Statin Inhibition of Fc Receptor–Mediated Phagocytosis by Macrophages Is Modulated by Cell Activation and Cholesterol

Objectives—An inflammatory response to altered lipoproteins that accumulate in the arterial wall is a major component of the pathogenesis of atherosclerosis. Statins reduce plasma levels of low-density lipoprotein (LDL) and are effective treatments for atherosclerosis. It is hypothesized that they also modulate inflammation. The aim of this study was to examine whether lovastatin inhibits macrophage inflammatory processes and clarify its mechanism of action.

Methods and Results—We examined the effects of statins on phagocytosis of antibody-coated red blood cells by cultured human monocytes and mouse peritoneal macrophages. Lovastatin, simvastatin, and zaragozic acid, a squalene synthase inhibitor, blocked Fc receptor–mediated phagocytosis by cultured human monocytes and mouse peritoneal macrophages. The inhibitory effect of lovastatin on Fc receptor–mediated phagocytosis was prevented completely by addition of mevalonate, farnesyl pyrophosphate, LDL, or cholesterol to the culture medium. The inhibitory effect of zaragozic acid was reversed by addition of LDL, but not by the addition of geranylgeranyl pyrophosphate, to the medium. In addition, the effect of lovastatin on phagocytosis is a function of cell activation because treatment of cells with tumor necrosis factor-α or lipopolysaccharide prevented inhibition of phagocytosis by lovastatin.

Conclusions—The inhibition of Fc receptor–mediated phagocytosis of lovastatin is related to its effect on cholesterol biosynthesis rather than its effect on the formation of isoprenoids. (Arterioscler Thromb Vasc Biol. 2004; 24:2051-2056.)

Key Words: lovastatin ■ phagocytosis ■ cell activation ■ monocytes and macrophages
inhibit cholesterol biosynthesis. Furthermore, tumor necrosis factor-α (TNF-α) or lipopolysaccharide (LPS) treatment prevented and reversed lovastatin-mediated inhibition of Fc receptor–mediated phagocytosis in the absence of added cholesterol. These findings indicate that cellular cholesterol regulates Fc receptor–mediated phagocytosis, and TNF-α and LPS stimulation overcome inhibition of lovastatin.

Materials and Methods

Human Monocytes

Monocyte-enriched cell preparations were isolated from the blood of healthy volunteers (none were taking statins) after informed consent as described. Briefly, human mononuclear cells were isolated from freshly drawn blood by centrifugation over Histopaque-1077 (Sigma-Aldrich) as described previously. Cells were washed 3× in RPMI medium 1640 (Life Technologies BRL) containing penicillin (140 U/mL) and streptomycin (140 μg/mL; Gibco BRL) by centrifugation at 1500 rpm for 10 minutes. After washing, they were resuspended in RPMI complete medium (RPMI medium 1640, penicillin [140 U/mL], streptomycin [140 μg/mL], and 10% heat-inactivated FBS (Gibco)). Monocyte-enriched cell preparations were suspended at 2 to 3 million cells per milliliter in RPMI medium 1640 and incubated on glass coverslips (12-mm diameter) at 37°C for 1 hour in 24-well culture dishes. Coverslips then were washed with PBS containing 1 mmol/L CaCl2 and 0.5 mmol/L MgCl2 to remove nonadherent cells, incubated with 0.5 mL of RPMI medium 1640, and incubated overnight at 37°C in the same medium. The adherent cells (200,000 to 300,000 per coverslip) were >95% monocytes as measured by their phagocytic capacity to ingest E(IgG).

Mouse Peritoneal Macrophages

Resident peritoneal cells were isolated from C57BL/126 mice 8 to 12 weeks of age as described. Twenty-nine percent (±3%) of these cells were macrophages, as indicated by their expression of nonspecific esterase and endocytosis of 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate–labeled acetylated LDL. Cells were allowed to adhere to 12-mm glass coverslips for 2 hours, and all nonadherent cells were removed by washing with RPMI medium 1640 maintained as described for human monocytes. Adherent cells were >99% macrophages as described.

IgG-Opsonized Sheep Red Blood Cells

Sheep red blood cells (Hardy Diagnostics) were opsonized with rabbit anti-sheep red blood cell IgG antibody (Cappel) as described.

