Crucial Role of Type 2 Inositol 1,4,5-Trisphosphate Receptors for Acetylcholine-Induced Ca2+ Oscillations in Vascular Myocytes

Jean-Luc Morel,* Nicolas Fritz,* Jean-Louis Lavie, Jean Mironneau

Objective —The aim of this study was to correlate the expression of InsP\textsubscript{3}R subtypes in native vascular and visceral myocytes with specific Ca2+-signaling patterns.

Methods and Results —By Western blot and immunostaining, we showed that rat portal vein expressed InsP\textsubscript{3}R1 and InsP\textsubscript{3}R2 but not InsP\textsubscript{3}R3, whereas rat ureter expressed InsP\textsubscript{3}R1 and InsP\textsubscript{3}R3 but not InsP\textsubscript{3}R2. Acetylcholine induced single Ca2+ responses in all ureteric myocytes but only in 50% of vascular myocytes. In the remaining vascular myocytes, the first transient peak was followed by Ca2+ oscillations. By correlating Ca2+ signals and immunostaining, we revealed that oscillating vascular cells expressed both InsP\textsubscript{3}R1 and InsP\textsubscript{3}R2 whereas nonoscillating vascular cells expressed only InsP\textsubscript{3}R1. Acetylcholine-induced oscillations were not affected by inhibitors of ryanodine receptors, Ca2+-ATPases, Ca2+ influx, and mitochondrial Ca2+ uniporter but were inhibited by intracellular infusion of heparin. Using specific antibodies against InsP\textsubscript{3}R subtypes, we showed that acetylcholine-induced Ca2+ oscillations were specifically blocked by the anti-InsP\textsubscript{3}R antibody. These data were supported by antisense oligonucleotides targeting InsP\textsubscript{3}R2, which selectively inhibited Ca2+ oscillations.

Conclusions —Our results suggest that in native smooth muscle cells, a differential expression of InsP\textsubscript{3}R subtypes encodes specific InsP\textsubscript{3}-mediated Ca2+ responses and that the presence of the InsP\textsubscript{3}R2 subtype is required for acetylcholine-induced Ca2+ oscillations in vascular myocytes. (Arterioscler Thromb Vasc Biol. 2003;23:1567-1575.)

Key Words: calcium ■ InsP\textsubscript{3}-gated channel ■ Ca2+ oscillations ■ smooth muscle ■ acetylcholine
1 mmol/L pyruvate, 20 U/mL penicillin, and 20 μg/mL streptomycin; they were kept in an incubator gassed with 95% air and 5% CO₂ at 37°C and used either within 20 to 30 hours or within 2 to 4 days for cells injected with the antisense oligonucleotides.

Microinjection of Oligonucleotides

Phosphorothioate antisense oligonucleotides (denoted with the prefix “as”) used in the present study were designed on the known cloned InsP₃ R sequences deposited in the GenBank sequence database with Lasergene software (DNASTAR). Sequences of all 3 InsP₃ R cDNAs were aligned with each other, and specific antisense oligonucleotide sequences were chosen in the region of the cDNA of interest, completely different from the sequences of the 2 other InsP₃ R subtypes. Then antisense sequences displaying putative binding to any other mammalian sequences deposited in GenBank were discarded. Oligonucleotides were injected into the nuclei of myocytes by a manual injection system (Eppendorf). Intranuclear oligonucleotide injection with Femtotips II (Eppendorf) was performed as previously described. 15 The myocytes were then cultured for 2 to 4 days in culture medium, and the glass slides were transferred into the perfusion chamber for physiological experiments. The sequence of asInsP₃ R1 is ATCTGTGGTACGTGTGGCC, corresponding to nucleotides 566 to 584 of cDNA; that of asInsP₃ R2 is TATTCTCA-CATTTTCC, corresponding to nucleotides 580 to 596 of InsP₃ R2 cDNA; and that of asInsP₃ R3 is TGGTCGAAAGCTTGAACTCA, corresponding to nucleotides 494 to 513 of InsP₃ R3 cDNA.

Western Blot Analysis

Western blot analyses of rat tissue extracts and COS-1 cells (50 μg protein) were performed as previously described. 16

Fluorescence Measurements

Measurements of [Ca²⁺], were performed with an indo-1 setup, as described elsewhere. 14 Cells were either preloaded with the membrane-permeant indo-1 AM (1 μmol/L) for 30 minutes or 50 μmol/L indo-1 was added to the pipette solution and entered the cells after establishment of the whole-cell recording mode. [Ca²⁺], was estimated from the 405/480-nm fluorescence ratio using a calibration determined within cells. 14 All measurements were made at 25±1°C. Voltage clamp was made with a standard patch-clamp technique using a List EPC-7 patch-clamp amplifier (Darmstadt-Eberstadt). Patch pipettes had resistances of 3 to 4 MΩ. Anti-InsP₃ R1, anti-InsP₃ R2, and anti-InsP₃ R3 antibodies were added to the pipette solution to allow dialysis of the cell after a breakthrough in whole-cell recording mode for at least 5 minutes, a time longer than that expected for diffusion of substances in solution. 17

