0 and analyzed
using ImageProPlus software (Media Cybernetics, Silver Spring,
Md). Aortic medial thickness was measured from the inner border of
the lumen to the outer border of the tunica media. Aortic adventitial
thickness was also measured. Left ventricular free wall thickness was
measured from the junction of the papillary muscles with the left
ventricle to the outer border of the myocardium. The average of 2
cross-sectional measures was calculated for each animal.

Quantitative Real-Time Reverse-Transcription
Polymerase Chain Reaction

Total cardiac RNA was extracted using RNAlzet columns (Ambion, Austin,
Tex) and Rneasy Midi Kit (Qiagen, Valencia, Calif), and total aortic
RNA was extracted using Rneasy Mini Kit (Qiagen). Reverse-
transcription was performed using TaqMan Reverse Transcription
Kit (Applied Biosystems, Branchburg, NJ). Quantitative real-time
polymerase chain reaction was performed on the iCycler iQ Multi-
Color Real Time PCR Detection System (BioRad, Hercules, Calif)
using iQ SYBR Green Supermix (Biorad). For information regarding
primers, see http://atvb.ahajournals.org. Experimental cycle thresh-
old (Ct) values were normalized to β-actin measured on the same
plate, and fold differences in gene expression were determined using the 2−Ct method.

Biochemical Assays

Active murine PAI-1 was measured using a modification of a
commercially available enzyme-linked immunosorbent assay kit
(Molecular Innovations, Southfield, Mich). Briefly, the kit used a
urokinase plasminogen activator-coated plate to capture active
PAI-1, and a rabbit anti-mouse PAI-1 polyclonal primary antibody
(ASMPA1-GF). Murine serum amyloid A was measured using an
TABLE 1. Effect of Treatment on Metabolic and Inflammatory Parameters

<table>
<thead>
<tr>
<th></th>
<th>Vehicle</th>
<th>Ang II</th>
<th>Vehicle+PAI-039</th>
<th>Ang II+PAI-039</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active PAI-1, pg/mL</td>
<td>138.2±104.1</td>
<td>289.2±170.4*</td>
<td>33.5±4.1*§</td>
<td>298.0±263*</td>
</tr>
<tr>
<td>Glucose, mmol/L</td>
<td>9.1±1.2</td>
<td>8.0±1.3</td>
<td>6.8±1.7§</td>
<td>8.3±1.2</td>
</tr>
<tr>
<td>Insulin, mU/L</td>
<td>0.4±0.2</td>
<td>0.5±0.4</td>
<td>0.5±0.3</td>
<td>0.7±0.4</td>
</tr>
<tr>
<td>HOMA IR</td>
<td>3.4±1.8</td>
<td>3.8±3.3</td>
<td>4.4±2.8</td>
<td>6.4±4.5</td>
</tr>
<tr>
<td>SAA, µg/mL</td>
<td>987±1578</td>
<td>1227±1790</td>
<td>1004±1581</td>
<td>4076±4485‡‡</td>
</tr>
</tbody>
</table>

*P for effects of Ang II and PAI-039 by ANOVA are presented in the text. For posthoc analyses, *P<0.05 vs vehicle alone; †P<0.05 vs Ang II alone; ‡P<0.05 vs vehicle+PAI-039; §P<0.05 vs Ang II+PAI-039.

HOMA IR indicates homeostasis model assessment–insulin resistance index; SAA, serum amyloid A.

Results

Hemodynamic and Metabolic Parameters

There were no significant differences in baseline systolic blood pressure among the groups (Figure 1). Ang II infusion significantly increased systolic blood pressure (P<0.001). PAI-039 treatment significantly decreased systolic blood pressure (P=0.028) compared with vehicle but did not prevent the Ang II-induced increase in systolic blood pressure. Systolic blood pressure was similar in the Ang II-treated and Ang II+PAI-039–treated groups.

Table 1 shows plasma PAI-1 activity and metabolic parameters for each treatment group. After 1 week of therapy, plasma PAI-1 activity was significantly increased compared with vehicle in either of the Ang II-infused treatment groups (P=0.027 for effect of Ang II by ANOVA). PAI-039 treatment significantly decreased plasma PAI-1 activity in vehicle-infused animals but not Ang II-infused animals.

