Differential Effects of Doxycycline, a Broad-Spectrum Matrix Metalloproteinase Inhibitor, on Angiotensin II–Induced Atherosclerosis and Abdominal Aortic Aneurysms

Michael W. Manning, Lisa A. Cassis, Alan Daugherty

Objective—Angiotensin II (AngII) infusion into hyperlipidemic mice leads to the rapid formation of atherosclerotic lesions and abdominal aortic aneurysms (AAAs). To define the role of matrix metalloproteinases (MMPs) in the development of these vascular pathologies, we administered the broad-spectrum MMP inhibitor doxycycline to saline- and AngII-infused LDL receptor−/− mice.

Methods and Results—Mice were placed on a high-fat diet for 1 week before infusion with either saline or AngII (1000 ng·kg⁻¹·min⁻¹) via osmotic pumps for 28 days. Doxycycline (30 mg·kg⁻¹·d⁻¹) was administered in the drinking water to both saline- and AngII-infused mice. Administration of doxycycline did not significantly influence systolic blood pressure, serum cholesterol concentrations, or lipoprotein-cholesterol distribution. Doxycycline had no effect on the extent of atherosclerosis in saline- or AngII-infused mice. In contrast, doxycycline markedly reduced the incidence of AAA formation (86% vs 35%, AngII vs AngII+doxycycline, respectively; P<0.05), in addition to reducing aneurysm severity.

Conclusions—These data do not imply a role for MMPs in AngII-induced atherosclerosis but provide evidence consistent with a role in AngII-induced AAA formation. (Arterioscler Thromb Vasc Biol. 2003;23:483–488.)

Key Words: angiotensin • aneurysms • atherosclerosis • doxycycline • matrix metalloproteinases
reduced the mRNA expression of MMP-1 in the aorta and was suggested to contribute to the antiatherogenic effects of AT1 receptor blockade. These data collectively suggest that AngII may regulate MMPs; however, the role of MMPs in AngII-induced vascular disease is not known.

One approach to the elucidation of the role of MMPs in a disease process is the use of pharmacological inhibitors. A widely used compound is doxycycline, which, though commonly known for its antibiotic properties, exerts therapeutic effects through inhibition of MMPs. An advantage of using doxycycline to study the role of MMPs in a disease process is the broad-spectrum inhibition of MMPs. We hypothesized that AngII induces the vascular pathologies of atherosclerosis and AAAs in hyperlipidemic mice by augmenting MMPs. To test this hypothesis, we determined the effect of doxycycline on the development of AngII-induced atherosclerosis and AAA formation in LDL receptor−/− mice. Results from this study provide evidence that is consistent with a role for MMPs in the development of AngII-induced AAAs and provide further support for defining the therapeutic benefit of this compound in humans afflicted with the disease.

Methods

Animals

Male LDL receptor−/− mice (8 weeks old, backcrossed 10 times onto a C57BL/6J background) were obtained from the Jackson Laboratory (Bar Harbor, Me) and housed under barrier conditions. Standard sterilized laboratory diet and water were available ad libitum. One week before pump implantation, the mice were placed on a diet containing 0.15% (wt/wt) cholesterol and 21% (wt/wt) cocoa butter fat (high-fat diet, TD 88137; Harlan Teklad). AngII (1000 ng · kg−1 · min−1) or saline was administered subcutaneously by Alzet osmotic minipumps (model 2004) as described previously. All procedures were performed with the prior approval of the University of Kentucky Institutional Animal Care and Use Committee.

Doxycycline Administration

Doxycycline (Sigma) was administered daily in the drinking water at an approximate dose of 30 mg · kg−1 · d−1 (based on the average daily water consumption). This dose has been shown previously to block MMP activity in vivo. Doxycycline treatment was begun 1 week before pump implantation and continued throughout the study. The drug was protected from light, and a fresh drug solution was provided every other day.

Blood Pressure Measurements

Systolic blood pressures were obtained from conscious mice by using a computerized tail-cuff method (BP-2000 Visitech Systems). Mice were acclimated to the instrument for at least 1 week before implantation of the osmotic pumps. Measurements were recorded at the same time of day throughout the study. Individual mice received 10 initial pressure readings to acclimate them to the procedure, and then 10 additional cycles were measured to obtain the daily mean systolic pressure. The criterion for acceptance of measurements was at least 5 recorded pressures per run that had a standard deviation of <30 mm Hg per animal.