InsP₃ R Immunostaining

Myocytes were washed with PBS, fixed with 4% (vol/vol) formaldehyde and 0.5% glutaraldehyde for 10 minutes at room temperature, and permeabilized in PBS containing 3% FCS and 1 mg/mL of saponin for 20 minutes. Cells were incubated with PBS, saponin (1 mg/mL), and anti-InsP₃ R antibody (1 μg/mL) overnight at 4°C. Then cells were washed (4×5 minutes) and incubated with the secondary antibody conjugated to fluorescein-isothiocyanate during a period indicated on the records.

Solutions

The physiological solution contained (in mmol/L) NaCl 130, KCl 5.6, MgCl₂ 1, CaCl₂ 2, glucose 11, and HEPES 10, pH 7.4, with NaOH. The basic pipette solution contained (in mmol/L) CsCl 130 and HEPES 10, pH 7.3, with CsOH. Acetycholine and active compounds were applied to the recorded cell by pressure ejection for the period indicated on the records.

Chemicals and Drugs

Collagenase was obtained from Worthington. M199 medium, streptomycin, penicillin, and pyruvate were from Invitrogen. FCS was from BioMedia. Indo-1, indo-1 AM, and the mouse monoclonal anti-RYR antibody (559279) were from Calbiochem, Meudon, France. Anti-InsP₃ R1, anti-InsP₃ R2, and anti-InsP₃ R3 antibodies (SC6093, SC7278, and SC7277) were from Santa Cruz Biotechnology (Santa Cruz, Calif), from Affinity BioReagents (anti-InsP₃ R1 antibody, COGER, Paris, France), from AbCys (anti-InsP₃ R2 antibody, Valbiotech), and from Transduction Laboratories (anti-InsP₃ R3 antibody, BD Sciences, Le Pont de Claix, France). Alexa 488 and Alexa 568 secondary antibodies were from Molecular Probes (Eugene, Ore). Anti-PCNA (proliferating cell nuclear antigen) antibody was from Chemicon (Temecula, Calif). All other products were from Sigma.

Data Analysis

Data are expressed as mean±SEM; n represents the number of cells or experiments. Significance was tested by means of paired Student’s t test when cells were their own control; otherwise, unpaired test was used. P<0.05 was considered significant.

Results

Ca²⁺ Responses Evoked by Acetylcholine

In portal vein myocytes, application of 1 μmol/L acetylcholine (ACH) for 30 seconds induced 2 types of Ca²⁺ responses. In 51% of cells (138 of 270 cells, 18 dissociations), ACh initiated a Ca²⁺ peak that was followed by regenerative oscillations (Figure 1A). The amplitude of the first response reached 218±9 nmol/L from a resting level of 66±11 nmol/L (n=138). The amplitude of oscillations varied strongly, but the frequency of oscillations was reproducible independently of the duration of ACH applications (4.0±0.4 oscillations/min, n=138). Although the percentage of oscillating cells was similar in the ACH concentration range from 1 mmol/L to 10 μmol/L, the highest and more reproducible frequency of oscillations was obtained at 1 μmol/L ACH (n=138), so that the following experiments were performed with this ACH concentration. The nonoscillating cells (49%) responded by single Ca²⁺ responses (Figure 1A). On application of ACH, the peak response reached 198±10 nmol/L from a resting level of 67±9 nmol/L (n=132) and was followed by a sustained plateau of 50±25 nmol/L (n=132). It is noteworthy that the duration at half-maximal amplitude of the first Ca²⁺ peak in oscillating cells (2.62±0.22 seconds, n=138) was smaller than that of single Ca²⁺ transients in nonoscillating cells (6.74±0.62 seconds, n=132). Similarly, application of noradrenaline (0.1 to 10 μmol/L) induced both Ca²⁺ oscillations and single Ca²⁺ transients in vascular myocytes (n=64).

In contrast, in ureteric myocytes, Ca²⁺ oscillations were never observed after application of 0.1 to 10 μmol/L ACH (0 of 125 cells tested, 6 dissociations). As shown in Figure 1A, the amplitude of the transient Ca²⁺ response evoked by 1 μmol/L ACH was 368±17 nmol/L from a resting level of 72±9
nmol/L (n=92). This Ca\(^{2+}\) peak was followed by a sustained plateau of 41±15 nmol/L (n=92).