Phagocytosis Assay

Freshly isolated human monocytes or mouse peritoneal macrophages maintained on glass coverslips were incubated overnight at 37°C. Coverslips were then washed once in PBS containing 0.1% (wt/vol) human serum albumin and 5.5 mmol/L glucose, overlaid with 0.1% human serum albumin, and 5.5 mmol/L glucose for the indicated time periods. The medium was removed and adherent cells were washed 6× in PBS at 4°C. To lyse the cells, 500 μL of water containing Triton X-100 (0.05%) was added to each well, and fluorescence was measured on a cell plate reader using excitation of 485 nm, emission at 530 nm. Standard curves for solutions containing known concentrations of Lucifer yellow were prepared and found to be linear from 0.05 to 100 ng/mL.

Reagents

Lovastatin in its active form was from A.G. Scientific, and simvastatin and ZA were obtained from Merck Sharp & Dohme. Statins were all dissolved and stored in dimethyl sulfoxide (DMSO) and diluted 1000-fold in RPMI medium 1640 immediately before they were added to the cells. TNF-α was obtained from Upstate Biotechnology Co. All other reagents were from Sigma Chemical Co.

Results

Lovastatin and Simvastatin Inhibit Fc Receptor–Mediated Phagocytosis by Mouse Peritoneal Macrophages and Cultured Human Monocytes

Mouse peritoneal macrophages and cultured human monocytes adherent to glass coverslips were incubated at 37°C for 24 hours in medium containing 10% FBS without or withLovastatin or simvastatin at the concentrations indicated (Figures 1 and 2), washed, and then incubated at 37°C in PBS containing 10% FBS, 5.5 mmol/L glucose, and statin as indicated E(IgG), for an additional 2 hours. In medium without statins, mouse macrophages ingested an

Fluid Phase Pinocytosis

Fluid phase pinocytosis was measured using Lucifer yellow as described. Briefly, monocytes cultured for 24 hours were further incubated in 300 μL PBS containing 0.5 mg/mL Lucifer yellow, 0.1% human serum albumin, and 5.5 mmol/L glucose for the indicated time periods. The medium was removed and adherent cells were washed 6× in PBS at 4°C. To lyse the cells, 500 μL of water
average of ≈6 E(IgG) each (ie, Pl of ≈600) with some macrophages ingesting as many as 10 (Figures 1 and 2). Lovastatin and simvastatin were equally effective in inhibiting E(IgG) ingestion by mouse macrophages. At 5 and 10 μmol/L, both drugs inhibited E(IgG) uptake by mouse macrophages =45% and =70%, respectively (Figure 1). Although most lovastatin-treated murine macrophages ingested =2 to 3 E(IgG), occasionally, we observed lovastatin-treated macrophages that had ingested 4 to 6 E(IgG) (Figure 2). Untreated cultured human monocytes ingested an average of 2 to 3 E(IgG) each (ie, Pl of ≈260) and 5 and 10 μmol/L ofLovastatin and simvastatin inhibited E(IgG) uptake by cultured human monocytes =57% and 70%, respectively (Figure 1). Control experiments confirmed that mouse macrophages and human monocytes ingested few, if any, unopsonized erythrocytes (data not shown;24) and that lovastatin (10 μmol/L) had no adverse effects on attachment of E(IgG) to these cells, on the number of cells adherent to glass coverslips, and on cell viability, as measured by trypan blue dye exclusion (data not shown).

Lovastatin Has No Effect on Fluid Phase Endocytosis

Because membrane fluidity and movement are required for all endocytic events, we examined whether lovastatin affects fluid phase endocytosis, a process that occurs in macrophages via clathrin-dependent and clathrin-independent mechanisms.26 Human monocytes (10⁶ cells per well) were incubated overnight in 24-well plates in RPMI medium 1640 in the absence or presence ofLovastatin (1 to 10 μmol/L). Lucifer yellow was added to the medium, the cells were incubated for an additional 120 minutes, and the amount of Lucifer yellow taken up by the cells was assayed as described in Materials and Methods. The amount of Lucifer yellow taken up under all conditions was the same (1.7±0.2 for untreated cells and 1.8±0.4 pmol per 2 hours for cells treated with 10 μmol/LLovastatin). Thus, maintenance of cultured human monocyes in medium containing 1 to 10 μmol/LLovastatin for 24 hours had no effect on fluid phase endocytosis (data not shown).