Serum Lipids and Lipoprotein Concentrations

Serum total cholesterol concentrations were determined with enzymatic assay kits (Wako Chemical Co). Lipoprotein cholesterol distributions were evaluated in individual serum samples (50 μL) from 8 mice in each group after fractionation by size-exclusion chromatography on a single Superose 6 column. Fractions were collected, and cholesterol concentrations were determined with enzymatic kits.

Quantification of Atherosclerosis and Characterization of Aneurysms

Atherosclerotic lesions were quantified in the arch and thoracic aorta as described previously. The abdominal aorta was excluded from analysis owing to the presence of large AAAs. Data are expressed as percent of the intimal surface covered by grossly discernible atherosclerotic lesions. Determination of the presence of an AAA was made by 2 independent observers. The severity of AAA was based on a previously described classification in which AAAs were assigned to a group dependent on the gross appearance of the tissue.

Statistics

For each parameter, the mean and SEM were calculated. Blood pressure data were analyzed by 3-way repeated-measures ANOVA followed by Tukey’s post hoc test (SAS statistical by a 2-way ANOVA followed by Tukey’s post hoc test for all pairwise comparisons. Incidence of aneurysm formation was examined by using Fisher’s exact test. Values of P<0.05 were considered statistically significant.

Results

All mice tolerated the administration of doxycycline well, with no observable adverse reactions and no significant effects on body weight (Table 1).

TABLE 1. Body Weight and Serum Cholesterol Concentrations

<table>
<thead>
<tr>
<th>Groups</th>
<th>Osmotic Pump Contents</th>
<th>Drinking Water Additives</th>
<th>n</th>
<th>Body Weight, g</th>
<th>Total Cholesterol Concentrations, mg/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline</td>
<td>None-control</td>
<td></td>
<td>9</td>
<td>28.2±0.7</td>
<td>757±50</td>
</tr>
<tr>
<td>AngII</td>
<td>None-control</td>
<td></td>
<td>21</td>
<td>27.7±0.5</td>
<td>755±25</td>
</tr>
</tbody>
</table>

Body weights were measured weekly throughout the study, and values are represented from measurements at the conclusion of the study. Total cholesterol concentrations in serum were measured from blood recovered at the study termination. All data are represented as mean±SEM. No values were significantly different from each other.

Doxycycline Did Not Alter the Development of Hypertension in Response to AngII

LDL receptor−/− mice infused with AngII developed moderate increases (~25 mm Hg) in systolic blood pressure.
during the 4 weeks of the study. We did not demonstrate an increase in arterial blood pressure at this dose during AngII infusion in previous studies; however, those were performed in anesthetized mice.2 This elevation in blood pressure was apparent within 3 days after pump implantation and was maintained throughout the course of AngII infusion. Doxycycline did not affect systolic blood pressure in either AngII- or saline-infused mice (Figure 1).

Doxycycline Did Not Alter the Distribution of Lipoprotein Cholesterol

To determine whether doxycycline administration had any effect on lipid metabolism, plasma cholesterol concentrations were measured, and the distribution of lipoprotein cholesterol was determined by size-exclusion chromatography. Serum total cholesterol concentrations were unchanged by AngII or doxycycline administration (Table 1). Also, there were no effects of AngII or doxycycline administration on the distribution of cholesterol among lipoprotein fractions (Figure 2).

Doxycycline Did Not Alter the Extent of AngII-Induced Atherosclerosis

The extent of atherosclerosis was measured by an en face method and expressed as percent lesion covering the intimal area. Doxycycline had no effect on lesion area in saline-infused mice. As reported previously,2 AngII infusions produced significant increases in lesion area in the thoracic aorta (Figure 3). Increases in lesion area in the aorta in response to AngII were not influenced by doxycycline (19±1% vs 17±1%, AngII alone vs AngII+doxycycline, respectively).