Effects of different pharmacological substances and external ion solutions were tested on both amplitude (first Ca\(^{2+}\) peak) and frequency of Ca\(^{2+}\) oscillations induced by 1 μmol/L ACh in vascular myocytes (Table). Ca\(^{2+}\) oscillation frequency was not affected after removal of external Ca\(^{2+}\) for 30 seconds (in Ca\(^{2+}\)-free solution containing 0.5 mmol/L EGTA), but the responses decreased in amplitude within 3 to 4 minutes as a consequence of the rapid depletion of the intracellular Ca\(^{2+}\) store. Both amplitude of the first ACh-induced Ca\(^{2+}\) peak and frequency of oscillations were not significantly affected in the presence of 1 μmol/L oxodipine (a specific inhibitor of voltage-dependent Ca\(^{2+}\) channels) or 1 μmol/L RU-360 (a selective inhibitor of the mitochondrial Ca\(^{2+}\) uniporter). Although 10 μmol/L ryanodine or 10 μg/mL anti-ryanodine receptor antibody (inhibitors of ryanodine-sensitive Ca\(^{2+}\) release channels) had no effect on Ca\(^{2+}\) oscillation frequency, they decreased the amplitude of the Ca\(^{2+}\) peak, as previously reported. Depletion of the Ca\(^{2+}\) store can be modulated by thapsigargin (a Ca\(^{2+}\)-ATPase inhibitor). Different concentrations of thapsigargin were applied for 1 minute before testing the effects of 1 μmol/L ACh. Thapsigargin inhibited in a concentration-dependent manner the ACh-induced Ca\(^{2+}\) responses (Figure 1B). Complete inhibition was obtained with 10 μmol/L thapsigargin, indicating that the store was empty. At 50 nmol/L, thapsigargin partially depleted the Ca\(^{2+}\) store, because the first ACh-induced Ca\(^{2+}\) peak was decreased by approximately 50% (Figure 1B). Under these conditions, the number of cells producing Ca\(^{2+}\) oscillations in response to ACh (9 of 17 cells tested) and the frequency of Ca\(^{2+}\) oscillations were not significantly different from those obtained in control conditions (Table, Figure 1C). However, a second application of ACh 5 minutes later was ineffective, as expected when the agonist-sensitive Ca\(^{2+}\) store was completely depleted. Finally, intracellular application of 1 mg/mL heparin (an inhibitor of InsP\(_3\)Rs) for 5 minutes suppressed the ACh-induced Ca\(^{2+}\) responses in both vascular (n=14) and ureteric (n=12) myocytes. These results indicate that the ACh-mediated Ca\(^{2+}\) release occurs from the sarcoplasmic reticulum and that Ca\(^{2+}\) oscillations can be obtained from a partially depleted Ca\(^{2+}\) store.

To check the possibility that the capacitative Ca\(^{2+}\) entry could be different in the 2 types of vascular myocytes, Ca\(^{2+}\) entry was stimulated either by a pathway involving a G\(_{q}\) coupled receptor (ACh) or by thapsigargin in cells identified

<table>
<thead>
<tr>
<th>Frequency, osc/min</th>
<th>First Peak Amplitude, nmol/L</th>
<th>Frequency, osc/min</th>
<th>First Peak Amplitude, nmol/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1±0.3</td>
<td>215±15</td>
<td>4.2±0.4</td>
<td>191±11</td>
</tr>
<tr>
<td>4.2±0.9</td>
<td>222±17</td>
<td>4.9±0.7</td>
<td>289±12</td>
</tr>
<tr>
<td>4.2±0.6</td>
<td>235±31</td>
<td>5.1±1.0</td>
<td>230±28</td>
</tr>
<tr>
<td>5.1±1.2</td>
<td>220±28</td>
<td>5.0±1.1</td>
<td>190±25</td>
</tr>
<tr>
<td>5.3±2.2</td>
<td>225±60</td>
<td>3.1±1.5</td>
<td>122±21*</td>
</tr>
<tr>
<td>4.8±1.7</td>
<td>240±46</td>
<td>3.9±1.2</td>
<td>139±41*</td>
</tr>
</tbody>
</table>

ACh (1 μmol/L) was applied 30 seconds after removal of external Ca\(^{2+}\), 1 minute after application of thapsigargin (50 nmol/L), 5 minutes after application of oxodipine (1 μmol/L), and 15 minutes after application of RU-360 (1 μmol/L) or ryanodine (10 μmol/L). Anti-ryanodine receptor antibody (10 μg/mL) was applied intracellularly through the patch pipette for 5 minutes and cells were held at −50 mV. Values are mean±SEM for 9 to 19 oscillating nonpatched cells from 4 dissociations or for 5 oscillating cells held at −50 mV from 2 dissociations. Osc indicates oscillations.