Lovastatin Inhibits Fc Receptor–Mediated Phagocytosis by Blocking HMG-CoA Reductase

Inhibition of HMG-CoA reductase by statins alters a number of downstream pathways, including biosynthesis of isoprenyl lipids and cholesterol (Figure 3). Therefore, we used various agents to differentiate between these pathways.

To confirm that the effect of lovastatin on phagocytosis was attributable to its inhibitory effect on HMG-CoA reductase and not a result of pleiotropic effects, we incubated human cultured monocytes in medium containing mevalonate, the immediate product of HMG-CoA reductase, or in medium containing FPP, a precursor of cholesterol and isoprenyl lipids (Figure 3). Mevalonate and FPP blocked the inhibitory effect ofLovastatin on phagocytosis of E(IgG) (Figure 4a and 4b).

Cholesterol-Containing Lipoproteins, Cholesterol, and Biosynthetic Precursors of Cholesterol Prevent Inhibitory Effects of Lovastatin on Phagocytosis of E(IgG)

Mevalonate and FPP are precursors of cholesterol and of isoprenyl lipids. To determine whether lovastatin inhibited phagocytosis by blocking the synthesis of cholesterol, isoprenyl lipids, or both, we compared E(IgG) phagocytosis by monocytes incubated for 24 hours in medium containing 10 μmol/LLovastatin alone versus medium containing 10 μmol/LLovastatin and 100 μmol/L cholesterol, or 10 μmol/LLovastatin and 100 μmol/L LDL. Addition of cholesterol or LDL completely blocked the inhibitory effect ofLovastatin on E(IgG) uptake (Figure 4a). These results suggested thatLovastatin inhibits Fc receptor–mediated phagocytosis by depriving monocytes of cholesterol.

ZA Inhibits Phagocytosis of E(IgG) by Cultured Monocytes

Squalene synthase catalyzes the formation of squalene, a cholesterol precursor, from FPP (Figure 3). Moreover, the squalene synthase inhibitorZA stimulates FPP synthesis, thereby increasing its availability, and the availability of other...
isoprenyl lipids derived from it (e.g., GGPP), to isoprenylate small GTPases.16,19,20 Therefore, we incubated cultured human monocytes in medium containing 5 \(\mu \text{mol/L} \) ZA, a concentration vastly in excess of that required to inhibit rat liver squalene synthase,21 to further test the hypothesis that cholesterol is required for E(IgG) phagocytosis. ZA inhibited phagocytosis of E(IgG) by 40\%(Figure 5), a value similar to that obtained with lovastatin alone. The finding that 5 \(\mu \text{mol/L} \) ZA in combination with 10 \(\mu \text{mol/L} \) lovastatin was not a better inhibitor of E(IgG) phagocytosis than ZA alone (Figure 5) suggests that increased availability of isoprenyl lipids in ZA-treated cells played no role in the extent to which ZA inhibited E(IgG) uptake (Figure 5). Rather, cholesterol is required for Fc receptor–mediated phagocytosis of E(IgG). The conclusion that ZA inhibits Fc receptor–mediated phagocytosis of E(IgG) by blocking cholesterol synthesis was further buttressed by the finding that the inhibitory effect of ZA on E(IgG) phagocytosis was unaffected by the addition of 100 \(\mu \text{mol/L} \) GGPP to the medium but was completely prevented by addition of 100 \(\mu \text{g/L} \) LDL to the medium (Figure 5). GGPP does not contribute to cholesterol biosynthesis but is a precursor for the production of isoprenyl products (Figure 3).