There were no differences in glucose or insulin concentrations among treatment groups at baseline. Fasting glucose was lower in the vehicle-infused PAI-039–treated mice compared with vehicle-infused or Ang II-infused PAI-039–treated mice at 8 weeks (Table 1). Overall, insulin concentrations (P=0.021) and the homeostasis model assessment–insulin resistance (P=0.018) were higher in Ang II-infused animals than in vehicle-infused animals; however, there was no effect of PAI-039 and no interactive effect of Ang II × PAI-039 on either insulin or the homeostasis model assessment–insulin resistance.

Cardiac Morphology and Histology

As illustrated in Table 2, body weight did not differ significantly among treatment groups. Ang II significantly increased heart weight (P=0.017 for the combined effect of Ang II and Ang II+PAI-039 groups) and the heart/body weight ratio (P=0.004 for the combined effect). PAI-039 treatment alone had no effect on either parameter. Additionally, PAI-039 did not alter the effect of Ang II on these parameters. Despite the quantitative changes in heart weight and heart/body weight ratio, left ventricular free wall thickness was similar among treatment groups.

TABLE 2. Effect of Treatment on Cardiac and Aortic Morphology and Histology

<table>
<thead>
<tr>
<th></th>
<th>Vehicle</th>
<th>Ang II</th>
<th>Vehicle+PAI-039</th>
<th>Ang II+PAI-039</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW, g</td>
<td>28.4±2.1</td>
<td>28.4±1.1</td>
<td>28.0±2.8</td>
<td>27.3±2.5</td>
</tr>
<tr>
<td>HW, mg</td>
<td>141±21</td>
<td>165±32</td>
<td>135±27</td>
<td>165±33</td>
</tr>
<tr>
<td>HW/BW, mg/g</td>
<td>5.1±0.8</td>
<td>5.8±1.0†</td>
<td>4.9±0.7</td>
<td>6.1±1.1†</td>
</tr>
<tr>
<td>LVFW, mm</td>
<td>0.95±0.09</td>
<td>1.12±0.25</td>
<td>0.96±0.30</td>
<td>0.94±0.12</td>
</tr>
<tr>
<td>Cardiac</td>
<td>0.68±0.31</td>
<td>0.94±0.50</td>
<td>0.91±0.53</td>
<td>1.50±0.85*</td>
</tr>
<tr>
<td>Fibrosis index</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aortic media, µm</td>
<td>63.1±9.6</td>
<td>86.2±32.0*‖</td>
<td>51.1±13.2</td>
<td>63.7±5.8</td>
</tr>
<tr>
<td>Aortic</td>
<td>22.4±4.7</td>
<td>55.3±25.1†§</td>
<td>26.3±5.2</td>
<td>45.6±31.6*</td>
</tr>
<tr>
<td>Adventitia, µm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aortic wall, µm</td>
<td>85.5±9.8</td>
<td>141.5±47.7*‖</td>
<td>77.3±10.5</td>
<td>109.3±30.8†</td>
</tr>
</tbody>
</table>

BW indicates body weight; HW, heart weight; LVFW, left ventricular free wall thickness.

*P<0.05 vs vehicle alone; †P<0.05 vs vehicle+PAI-039; ‡P<0.05 vs Ang II+PAI-039; §P<0.01 vs vehicle alone; ‖P=0.001 vs vehicle+PAI-039.
Neither Ang II alone nor PAI-039 alone significantly increased the intracardiac fibrosis index compared with vehicle treatment (Table 2). However, the cardiac fibrosis index was significantly increased in the Ang II+PAI-039–treated group compared with the vehicle-treated group (P=0.023). To determine the contribution of inflammation to the observed cardiac fibrosis, the effect of treatment on the systemic inflammatory marker serum amyloid A (SAA) was measured. There was no effect of Ang II alone on SAA.

There was also no effect on SAA when PAI-039 was given alone and resulted in a reduced plasma PAI-1 activity. However, there was a significant interactive effect of Ang II and PAI-039 (P=0.014) on SAA concentrations such that SAA concentrations were higher in Ang II+PAI-039–treated mice than in the other groups (Table I). No significant renal interstitial fibrosis or glomerular sclerosis was observed in any treatment group (data not shown).

Aortic Morphology and Histology
As illustrated in Table 2 and Figure 2, Ang II caused significant medial, adventitial, and aortic wall thickening compared with vehicle alone. PAI-039 did not affect vascular structure in vehicle-infused mice. However, PAI-039 significantly attenuated Ang II-induced aortic medial and wall thickening, and tended to decrease adventitial thickening. Collagen volume correlated with adventitial thickness (P=0.003).