*Values significantly different from those obtained in control conditions.
as oscillating or nonoscillating during previous applications of ACh. After complete depletion of the Ca\(^{2+}\) store by applications of 10 \(\mu\)mol/L ACh or 10 \(\mu\)mol/L thapsigargin in Ca\(^{2+}\)-free 0.5 mmol/L EGTA-containing solution, readmission of 2 mmol/L external Ca\(^{2+}\) caused a transient and significant increase in [Ca\(^{2+}\)]. In oscillating cells, peak Ca\(^{2+}\) responses activated by ACh and by store depletion were 98±17 nmol/L (n=17) and 106±11 nmol/L (n=18), respectively, whereas in nonoscillating cells, they were 100±14 nmol/L (n=19) and 101±14 nmol/L (n=43), respectively. In addition, the Ca\(^{2+}\) loading of the store was assessed by applications of 10 mmol/L caffeine after complete refilling of the Ca\(^{2+}\) store in 2 mmol/L external Ca\(^{2+}\) for 15 minutes. Peak amplitudes of caffeine-induced Ca\(^{2+}\) responses were not significantly different in oscillating (183±19 nmol/L, n=18) and nonoscillating (210±21 nmol/L, n=19) cells. Taken together, these results indicate that ACh-induced Ca\(^{2+}\) oscillations in vascular myocytes depend only on Ca\(^{2+}\) release from the sarcoplasmic reticulum through activation of InsP\(_3\) Rs and that both Ca\(^{2+}\) content of the intracellular store and capacitative Ca\(^{2+}\) entry were not different in oscillating and nonoscillating vascular myocytes.

Expression of InsP\(_3\) R Subtypes

Expression of InsP\(_3\) R subtypes was examined by using specific antibodies directed against InsP\(_3\) R1, InsP\(_3\) R2, and InsP\(_3\) R3 in rat portal vein and ureteric myocytes and in COS-1 cells. Western blot detection of InsP\(_3\) R subtypes (Figure 2A) indicated that InsP\(_3\) R1 and InsP\(_3\) R2 were expressed in portal vein myocytes and InsP\(_3\) R1 and InsP\(_3\) R3 in ureteric myocytes. As previously reported, COS-1 cells expressed InsP\(_3\) R2 and InsP\(_3\) R3 but not InsP\(_3\) R1. The molecular weight of each subtype was determined in 3 different experiments and corresponded to that expected from primary sequences.

Immunodetection of InsP\(_3\) R subtypes in confocal sections from ureteric and portal vein myocytes was performed with a second set of antibodies from Santa Cruz Biotechnology. With these antibodies, the binding sites were revealed with the same fluorescein-isothiocyanate–conjugated secondary antibody and the specificity was attested by the use of available antigenic peptides. Nonspecific fluorescence (NSF) was determined when specific anti-InsP\(_3\) R antibody was preincubated with its antigenic peptide 1 hour before application of the immunostaining protocol. When the cell fluorescence obtained with the anti-InsP\(_3\) R antibody was higher than NSF, the cell was considered as positive and specific fluorescence (F-NSF) could be estimated. The antigenic peptide for InsP\(_3\) R1 blocked the ability of the anti-InsP\(_3\) R1 antibody to bind to its target (n=41) but did not interfere with the activity of both anti-InsP\(_3\) R2 and anti-InsP\(_3\) R3 antibodies (n=41). Similarly, the antigenic peptides for InsP\(_3\) R2 and InsP\(_3\) R3 blocked the activity of the anti-InsP\(_3\) R2 and anti-InsP\(_3\) R3 antibodies, respectively, but did not interfere with the ability of the anti-InsP\(_3\) R1 antibody to bind to its target (n=32). Figure 2B illustrates typical immunostainings obtained in portal vein myocytes from the same dissociation with each of the anti-InsP\(_3\) R subtype antibodies. All of the cells were stained with the anti-InsP\(_3\) R1 antibody (Figure 2B; please see Figure IA, available in the online data supplement at http://atvb.ahajournals.org). In contrast, no specific staining was obtained with the anti-InsP\(_3\) R3 antibody. Staining with the anti-InsP\(_3\) R2 antibody revealed that only a fraction of myocytes expressed InsP\(_3\) R2 (7 of 15 cells; Figure 2B; please see online Figure IA). A similar distribution of cell fluorescence was obtained from 6 different dissociations (please see online Figure IB), supporting the idea that all of the cells expressed InsP\(_3\) R1 whereas approximately 50% of the cells expressed InsP\(_3\) R2. Quantitatively, specific fluorescence with the anti-InsP\(_3\) R1 antibody was observed in 271 of 288 vascular myocytes tested (6 dissociations), whereas specific InsP\(_3\) R2 immunostaining was detected in 231 of 452 cells tested (6 dissociations) and InsP\(_3\) R3 labeling was never observed (217 cells tested, 6 dissociations) (please see online Figure IC). In ureteric myocytes, specific InsP\(_3\) R1 and InsP\(_3\) R3 immunostainings were detected (Figure 2B), respectively, in 74 and 71 of 78 cells (please see online Figure IC), whereas InsP\(_3\) R2 labeling was never observed (96 cells tested, 5 dissociations). In COS-1 cells, specific immunostaining was obtained for InsP\(_3\) R2 and InsP\(_3\) R3 (in 58 and 55 of 60 cells tested, respectively) whereas InsP\(_3\) R1 staining was never observed (63 cells tested, 4 dissociations; please see online Figure IC). Immunostainings in confocal sections of intact portal vein muscle revealed that InsP\(_3\) R2 was not expressed in all of the myocytes compared with InsP\(_3\) R1 (Figure 2C). These results confirm that immunostainings with the anti-InsP\(_3\) R antibodies are specific for the corresponding InsP\(_3\) R subtypes and reveal a differential expression of InsP\(_3\) R subtypes in vascular and ureteric myocytes.