TNF-\(\alpha \) and LPS Prevent and Reverse the Inhibitory Effect of Lovastatin on Fc Receptor–Mediated Phagocytosis

The experiments described up to this point used monocytes cultured in medium lacking added growth factors and cytokines. However, monocytes and macrophages are exposed to bacterial products (e.g., LPS) and cytokines (e.g., TNF-\(\alpha \), interleukin-1, interferon-\(\gamma \) [INF-\(\gamma \)]) when they enter sites of infection or inflammation in vivo. Therefore, we examined the effects of LPS and TNF-\(\alpha \) on lovastatin-mediated inhibition of E(IgG) phagocytosis. We observed that monocytes incubated in medium containing 10 \(\mu \text{mol/L} \) lovastatin and either 10 ng/mL LPS or 100 ng/mL TNF-\(\alpha \) for 24 hours phagocytosed E(IgG) as efficiently as cells treated with LPS or TNF-\(\alpha \) alone (Figure 6). In contrast, other proinflammatory substances such as formyl-methionyl-leucyl-phenylalanine (FMLP) and leukotriene B\(_4\) (LTB\(_4\)), which stimulate monocytes by activating their heptahelical G\(_\text{q}\)-coupled receptors, had no effect on the ability of lovastatin to inhibit phagocytosis (Figure 6). In addition, when cells were treated with lovastatin (5 \(\mu \text{mol/L} \)) for 24 hours and then further incubated in medium containing lovastatin and either TNF-\(\alpha \) or LPS for 4 hours, we observed complete reversal of the inhibitory effect of lovastatin on phagocytosis (data not shown).

Discussion

Statins have a number of important pharmacological effects in addition to reducing plasma LDL levels. Pursuing the widespread belief that statins exert anti-inflammatory effects, we found that lovastatin and simvastatin inhibit macrophage phagocytosis of E(IgG) but do not affect endocytosis of soluble substances. Three lines of evidence indicate that lovastatin inhibits Fc receptor–mediated phagocytosis by blocking cellular cholesterol synthesis and not by blocking synthesis of isoprenyl lipids. First, the inhibitory effect of lovastatin is prevented by addition of LDL or cholesterol (Figure 4) but not of GGPP (Figure 5) to the medium. Second, ZA, which inhibits synthesis of cholesterol but not of isoprenyl lipids, blocked Fc receptor–mediated phagocytosis to about the same extent as lovastatin (Figure 5). The inhibitory effect of ZA also was prevented and reversed by addition of LDL but not of GGPP to the medium (Figure 5). Third, ZA and lovastatin in combination were no more potent in inhibiting phagocytosis than either drug alone (Figure 5), suggesting they act by a common mechanism (i.e., by inhibiting cholesterol synthesis).

Macrophages often function in regions that are rich in proinflammatory cytokines (e.g., atherosclerotic plaques). For this reason, we tested the effects of TNF-\(\alpha \) and LPS,
proinflammatory substances found in blood.19 Bacterial infection is associated with increased risk of coronary heart disease,28,29 and TNF-\(\alpha\) is found within atherosclerotic lesions.30 TNF-\(\alpha\) and LPS prevented and reversed the inhibitory effect of lovastatin on E(IgG) phagocytosis (Figure 6; data not shown), suggesting that these substances activate pathways that override the effects of cholesterol depletion.

Endogenous Synthesis Is the Primary Source of Cholesterol in Monocytes/Macrophages Maintained in Medium Containing FBS

Mammalian cells, including monocytes and macrophages, obtain cholesterol from 2 sources: circulating lipoproteins and de novo synthesis. In our experiments, monocytes and macrophages were maintained in medium containing 10% FBS. Because FBS contains very little cholesterol, monocytes and macrophages maintained in FBS rely primarily on synthesis to obtain the cholesterol they require. Indeed, it seems likely that even in the absence of inhibitors, endogenous cholesterol synthesis was less than optimal. This is probably the reason that addition of mevalonate to the culture medium enhanced E(IgG) phagocytosis by 20% to 30% (Figure 4a).