Quantitative Real-Time Reverse-Transcription Polymerase Chain Reaction
Figure 3 shows the effect of treatment on aortic gene expression. By ANOVA, at 1 week Ang II significantly increased aortic expression of PAI-1, collagen I, collagen III, fibronectin, osteopontin, MCP-1, and F4/80, but not transforming growth factor (TGF)-β1. At 8 weeks, Ang II significantly increased aortic expression of PAI-1, collagen III, osteopontin, and TGF-β1, but not collagen I. PAI-039 did not significantly alter the effect of Ang II infusion on aortic PAI-1, collagen I, collagen III, fibronectin, MCP-1, F4/80, or TGF-β1 expression, but did significantly decrease the Ang II-induced increase in osteopontin expression at 8 weeks (P=0.024).

Figure 3 shows the effect of treatment on cardiac gene expression. At 1 week, Ang II significantly increased cardiac expression of PAI-1, collagen I, fibronectin, and osteopontin, but not collagen III, F4/80, TGF-β1, or MCP-1. At 8 weeks,
Ang II significantly increased cardiac expression of PAI-1, collagen I, collagen III, F4/80, TGF-β1, and osteopontin, but not fibronectin (P = 0.152) or MCP-1 (P = 0.983). PAI-039 did not significantly alter the effect of Ang II infusion on cardiac PAI-1, collagen I, collagen III, fibronectin, MCP-1, osteopontin, or TGF-β1 expression at 1 week or 8 weeks. However, PAI-039 significantly decreased Ang II-induced increase in F4/80 expression at 8 weeks (P = 0.018) but not 1 week.

Effect of Genetic PAI-1 Deficiency on Aortic Remodeling and Cardiac Fibrosis

Ang II significantly increased systolic blood pressure from 101.2 ± 2.4 to 159.3 ± 12.9 mm Hg at 12 weeks (P = 0.0021). There was no effect of aldosterone on systolic blood pressure (P = 0.862) or on the pressor response to Ang II. The pressor response to Ang II was similar in wild-type and PAI-1−/− mice (P = 0.430). Ang II, alone or in combination, increased heart/body weight ratio (Figure 4A). Aldosterone did not affect heart/body weight ratio. As in the case of pharmacological PAI-1 inhibition, genetic PAI-1 deficiency did not modulate Ang II-induced left ventricular hypertrophy. Ang II, aldosterone, and the combination induced cardiac interstitial fibrosis (Figure 4B). Significantly, cardiac fibrosis was increased in PAI-1−/− mice compared with wild-type mice. Treatment with Ang II alone or in combination, but not aldosterone alone, significantly increased aortic medial and adventitial thickness (Figure 4C and 4D). Ang II induced more adventitial thickening, left ventricular hypertrophy, and cardiac fibrosis after 12 weeks of 3.15% sodium chow than after 8 weeks of 1% saline drinking water. Genetic PAI-1 deficiency protected against Ang II-induced adventitial thickening.

Discussion

Activation of the RAAS plays a prominent role in the development and progression of cardiovascular disease. Previous studies in vitro and in animal models indicate that Ang II induces PAI-1 expression. The present study demonstrates that pharmacological inhibition of PAI-1 and genetic PAI-1 deficiency protect against Ang II-induced aortic remodeling through a blood pressure-independent mechanism, but not against ventricular hypertrophy or cardiac fibrosis.

The amount and composition of extracellular matrix depends on a balance between synthesis/deposition and degradation. In this study, the finding that pharmacological inhibition of PAI-1 protects against Ang II-induced aortic remodeling without altering Ang II-induced increases in collagen and fibronectin gene expression suggests that PAI-1 inhibition increased the availability of the plasmin/protease system for matrix degradation. In addition to fibrin, plasmin degrades the matrix proteins fibronectin and collagen and activates MMPs. As in the present study, previous investigations using plasminogen and PAI-1 knockout mice delineate an important role for the plasmin/protease system in modulating remodeling and fibrosis. Plasminogen knockout mice demonstrate impaired wound healing and increased fibrosis in response to chemical injury. Bleomycin-induced pulmonary fibrosis is decreased in PAI-1 knockout mice and increased in transgenic mice overexpressing the PAI-1 gene, and treatment of PAI-1 knockout mice with tranexamic acid, an inhibitor of plasmnin formation, reverses the protective effect of PAI-1 deficiency. In an experimental model of glomerulonephritis, intravenous administration of a mutant PAI-1 that binds vitronectin normally but lacks protease inhibitory activity, restored plasmin generation, and reduced matrix accumulation of collagen I, collagen III, fibronectin, and laminin.