The fact that the InsP\(_3\) R2 subtype was detected by immunostaining in approximately 50% of all of the vascular cells tested prompted us to verify the expression of InsP\(_3\) R1 and InsP\(_3\) R2 in myocytes showing either Ca\(^{2+}\) oscillations or single Ca\(^{2+}\) responses. We found that all of the oscillating vascular myocytes expressed both InsP\(_3\) R1 and InsP\(_3\) R2 (n=116; 5 dissociations), whereas the nonoscillating myocytes expressed only InsP\(_3\) R1 (n=121; 5 dissociations).

Specific InsP\(_3\) R Isoforms Required for Ca\(^{2+}\) Oscillations

To assess the role of InsP\(_3\) R subtypes in Ca\(^{2+}\) oscillations, we used both subtype-specific antibodies and inhibition of InsP\(_3\) R subtypes by an antisense strategy. For the antibody experiments, the following protocol was performed. On each myocyte, ACh (1 \(\mu\)mol/L) was first ejected in non–voltage-clamped conditions to detect the oscillating cells, and the parameters of the Ca\(^{2+}\) responses were measured. Then, voltage-clamp conditions were established and a second application of ACh was applied 5 minutes later on the same cells maintained at a holding potential of −50 mV. In portal vein myocytes, the peak Ca\(^{2+}\) response corresponding to the first ACh application (in non–voltage-clamped cells) was 270±39 nmol/L from a resting [Ca\(^{2+}\)] level of 66±8 nmol/L (n=19). The amplitude of the second ACh-induced Ca\(^{2+}\) response (in voltage-clamped cells) was 225±21 nmol/L from a resting level of 69±9 nmol/L (n=19). Similarly, the mean frequency of Ca\(^{2+}\) oscillations during the second application of ACh was 4.2±0.8 oscillations/min, not differ-
ent from that obtained during the first application of ACh (4.0±0.8 oscillations/min, n=19). Therefore, this protocol was used to examine the role of the InsP₃R subtypes on the ACh-induced Ca²⁺ responses by infusing the cells through the patch pipette with the specific InsP₃R subtype antibodies for 5 minutes.

We tested the anti-InsP₃R antibodies in nonoscillating vascular cells expressing only InsP₃R1 to determine the effective concentrations of these antibodies. In nonoscillating vascular cells, the single Ca²⁺ responses were inhibited in a concentration-dependent manner by intracellular applications of the anti-InsP₃R1 antibody with maximal inhibition obtained at 1 µg/mL (please see online Figures IIA and IIB), whereas both anti-InsP₃R2 and anti-InsP₃R3 antibodies had no significant effects at concentrations up to 10 µg/mL (please see online Figures IIC and IID). The inhibitory effect of the anti-InsP₃R1 antibody is specific, as shown by the absence of effect of boiled (90°C for 30 minutes) anti-InsP₃R1 antibody (see online Figure IIB) or antibody preincubated with its antigenic peptide (not shown). In oscillating vascular myocytes, intracellular application of the anti-InsP₃R1 antibody inhibited the amplitude of Ca²⁺ peaks, but oscillations were detected in all the cells tested (Figure 3A and 3B). Interestingly, in the presence of anti-InsP₃R1 antibody, the frequency of Ca²⁺ oscillations was not significantly affected (control, 4.1±0.5 oscillations/min; in the presence of the antibody, 3.9±0.4 oscillations/min; n=6). Intracellular applications of anti-InsP₃R2 antibody inhibited both ampli-
ACh was able to induce a single Ca\(^{2+}\) oscillation in vascular myocytes. Similar results were obtained (not illustrated), in agreement with the absence of detection of asInsP3 R to inhibit the expression of InsP3 R isoform and the cleotides efficiency was determined by checking the ability of the anti-InsP3R1 antibody in both freshly dissociated and cultured vascular myocytes (n = 250). Based on this time scale, we verified that the Ca\(^{2+}\) responses were maximally decreased 2 days after nuclear injection of asInsP3 R1. Increasing asInsP3 R1 concentration to 20 μmol/L had no additional inhibitory effect on InsP3 R1 staining (n = 17). We also verified that each InsP3 R subtype was specifically decreased by the corresponding asInsP3 R 2 days after injection. Vascular myocytes injected with asInsP3 R2 or asInsP3 R3 were normally stained with the anti-InsP3 R1 antibody (please see online Figure IIIB). Non specific effects of antisense oligonucleotides were detected only at concentrations higher than 50 μmol/L (n = 10). We further verified that the antisense oligonucleotides were efficient and specific in inhibiting expression of InsP3 R subtypes within 2 days after nuclear injection and that they could be used to study the role of each InsP3 R subtype on ACh-induced Ca\(^{2+}\) responses. In vascular myocytes injected with 10 μmol/L asInsP3 R1, the amplitude of the first Ca\(^{2+}\) peak evoked by 1 μmol/L ACh was reduced by approximately 50% compared with noninjected cells, but oscillations were observed in most of the cells tested (41 of 50 cells, Figure 4). In cells injected with asInsP3 R2, the amplitude of the first Ca\(^{2+}\) peak was slightly reduced, but the percentage of oscillating cells was strongly inhibited (7 of 72 cells). No effect on the Ca\(^{2+}\) peak and the percentage of oscillating cells (26 of 50 cells) was observed in cells injected with asInsP3 R3 (Figures 4B and 4C). The frequency of oscillations in asInsP3 R1-injected cells (4.0 ± 0.3 oscillations/min, n = 41) was not different of that in noninjected cells (4.3 ± 0.2 oscillations/min, n = 82). All of the cells used induced large Ca\(^{2+}\) responses when 10 mmol/L caffeine was added at the end of this protocol. Cell proliferation was not detected with the anti-PCNA antibody in both freshly dissociated and cultured vascular myocytes (n = 250).