Fc receptor–mediated phagocytosis of E(IgG) requires the coordinated movement of membranes and cytoplasm.31 Cholesterol is required for plasma membrane formation and for the activity of many plasma membrane signaling pathways, including Fc receptor signaling.32 There are 2 principle mechanisms by which reductions in cellular cholesterol might affect Fc receptor–mediated phagocytosis. First, by depleting mononuclear phagocytes of cholesterol, lovastatin and ZA may impede Fc receptor redistribution into cholesterol-rich lipid rafts. By this means, these drugs may reduce Fc receptor cross-linking, tyrosine kinase activation, and actin filament assembly,32 and thereby inhibit phagocytosis. In fact, recent studies by Hillyard et al show that fluvastatin at micromolar concentrations inhibited Fc receptor signal transduction in human monocytes at the level of tyrosine kinase activation in a time- and dose-dependent manner.33

A second mechanism by which lovastatin and ZA may inhibit Fc receptor–mediated phagocytosis is by interfering with plasma membrane biosynthesis, thereby reducing the availability of macrophage plasma membrane stores. Greenberg et al33 have reported that insertion of plasma membrane from internal stores is required for efficient phagocytosis of E(IgG) by macrophages. Our finding that TNF-\(\alpha\) and LPS reverse the inhibitory effect of lovastatin on phagocytosis within a few hours of their addition to the medium (Figure 6; data not shown) suggests that lack of availability of internal plasma membrane stores is not the principal mechanism by which lovastatin blocks phagocytosis of E(IgG).

Our studies provide several insights that are relevant to the reported inhibitory effects of statins on mononuclear phagocyte functions in vitro and in vivo. First, they show that statins exert a powerful inhibitory effect on one of the cardinal functions of mononuclear phagocytes (Fc receptor–mediated phagocytosis) when these cells are maintained in medium lacking cholesterol or LDL. Second, they demonstrate that in medium containing cholesterol or a subphysiological concentration of LDL (ie, 100 \(\mu\)g/mL), lovastatin does not inhibit phagocytosis, even when used at 10 \(\mu\)mol/L (Figure 4). The peak plasma lovastatin concentration in patients taking this drug orally ranges between 0.2 and 1 \(\mu\)mol/L. At these concentrations, lovastatin had an insignificant effect on E(IgG) phagocytosis (Figure 1). This suggests that under physiological conditions in which LDL concentrations generally exceed 1 mg/mL, statin-mediated inhibition of endogenous cholesterol synthesis by mononuclear phagocytes is unlikely to affect the functions of these cells. Third, they show that even in LDL-free medium, proinflammatory cytokines (eg, TNF-\(\alpha\)) and bacterial products (eg, LPS) can overcome the inhibitory effect of lovastatin on phagocytosis, TNF-\(\alpha\) and LPS are likely to exert similar effects in vivo in tissues containing very low concentrations of LDL (eg, cerebrospinal fluid, airways, and joint spaces). This is consistent with clinical observations that patients taking statins show no defects in wound healing or in combating bacterial infections.

Do Statins Affect Inflammation?