Previous studies of insulin resistance and obesity in knockout animals suggest that genetic PAI-1 deficiency may protect against the development of insulin resistance. In the present study in a nonobese model, the protective effect of pharmacological PAI-1 inhibition could not be attributed
either to metabolic or hemodynamic effects. A mechanism by which pharmacological inhibition of PAI-1 protected against Ang II-induced aortic remodeling may involve alterations in vascular osteopontin expression. As reported previously in vitro in vascular smooth muscle cells and in vivo, Ang II induced a dramatic increase in aortic and cardiac osteopontin expression. This is consistent with data indicating that transgenic mice overexpressing osteopontin have aortic medial thickening develop with aging and that osteopontin-deficient animals are protected against Ang II-induced cardiac fibrosis. Significantly, the protective effect of PAI-039 on aortic medial thickening was accompanied by attenuated aortic osteopontin expression at 8 weeks.

Osteopontin functions as a cell adhesion and migration molecule that can bind several ligands, including αvβ3 and CD44. Osteopontin may contribute to tissue fibrosis by promoting macrophage infiltration and associated TGF-β1 production, mediating migration, adhesion, and proliferation of fibroblasts, and modulating secretion of metalloproteinases. The mechanism whereby pharmacological PAI-1 inhibition decreased aortic osteopontin expression is not evident from the present study. However, we have similarly observed that genetic PAI-1 deficiency attenuates aldosterone-induced increases in renal osteopontin expression (unpublished data).

In contrast to the protective effect of PAI-1 inhibition on aortic remodeling, PAI-039 did not attenuate Ang II-induced cardiac hypertrophy, consistent with the lack of effect of drug on Ang II-induced hypertension. Moreover, although PAI-1 inhibition decreased Ang II-induced aortic remodeling, treatment with PAI-039 was associated with an enhanced cardiac profibrotic effect in the presence of Ang II. Several possible mechanisms could account for the divergent effects of PAI-1 inhibition on aortic remodeling and cardiac injury in the presence of Ang II. First, although the initial preclinical profile of PAI-039 indicated that the plasma drug concentration achieved during acute oral administration of 1 mg/kg of PAI-039 inhibited PAI-1 and was antithrombotic in a rat model of FeCl3-induced carotid artery injury, in the current study mice were used instead of rats. Whereas the dose of 1 mg PAI-039/g chow decreased PAI-1 activity in vehicle-treated animals, this dose was insufficient to attenuate the Ang II-induced increase in plasma PAI-1 activity after 1 week of therapy. Also, the amphipathic structure of PAI-039 could have a distinctly different binding profile in the presence of high concentrations of plasma Ang II.

To determine whether the profibrotic effect of PAI-039+Ang II in the heart could have resulted from a proinflammatory effect of the compound that occurred with Ang II, independent of its mechanism of binding and inhibiting PAI-1 activity, we measured circulating concentrations of SAA. SAA concentrations provide evidence for a potential interactive pro-inflammatory effect of PAI-039 and Ang II in the present model. Importantly, however, whereas PAI-039 alone induced osteopontin expression, there was no effect of PAI-039 alone on SAA, and we have previously observed a reduction in SAA in a chronic model of atherosclerosis using apolipoprotein E knockout mice on a high-fat Western diet treated with the same 1 mg/g chow dosage of PAI-039.

The aforementioned not withstanding, the finding that both PAI-039 and genetic PAI-1 deficiency decreased Ang II/salt-induced aortic remodeling and increased cardiac fibrosis indicates that the effects of PAI-039 likely resulted directly from inhibition of PAI-1 rather than from a nonspecific effect of the drug. Furthermore, the opposing effects of either pharmacological PAI-1 inhibition or genetic deficiency on Ang II-induced aortic remodeling versus cardiac fibrosis point to different roles for PAI-1 in the pathogenesis of vascular remodeling and cardiac fibrosis. In the vasculature, PAI-1 may promote medial and adventitial thickening by inhibiting MMP activation and retarding extracellular matrix turnover, whereas in the heart PAI-1 may retard cellular infiltration and inflammation by impeding urokinase plasminogen activator-mediated or plasmin-mediated activation or release of latent growth factors. Consistent with this hypothesis, Moriwaki et al recently reported cardiac fibrosis in aged PAI-1–deficient mice and in mice overexpressing macrophage urokinase plasminogen activator. Similarly, the divergent effects of PAI-1 inhibition/deficiency on aortic remodeling and cardiac fibrosis in the present study parallel previously reported effects of genetic PAI-1 deficiency on perivascular fibrosis and myocardial inflammation and injury. For example, whereas PAI-1–deficient mice are protected from perivascular fibrosis induced by chronic administration of 1-NAME, PAI-1–deficient mice are not protected from cardiac inflammation and myocyte fibrosis after 2-week administration of Ang II/1-NAME.