Discussion

The results of the present study establish the functional role of InsP3 R subtypes in native smooth muscle cells in response to acetylcholine. We obtained evidence that endogenous expression of InsP3 R2 was critical for Ca\(^{2+}\) oscillations in rat portal vein myocytes, whereas endogenous expression of
neutralized by their antigenic peptides or by heating (95°C for 30 minutes) have no effect on ACh-induced Ca²⁺ responses in 2 different smooth muscle cell types; and (5) the inhibitory effects of each anti-InsP₃R antibody on the Ca²⁺ responses are concentration-dependent, with a maximal effect of approximately 1 μg/mL. For the antisense strategy, appropriate controls have been carried out to demonstrate the efficiency of antisense oligonucleotides. We evaluated the specificity of antisense oligonucleotides to reduce the expression of the InsP₃R subtypes labeled with the specific antibodies by showing (1) the specific inhibition of the targeted InsP₃R subtype by 1 given antisense oligonucleotide and the lack of effect of this antisense oligonucleotide on the other InsP₃R subtypes; (2) the lack of effect of antisense oligonucleotides against InsP₃R3 in myocytes that did not express this subtype; and (3) the reduction of the InsP₃R-mediated Ca²⁺ response produced by each effective oligonucleotide compared with the suppression of Ca²⁺ response after injection of a mixture of oligonucleotides targeting the expressed InsP₃R subtypes.

Ca²⁺ oscillations can be supported by different Ca²⁺ channels and Ca²⁺ stores. We showed that the pharmacological inhibition of the mitochondrial Ca²⁺ uniporter, RYRs, voltage-gated Ca²⁺ channels, and Ca²⁺ influx had no effect on ACh-induced Ca²⁺ oscillations in rat portal vein myocytes. Because inhibition of InsP₃R2 by specific antibodies and antisense oligonucleotides suppressed these responses, InsP₃R2 seems necessary to support the ACh-induced Ca²⁺ oscillations. In vascular myocytes, distribution of InsP₃R2 has been found at the plasma membrane and associated with the nucleus in proliferating cells. We show that freshly dissociated and short-term cultured rat portal vein myocytes express InsP₃R1 whereas only 50% of the cells express InsP₃R2 and generate Ca²⁺ oscillations. It is unlikely that these 2 populations of myocytes correspond to cells being in different states of development, because staining with the anti-PCNA antibody was not detected in freshly dissociated and short-term cultured myocytes. Immunostaining of intact vascular muscle revealed that both InsP₃R1 and InsP₃R2 were expressed and that some cells expressed only InsP₃R1, confirming the results obtained in dissociated vascular myocytes.

Targeted gene knockouts of InsP₃R subtypes in DT40 B cells have revealed that cells expressing different InsP₃R subtypes may show distinct patterns of Ca²⁺ signaling. When expressed singly, activation of InsP₃R1 or InsP₃R3 triggers 1 or 2 Ca²⁺ peaks, whereas activation of InsP₃R2 supports long-lasting, regular Ca²⁺ oscillations. In native cells, such as hepatocytes, cardiac myocytes, and pancreatic islets that show Ca²⁺ oscillations, the presence of InsP₃R has been demonstrated in separate experiments. With specific antibodies and antisense oligonucleotides, we demonstrate that native vascular myocytes expressing only InsP₃R2 may generate Ca²⁺ oscillations of small amplitude, confirming the results obtained in DT40 B cells. In agreement with these data, in native cells that do not express InsP₃R2, like A7r5 cells or ureteric myocytes (the present study), InsP₃R-mediated Ca²⁺ oscillations have not been observed. Conversely, Ca²⁺ oscillations were observed in cells expressing a high proportion of InsP₃R2 (RBL-2H3 mast cells) or ex-
pressing both InsP2R and InsP3R (NIH-3T3 cells33). In HeLa cells that show Ca2+ oscillations with a low expression of InsP2R,33 it has been shown that these oscillations are dependent on the extracellular Ca2+ concentration,34 suggesting that Ca2+ influx may be involved in triggering Ca2+ oscillations in these cells.

