Editorial

ATVB In Focus
Smooth Muscle Cells

Giulio Gabbiani, Göran K. Hansson

One of the implications of the original observation by Benditt and Benditt that human atheromatous plaques have the features of a monoclonal proliferation is that arterial smooth muscle cells (SMCs) are heterogeneous and that possibly a distinct SMC subpopulation exhibits the propensity to migrate into the intima and to participate in atheroma formation. This has inspired an important number of investigations with the aim of isolating and defining distinct SMC phenotypes or of identifying different SMC precursors during development and/or pathological situations.

See page 380

Evidence has been produced that SMCs in culture may display distinct phenotypic features, eg, spindle-shaped or epithelioid morphology. These populations have been shown to derive from tissues with different biological characteristics, such as normal media and intimal thickening after endothelial injury or normal media of newborn versus old rats. It has also been shown that SMC populations and clones with these distinct morphologies can be isolated from the same tissue, eg, normal media. Most of this work has been performed with the rat as experimental animal, but more recently, these observations have been extended to other species, such as cow, dog, and pig, and albeit sporadically, human.

It has also been attempted to identify markers of the different phenotypes, with some success in the rat model, but unfortunately, results in rodents are not necessarily applicable to other species and to humans in particular. A significant impulse to this conceptual approach has been given by the demonstration that circulating or bone marrow–derived cells can contribute to the architecture of several tissues including the vessel wall.

The present series of reviews ATVB In focus will explore several aspects of SMC differentiation and of normal and pathological arterial wall formation, with a special emphasis on the role of SMC heterogeneity. We are happy to start with the very hot topic concerning SMC origin and the role of circulating stem cells in the formation of transplant atherosclerosis.

Our aim is to present ATVB readers with the possibility of considering the many facets of SMC heterogeneity during development as well as physiological or pathological phenomena; in this way we hope to encourage new ideas, experiments and results.

References

ATVB In Focus: Smooth Muscle Cells
Giulio Gabbiani and Göran K. Hansson

Arterioscler Thromb Vasc Biol. 2003;23:379
doi: 10.1161/01.ATV.0000060480.24963.EE
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2003 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/23/3/379

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/