In summary, this study used a novel orally active PAI-1 inhibitor to investigate the role of PAI-1 in tissue remodeling. Treatment with PAI-039 alone reduced plasma PAI-1 activity and lowered plasma glucose without affecting SAA. Treatment of Ang II-infused mice with PAI-039 provided protection against Ang II-induced aortic remodeling through mechanisms that may have involved alterations in osteopontin gene expression. This study provides proof of concept for the strategy of developing pharmacological inhibitors of PAI-1 to prevent vascular remodeling. However, like genetic PAI-1 deficiency, potent PAI-1 inhibition enhances the cardiac fibrotic effects of Ang II in this mouse model. Further studies are needed to determine whether the observed accentuation of Ang II-induced cardiac fibrosis is species-specific. Other chemical classes of in vitro PAI-1 inhibitors have been reported that include both direct-acting small-molecule inhibitors and antibodies; however, none has shown oral activity or has been profiled in chronic models of cardiovascular disease. Because PAI-039 is the first orally active PAI-1 inhibitor, it represents a unique pharmacological tool for determining the impact of inhibition of PAI-1 in the cause of cardiac and vascular remodeling.

Acknowledgments

This research was supported in part by a grant from Wyeth and by National Institutes of Health grants HL67308, HL60906, HL51387, DK37868, DK44757, and GM07569. We thank the MMPC/DRTC Hormone Assay Core Vanderbilt University School of Medicine, Lijun Ma, and Ellen Donnert for technical assistance.

References

2. Han Y, Runge MS, Brasier AR. Angiotensin II induces interleukin-6 tran-
scription in vascular smooth muscle cells through pleiotropic activation of
3. Griending KK, Minieri CA, Olierenshaw JD, Alexander RW. Angiotens-
in II stimulates factor-beta expression in rat glomerular mesangial cells.
5. Kagiuri S, Border WA, Miller DE, Noble NA. Angiotensin II stimulates
extracellular matrix protein synthesis through induction of transforming
growth factor-beta expression in rat glomerular mesangial cells. J Clin
Angiotensin II increases plasminogen activator inhibitor type 1 and tis-
type plasminogen activator messenger RNA in cultured rat aortic
7. Feener EP, Northrup JM, Alcena LP, King GL. Angiotensin II induces
plasminogen activator inhibitor-1 and -2 expression in vascular endo-
8. Takeshita K, Hayashi M, Ino S, Kondo T, Inden Y, Iwase M, Kojima T,
Hirai M, Ito M, Loskutoff DJ, Saito H, Murohara T, Yamamoto K.
Increased expression of plasminogen activator inhibitor-1 in cardiomyo-
cytes contributes to cardiac fibrosis after myocardial infarction. Am J
9. Vaughan DE, Lazos SA, Tong K. Angiotensin II regulates the expression
of plasminogen activator inhibitor-1 in cultured endothelial cells. A
potential link between the renin-angiotensin system and thrombosis.
10. Oikawa T, Freeman M, Lo W, Vaughan DE, Fogo A. Modulation of plas-
minogen activator inhibitor-1 in vivo: a new mechanism for the anti-fibrotic
EP. Role of the angiotensin AT1 receptor in rat aortic and cardiac PAI-1
PJ. Characterization and comparative evaluation of a novel PAI-1 inhib-
Pharmacological Inhibition and Genetic Deficiency of Plasminogen Activator Inhibitor-1 Attenuates Angiotensin II/Salt-Induced Aortic Remodeling
Alec D. Weisberg, Francisco Albornoz, Jane P. Griffin, David L. Crandall, Hassan Elokdah, Agnes B. Fogo, Douglas E. Vaughan and Nancy J. Brown

Arterioscler Thromb Vasc Biol. 2005;25:365-371; originally published online December 2, 2004;
doi: 10.1161/01.ATV.0000152356.85791.52

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2004 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/25/2/365

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2005/01/27/01.ATV.0000152356.85791.52.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/