Our results support a model in which Ca2+ oscillations depend on Ca2+ release from the intracellular store through both InsP2R and InsP3R. Because InsP2R alone is unable to trigger Ca2+ oscillations, it is likely that the properties of InsP2R are critical for these oscillations. InsP2R has a higher InsP2 sensitivity than InsP3R.13 In native cells expressing predominantly InsP2R, a sustained inhibition is obtained by increasing [Ca2+],4 a result that is not found in studies using planar lipid bilayers.35 In contrast, InsP3R inhibition by high [Ca2+], has been reported in both bilayers and native cells.36 Because our preliminary experiments using GFP-PLC expression indicate that the InsP3 production in vascular myocytes does not oscillate in response to 1 μmol/L ACh, we speculate that the Ca2+-dependent inhibition of InsP2R may be important in the rapid fall of [Ca2+], during the first peak, as revealed by the duration at half-maximal amplitude of the first Ca2+ peak, which is shorter in oscillating cells than in nonoscillating cells. Because [Ca2+], decreases near basal value, InsP2R can re-open, and a second Ca2+ peak is initiated with the concomitant participation of InsP3R. The InsP3- and Ca2+-dependences of InsP2R and InsP3R are under investigation in native vascular myocytes, because intracellular accessory proteins can strongly modulate InsP3R activity.36

The physiological role of InsP2R has not been previously examined in freshly dissociated and short-term cultured vascular myocytes. However, in agonist-stimulated adult cardiomyocytes, it has been reported that activation of InsP3 may trigger additional action potentials leading to arrhythmias.37 Moreover, intracellular Ca2+ oscillations have been shown to support spontaneous contractions during early stages of cardiomyogenesis, before complete expression of ion channels.38 It is tempting to speculate that vascular myocytes expressing both InsP2R and InsP3R may function as pacemaker cells, initiating and modulating rhythmic electrical and mechanical activities in portal vein. We have previously shown that in these cells, InsP3 is generated under basal conditions and that the InsP3 production is strongly increased by neurotransmitters.39 Because vascular myocytes are electrically coupled by gap junctions, a small fraction of pacemaker cells activated by the basal InsP3 concentration may trigger the spontaneous contractile activity of the vessel. When neurotransmitters are delivered, the frequency of rhythmic contractions is strongly increased,40 as expected from an increase in the InsP3 production, which can stimulate Ca2+ oscillations in all the cells expressing both InsP2R and InsP3R.

In conclusion, the differential expression of InsP3R subtypes seems a determinant factor in the generation of specific Ca2+ signaling patterns in native smooth muscle cells.

Acknowledgments
This work was supported by grants from Centre National de la Recherche Scientifique, Centre National des Etudes Spatiales, and Association Française contre les Myopathies, France. N.F. is supported by a grant from Région Aquitaine. The authors thank N. Biendron for secretarial assistance.

References
21. Wojciechiewicz R. JH. Type I, II and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed

Crucial Role of Type 2 Inositol 1,4,5-Trisphosphate Receptors for Acetylcholine-Induced Ca²⁺ Oscillations in Vascular Myocytes

Jean-Luc Morel, Nicolas Fritz, Jean-Louis Lavie and Jean Mironneau

Arterioscler Thromb Vasc Biol. 2003;23:1567-1575; originally published online July 31, 2003; doi: 10.1161/01.ATV.0000089013.82552.5D

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2003 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/23/9/1567

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2003/09/15/23.9.1567.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org/subscriptions/
Figure I on-line

J.L Morel et al
Figure I. Immunostaining of InsP$_3$R subtypes in portal vein, ureteric and COS-1 cells. Fluorescence was estimated by grey level measurements from z-series of confocal cell sections and expressed by volume unit in the presence of the specific anti-InsP$_3$R subtype antibody alone (F) or after a pre-incubation with its antigenic peptide for 1 h (NSF). (A) Fluorescence of vascular myocytes obtained with the three anti-InsP$_3$R subtype antibodies in a typical microscope field and expressed as F (filled symbols) and NSF (open symbols). (B) Distribution of fluorescence expressed as F (filled bars) and NSF (open bars) in vascular myocytes from 6 different dissociations. (C) Specific fluorescence (F-NSF) obtained with the three anti-InsP$_3$R subtype antibodies in portal vein (PV), ureteric (Ur) and COS-1 cells. Data are means ± SEM with the number of positive cells/total number of cells tested indicated in parentheses. Cells were stained with anti-InsP$_3$R antibodies from Santa Cruz Biotechnology.
Figure II on-line
J.L Morel et al
Figure II. Effects of anti-InsP₃R antibodies on the single Ca²⁺ responses evoked by ACh (1 µM) in non-oscillating portal vein myocytes. (A) Typical recordings showing the effect of the anti-InsP₃R1 antibody (1 µg/ml) on single Ca²⁺ response. (B-D) Compiled data showing the effect of increasing concentrations of anti-InsP₃R1 antibody (B, Affinity BioReagents), anti-InsP₃R2 antibody (C, AbCys) and anti-InsP₃R3 antibody (D, Transduction Laboratories) on Ca²⁺ peaks. Results are expressed as the ratio of Ca²⁺ measurements obtained in presence and absence of antibodies. Filled bar is obtained with boiled antibody. Data are means ± SEM with the number of cells indicated in parentheses (★, p < 0.05).
Figure III on-line