It has been postulated that statins provide beneficial anti-inflammatory effects exclusive of cholesterol lowering;34 however, this conclusion is controversial.35 There are limited data that other more clearly defined anti-inflammatory drugs affect the progression of atherosclerosis. Comparisons of multiple intervention trials for coronary artery disease show declines in disease that correlate with the degree of cholesterol reduction, whether this is achieved by statins or other methods.36 The reduction in plasma C-reactive protein, produced primarily in the liver, that occurs in patients treated with statins has been interpreted as evidence of an anti-inflammatory effect of these drugs.3 It is uncertain whether this reduction is due specifically to statins or the concomitant cholesterol reduction. Reduction of plasma cholesterol or LDL itself may reduce some inflammatory processes.34
7. Ridker PM, Rifai N, Clearfield M, Downs JR, Weis SE, Miles JS, Gotto
AM, Jr. Measurement of C-reactive protein for the targeting of statin
8. Kumpf RT, Folger JB, Mulvihill N, Crean P, Walsh MJ. Impact of preex-
isting statin use on adhesion molecule expression in patients presenting
with acute coronary syndromes. Am J Cardiol. 2001;87:446–448, A446.
HG, Valent P, Binder BR, Minar E, Baghestanian M. Simvastatin reduces
the expression of adhesion molecules in circulating monocytes from
hypercholesterolemic patients. Arterioscler Thromb Vasc Biol. 2003;23:
397–403.
10. Weitz-Schmidt G, Welzenbach K, Brinkmann V, Kamata T, Kallen J,
Bruns C, Cottens S, Takada Y, Hommel U. Statins selectively inhibit
leukocyte function antigen-1 by binding to a novel regulatory integrin
11. Umetani N, Kanayama Y, Okamura M, Negoro N, Takeda T. Lovastatin
inhibits gene expression of type-1 scavenger receptor in THP-1 human
12. Kiener PA, Davis PM, Murray JL, Youssef S, Rankin BM, Kowala M.
Stimulation of inflammatory responses in vitro and in vivo by lipophilic
13. Mach F. Statins as novel immunomodulators: from cell to potential
14. Ballantyne CM. Statins after cardiac transplantation: which statin, what dose,
15. Kanneider NC, Egger P, Dunzendorfer S, Wiedermann CJ. Rho-GTPase-
dependent platelet-neutrophil interaction affected by HMG-CoA
reductase inhibition with altered adenosine nucleotide release and
16. Eto M, Kozai T, Cosentino F, Joch H, Luscher TF. Statin prevents tissue
inflammation in human endothelial cells: role of Rho/Rho-kinase and
17. Martin G, Duez H, Blanquart C, Berezowski V, Poulain P, Fruchart JC,
Nabizadeh A, Goutelle S, Staelens B. Statin-induced inhibition of the
Rho-signaling pathway activates PPARalpha and induces HDL apoA-I.
18. Meske V, Albert F, Richter D, Schwarz J, Ohm TG. Blockade of HMG-CoA
reductase activity causes changes in microtubule-stabilizing
protein tau via suppression of geranylgeranyl pyrophosphate formation:
family of biological mediators: chemokines and chemokine receptors.
21. Bergstrom JD, Kurtz MM, Rew DJ, Amend AM, Karkas JD, Bostedor
RG, Banzal VS, Dufress C, VanMiddlesworth FL, Hensens OD, et al.
Zaragociz acids: a family of fungal metabolites that are picomolar com-
petitive inhibitors of squalene synthase. Proc Natl Acad Sci U S A. 1993;
90:80–84.
22. Husemann J, Obstfeld A, Febrario M, Kodama T, Silverstein SC.
CD11b/CD18 mediates production of reactive oxygen species by mouse
and human macrophages adherent to matrixes containing oxidized LDL.
23. Loike JD, Cao L, Budhu S, Hoffman S, Silverstein SC. Blockade of alpha
5 beta 1 integrin reverses the inhibitory effect of tenascin on chemotaxis of
human monocytes and polymorphonuclear leukocytes through three-
dimensional gels of extracellular matrix proteins. J Immunol. 2001;166:
7534–7542.
24. Swanson JA, Yrinex BS, Silverstein SC. Phorbol esters and horseradish
peroxidase stimulate pinocytosis and redirect the flow of pinocytosed
25. Johannes L, Lamaze C. Clathrin-dependent or not: is it still the question?
26. Werb Z, Colm ZA. Cholesterol metabolism in the macrophage. 3.
Ingestion and intracellular fate of cholesterol and cholesterol esters.
27. Muhlestein JB. Secondary prevention of coronary artery disease with
28. Lopes-Virella MF. Interactions between bacterial lipopolysaccharides and
serum lipoproteins and their possible role in coronary heart disease. Eur
29. Lind L. Circulating markers of inflammation and atherosclerosis.
1039–1040.
31. Kwiatkowska K, Frey J, Sobota A. Phosphorylation of FcgammaRIIA is
required for the receptor-induced actin rearrangement and capping: the
32. Meske V, Albert F, Richter D, Schwarz J, Ohm TG. Blockade of HMG-CoA
reductase activity causes changes in microtubule-stabilizing
protein tau via suppression of geranylgeranyl pyrophosphate formation:
family of biological mediators: chemokines and chemokine receptors.
34. Lefer DJ. Statins as potent antiinflammatory drugs.
35. Schonbeck U, Libby P. Inflammation, immunity, and HMG-CoA
reductase inhibitors: statins as antiinflammatory agents? Circulation
106:2041–2042.
36. Halcox JP, Deanfield JE. Beyond the laboratory: clinical implications for
Statin Inhibition of Fc Receptor–Mediated Phagocytosis by Macrophages Is Modulated by Cell Activation and Cholesterol

Arterioscler Thromb Vasc Biol. 2004;24:2051-2056; originally published online September 2, 2004;
doi: 10.1161/01.ATV.0000143858.15909.29

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/24/11/2051

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/