Doxycycline Markedly Attenuated AngII-Induced AAAs

The incidence of AAAs in the suprarenal aorta of AngII-infused mice was 85%. Orally administered doxycycline decreased the incidence (85% vs 35%, AngII alone vs AngII+doxycycline, respectively; *P*<0.003; Table 2) and the severity of aneurysms formed by AngII (Figure 4). Both thrombus formation and the extensive dilation of the aorta seen in AngII-infused mice (Figure 4A) were inhibited in mice administered doxycycline. In the few AAAs that formed in AngII-infused mice given doxycycline, there was slight hypertrophy of the surrounding adventitial tissue, yet markedly less than that seen in AngII-infused mice. By using a previously described classification scheme to provide an index of pathological severity, we ascertained that AAAs formed in mice treated with doxycycline were much less severe than those in saline-infused mice. As reported previously,2 AngII infusions produced significant increases in lesion area in the thoracic aorta (Figure 3). Increases in lesion area in the aorta in response to AngII were not influenced by doxycycline (19±1% vs 17±1%, AngII alone vs AngII+doxycycline, respectively).

Figure 1. Systolic blood pressure measured by a computerized tail-cuff technique. Systolic blood pressure recorded during saline or AngII infusion (A) was not influenced by doxycycline administration (B). Symbols represent the mean systolic pressure (mm Hg) ± SEM per group for saline-infused (open circles) and AngII-infused (closed circles) mice. AngII induced a significant increase in systolic blood pressure that was not influenced by doxycycline administration. *P*<0.05 for AngII- vs saline-infused mice.

Figure 2. Serum lipoprotein distribution: cholesterol distribution was not changed by the administration of either AngII or doxycycline. Lipids were resolved by size-exclusion chromatography on a Superose 6 column. Total cholesterol concentrations are expressed as mean absorbance per fraction. Symbols represent the mean ±SEM of 8 individual mice per group: saline + control (open circles); saline + doxycycline (closed circles); AngII + control (open triangles); and AngII + doxycycline (closed triangles).

Figure 3. Quantification of atherosclerosis: the extent of aortic intimal surface covered by grossly discernible lesions was determined from en face preparations of the thoracic aorta. AngII infusion increased the extent of atherosclerosis, but this was unaffected by doxycycline. Histobars represent the mean ±SEM for each group (open histobars, control treated; filled histobars, doxycycline-treated). *P*<0.05 for AngII- compared with saline-infused mice. Doxycycline produced no significant effect.
advanced than those observed in mice infused with AngII alone (Figure 4B).3,4

Discussion

We have recently demonstrated that AngII infusion into hyperlipidemic mice greatly accelerates the extent of atherosclerosis and promotes the formation of pronounced AAAs.1–4 The present study demonstrates that administration of doxycycline had no significant effect on AngII-augmented atherosclerosis in LDL receptor-/- mice but markedly attenuated the incidence and severity of aneurysm formation. Reductions in AngII-induced AAA formation by doxycycline occurred independent of alterations in plasma lipids or systolic blood pressure.

Inhibition of MMPs by Doxycycline

Doxycycline has several pharmacological properties, but its therapeutic utility in reducing AAAs in experimental mice and humans has been ascribed to inhibition of MMPs.26 In the present study, the dose of doxycycline administered to inhibit MMPs was based on previous reports.26,40,41 Doxycycline inhibits a broad range of MMPs by proposed mechanisms that include transcriptional inhibition and a direct effect by coordination with the catalytic site.35 In preliminary studies, we found that the dose of doxycycline used in the present study inhibited surgically induced elevations in serum MMP-9 (authors’ unpublished observations). However, serum concentrations may not be indicative of the induction of augmented local proteolytic activity in discrete regions of arteries. We propose inhibition of local MMPs as the mechanism of doxycycline’s attenuation of AAA formation. This assertion is based on the drug’s known inhibition of this class of enzymes and the demonstrated role of specific MMPs in the disease process. Further studies with structural analogues of the drug may assist in establishing this mechanism.