J.L. Morel et al.
Figure III. Efficiency of antisense oligonucleotides directed against mRNAs of the three InsP₃R subtypes in portal vein myocytes. (A) Time course of inhibition of specific staining measured with the anti-InsP₃R₁ antibody in cells injected with 10 µM asInsP₃R₁ (filled bars) and in non-injected cells (open bars). (B) Time course of inhibition of ACh-induced Ca²⁺ responses in cells injected with a mixture of asInsP₃R₁ + asInsP₃R₂ (10 µM each, hatched bars) and in non-injected cells (open bars). (C) Staining with anti-InsP₃R₁ antibody in non-injected cells (control) and in cells injected with 10 µM asInsP₃R₁, asInsP₃R₂ or asInsP₃R₃. (D) Staining with anti-InsP₃R₂ antibody in non-injected cells (control) and in cells injected with 10 µM of asInsP₃R₂, asInsP₃R₁ or asInsP₃R₃. Anti-InsP₃R antibodies were from Santa Cruz Biotechnology. Data are means ± SEM with the number of positive cells/total number of cells tested indicated in parentheses (★, p < 0.05).
On line materials

Figure I. Immunostaining of InsP₃R subtypes in portal vein, ureteric and COS-1 cells. Fluorescence was estimated by grey level measurements from z-series of confocal cell sections and expressed by volume unit in the presence of the specific anti-InsP₃R subtype antibody alone (F) or after a pre-incubation with its antigenic peptide for 1 h (NSF). (A) Fluorescence of vascular myocytes obtained with the three anti-InsP₃R subtype antibodies in a typical microscope field and expressed as F (filled symbols) and NSF (open symbols). (B) Distribution of fluorescence expressed as F (filled bars) and NSF (open bars) in vascular myocytes from 6 different dissociations. (C) Specific fluorescence (F-NSF) obtained with the three anti-InsP₃R subtype antibodies in portal vein (PV), ureteric (Ur) and COS-1 cells. Data are means ± SEM with the number of positive cells/total number of cells tested indicated in parentheses. Cells were stained with anti-InsP₃R antibodies from Santa Cruz Biotechnology.

Figure II. Effects of anti-InsP₃R antibodies on the single Ca²⁺ responses evoked by ACh (1 µM) in non-oscillating portal vein myocytes. (A) Typical recordings showing the effect of the anti-InsP₃R1 antibody (1 µg/ml) on single Ca²⁺ response. (B-D) Compiled data showing the effect of increasing concentrations of anti-InsP₃R1 antibody (B, Affinity BioReagents), anti-InsP₃R2 antibody (C, AbCys) and anti-InsP₃R3 antibody (D, Transduction Laboratories) on Ca²⁺ peaks. Results are expressed as the ratio of Ca²⁺ measurements obtained in presence and absence of antibodies. Filled bar is obtained with boiled antibody. Data are means ± SEM with the number of cells indicated in parentheses (★, p < 0.05).

Figure III. Efficiency of antisense oligonucleotides directed against mRNAs of the three InsP₃R subtypes in portal vein myocytes. (A) Time course of inhibition of specific staining
measured with the anti-InsP₃R1 antibody in cells injected with 10 µM asInsP₃R1 (filled bars) and in non-injected cells (open bars). (B) Time course of inhibition of ACh-induced Ca²⁺ responses in cells injected with a mixture of asInsP₃R1 + asInsP₃R2 (10 µM each, hatched bars) and in non-injected cells (open bars). (C) Staining with anti-InsP₃R1 antibody in non-injected cells (control) and in cells injected with 10 µM asInsP₃R1, asInsP₃R2 or asInsP₃R3. (D) Staining with anti-InsP₃R2 antibody in non-injected cells (control) and in cells injected with 10 µM of asInsP₃R2, asInsP₃R1 or asInsP₃R3. Anti-InsP₃R antibodies were from Santa Cruz Biotechnology. Data are means ± SEM with the number of positive cells/total number of cells tested indicated in parentheses (★, p < 0.05).