Lack of Effect of Doxycycline on AngII-Induced Atherosclerotic Lesions

Several MMPs are present in atherosclerotic lesions, as indicated earlier. However, the mere presence of MMPs in tissue is not an indication of the extent of activity, because this is dependent on complex regulatory steps of enzyme activation and attenuation by endogenous inhibitors.15 In situ gel zymography has demonstrated that MMP activity in atherosclerotic lesions is enhanced, particularly at shoulder regions.7,42 Although MMP activity is commonly considered detrimental to the development of atherosclerotic lesions, this notion has been challenged by recent studies in mice in which MMP-1 was overexpressed in a macrophage-specific manner or in which MMP-3 was deleted.17,18 Overexpression of MMP-1, which is not normally expressed in mice, unexpectedly decreased the extent of atherosclerosis,18 whereas deletion of MMP-3 had no effect on lesion size.17 The effect of TIMP-1–mediated inhibition of MMPs is unclear, because both overexpression and deletion studies have demonstrated reduced atherosclerosis in apoE-/- mice.16,43 Further studies are needed to
Doxycycline was used as a broad inhibitor of MMPs to effectively inhibit multiple MMPs. At the dosage used, there was no effect of doxycycline on AngII-induced atherosclerosis. These results indicate that MMPs do not contribute to the rapidly formed atherosclerotic lesions that develop in response to 1 month of AngII infusion. However, this does not discount a role for MMPs during more protracted intervals of AngII administration or a hyperlipidemic diet. Also, it does not negate a role for MMPs in advanced stages of the disease, in which their activity may be a determinant of plaque rupture.\(^4\)

Doxycycline Inhibits AngII-Induced AAA Formation

MMPs are hypothesized to be important mediators in the development of AAs, although other elastolytic enzymes, such as cathepsins S and K, have also been speculated to be involved in the disease process.\(^4,5\) Consistent with the hypothesis that MMPs are involved in AAA formation, administration of doxycycline significantly reduced both the incidence and severity of AngII-induced AAA formation. AngII infusion into hyperlipidemic mice leads to medial degeneration that presumably underlies the development of AAs.\(^1\) Medial degeneration may be a primary event that leads to inflammation due to the chemotactic properties of elastin degradation products. Alternatively, medial degeneration may be caused by the inflammatory process. Although the sequence of biochemical and cellular events in evolving AAs has not been defined, MMP inhibition could potentially contribute to attenuation of AAA formation either by inhibiting MMPs within the arterial wall or in the infiltrating leukocytes.

The continued presence of some aneurysmal formation may have been due to incomplete MMP inhibition at the doxycycline dose used. However, the AAs in doxycycline-administered mice were minor expansions of the suprarenal aorta that lacked a significant thrombotic component. The ability of doxycycline to inhibit formation of AAs in this and other animal models of the disease indicates the importance of this group of enzymes to the disease process.\(^4,5\)

Divergence of Effects on Atherosclerosis and AAs

It has been commonly considered that AAs are a consequence of the atherosclerotic process, although this viewpoint has been challenged.\(^5,7\) The present study demonstrated a divergent effect of doxycycline on the extent of atherosclerosis and the severity of AAs. A differential effect of manipulation of MMPs on atherosclerosis versus aortic aneurysm has been noted in mouse studies with other MMP inhibitors\(^5\) and in mice with deficiencies of either MMP-3 or TIMP-1.\(^6,16\) The AAs that form in response to AngII are highly localized to the suprarenal artery, a region of the aorta that does not typically exhibit atherosclerosis in mice of this young age.\(^1,2,50\) Moreover, in earlier studies, we have not observed atherosclerotic lesions in the region of AAA formation.\(^2\) However, previous results from our laboratory demonstrate that a hyperlipidemic environment markedly augments the formation of AAs by AngII in female mice.\(^2\) Therefore, although hyperlipidemia promotes AngII-induced AAs, the divergent effects of doxycycline on these vascular pathologies provide further evidence that atherosclerosis may not be responsible for the formation of AngII-induced AAs.

Conclusions

In summary, results from this study demonstrate that doxycycline has negligible effects on the development of AngII-induced atherosclerosis in LDL receptor−/− mice but significantly attenuates the development of AAs. The proposed mechanism for the effect of doxycycline on AngII-induced AAs is inhibition of MMPs elaborated from cells at the vascular lesion and a reduction in degradation of the extracellular matrix. Studies to further define the role of MMPs in AngII-induced AAA formation will require selective MMP inhibitors and mice with deficiencies of a specific MMP.

Acknowledgment

This work was supported by grant NIH RO1 HL62846.

References

Differential Effects of Doxycycline, a Broad-Spectrum Matrix Metalloproteinase Inhibitor, on Angiotensin II–Induced Atherosclerosis and Abdominal Aortic Aneurysms
Michael W. Manning, Lisa A. Cassis and Alan Daugherty

Arterioscler Thromb Vasc Biol. 2003;23:483-488; originally published online January 30, 2003; doi: 10.1161/01.ATV.0000058404.92759.32

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2003 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/23/3/483

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/