Extrahepatic Synthesis of Factor VII in Human Atherosclerotic Vessels

Josiah N. Wilcox, Sumiko Noguchi, Juan Casanova

Objective—Coagulation is initiated by the interaction of tissue factor (TF) with plasma coagulation factors VII (FVII) and X (FX). TF is highly expressed in atherosclerotic lesions, but little is known about the synthesis of FX or FVII outside of the liver. Previous studies suggested that macrophages synthesize FVII. We therefore hypothesized that macrophages within atherosclerotic lesions may produce FVII, leading to partial activation of the coagulation cascade.

Methods and Results—Immunohistochemistry was performed using antibodies against FVII, FX, and TF on normal and atherosclerotic vessels. In atherosclerotic lesions, FVII immunostaining was colocalized with TF in macrophages and spindle-shaped smooth muscle cells. FVII mRNA was also detected in these cells using in situ hybridization, suggesting the local synthesis of FVII in atherosclerosis. Reverse transcriptase–polymerase chain reaction confirmed the presence of FVII mRNA in normal and atherosclerotic vessels as well as smooth muscle cells, fibroblasts, and keratinocytes in vitro.

Conclusions—The localization of FVII synthesis outside the liver may be indicative of other cellular functions for this coagulation protein. The observed coexpression of TF and FVII may contribute to autocrine signaling via thrombin-independent mechanisms and may represent a novel mechanism contributing to growth in the setting of vascular disease.

Key Words: tissue factor ■ factor VII ■ factor X ■ thrombosis ■ atherosclerosis
tomy (n=6). Normal human internal mammary artery specimens (IMA) (n=8) were obtained as excess tissue from coronary artery bypass surgery. Archived samples of normal baboon brachial arteries that had been collected under prior Emory University Institutional Animal Use and Care Committee approved studies were examined for FVII staining (n=3). The baboon vessels were perfusion fixed using 4% paraformaldehyde in 0.1 mol/L sodium phosphate (pH 7.4). Tissue samples were collected, immediately immersed in 4% paraformaldehyde at 4°C for 3 to 4 hours, cryoprotected in 15% sucrose/isotonic phosphate-buffered saline overnight at 4°C, embedded in optimal cutting temperature compound (Miles Laboratories), frozen in liquid nitrogen, and stored at −70°C until sectioning. Six-μm cryosections were cut, thaw-mounted onto Superfrost/Plus slides (Fisher Scientific), refrozen, and stored at −70°C with desiccant until immunohistochemistry or in situ hybridization.

Immunohistochemistry

Immunohistochemistry was performed with specific monoclonal antibodies for FVII (Novo Nordisk, Denmark, FVII-F7A2B17, 1/460 dilution), TF (Genentech Inc, RD010, 1/450 dilution), and a polyclonal antibody for FX (DAKO Patts, 1/800 dilution) using the Vectastain ABC alkaline phosphatase system (Vector Labs). The secondary antibodies were biotinylated horse anti-mouse IgG (1:400, Vector Labs) for FVII or goat anti-rabbit IgG (1/200, Fisher Scientific) for TF and FX. The final reaction product was stained with the alkaline phosphatase substrate kit I (Vector Labs) to give a red end product, and tissues were counterstained with hematoxylin. Serial sections treated with secondary antibodies only or with nonimmune IgG did not show any staining. For cell identification, serial sections were stained with markers for endothelial cells (Ulex lectin; Vector Laboratories, 1/200 dilution), α-smooth muscle actin for SMC (SM-1; Sigma, 1/800 dilution), or macrophages (CD68; DAKO Patts, 1/50 dilution).

Western Blot

The specificity of the FVII and FX antibodies was confirmed by Western blots. Recombinant human FVIIa (Novo Nordisk, 0.6 μg), human Fxa (Enzyme Research Labs, 0.3 μg), and extracts from cultured human endothelial cells were run alone or together on a 4% Tris-Glycine gel and blotted on nitro-cellulose membranes. The specificity of the FVII and FX antibodies was confirmed by Western blotting on a 4% Tris-Glycine gel and blotted on nitro-cellulose membranes. These studies suggested that both the FVII and FX antibodies were specific for their respective proteins and did not cross-react with other cellular proteins in the ECV extracts (online Figure I, available at http://atvb.ahajournals.org).

In Situ Hybridization

In situ hybridization using antisense 35S-labeled riboprobes was undertaken as previously described.3,15 Probes specific for human FVII and von Willebrand factor (vWF) were labeled by transcription using 35S-labeled UTP (specific activity 1200 Ci/mmol; Amersham). In situ hybridization was performed using a 1200-bp EcoRI-Hind III fragment of human FVII subcloned into pGEM3Z.17 and a 779-bp EcoRI-Hind III fragment of human vWF subcloned into PGEM3Z.17 The final specific activity of these probes was 300 Ci/mmol. vWF in adventitial vasa vasorum. In situ hybridization using antisense 35S-labeled riboprobes was undertaken as previously described.3,15 Probes specific for human FVII and von Willebrand factor (vWF) were labeled by transcription using 35S-labeled UTP (specific activity 1200 Ci/mmol; Amersham). In situ hybridization was performed using a 1200-bp EcoRI-Hind III fragment of human FVII subcloned into pGEM3Z.17 and a 779-bp EcoRI-Hind III fragment of human vWF subcloned into PGEM3Z.17 The final specific activity of these probes was 300 Ci/mmol. vWF in adventitial vasa vasorum. In situ hybridization using antisense 35S-labeled riboprobes was undertaken as previously described.3,15 Probes specific for human FVII and von Willebrand factor (vWF) were labeled by transcription using 35S-labeled UTP (specific activity 1200 Ci/mmol; Amersham). In situ hybridization was performed using a 1200-bp EcoRI-Hind III fragment of human FVII subcloned into pGEM3Z.17 and a 779-bp EcoRI-Hind III fragment of human vWF subcloned into PGEM3Z.17 The final specific activity of these probes was 300 Ci/mmol. vWF in adventitial vasa vasorum.

RT-PCR of FVII mRNA

RT-PCR for FVII mRNA was performed using 1 μg of total RNA isolated from internal mammary artery and carotid endarterectomy samples snap frozen in liquid nitrogen at the time of surgery. Human coronary artery SMC (Clonetics) as well as human foreskin fibroblasts and human keratinocytes (Emory Skin Disease Research Center) were also tested for FVII mRNA by RT-PCR. Human liver RNA was used as a control for FVII. Total RNA was isolated using TRIzol reagent (Gibco BRL). The entire RNA sample was used for first-strand cDNA synthesis using random primers and the 1st Strand cDNA kit (Boehringer Mannheim). The following oligomer primers were used for FVII PCR amplification: forward TAATGGGGTAGAGGAGGAGGGCATG; backward AGCAATGAAGGCAGAGCAGAG. PCR was performed under the following conditions: 95°C for 1 minute, followed by 30 cycles of 95°C for 1 minute, 62°C for 1.5 minutes, and 72°C for 1 minute, and held at 72°C until gel electrophoresis, and the PCR product was visualized by ethidium bromide staining.

Results

Localization of FVII, FX, and TF in Human Normal Aorta by Immunohistochemistry

Normal human aortas (n=3) and IMA (n=8) showed variable weak staining for FVII in the endothelium, medial wall, and inflammatory cells in the adventitial surrounding these vessels (Figure 1). Some vessels showed very little staining at all, whereas others, particularly the smaller IMAs, consis-
tently showed stronger staining of the medial wall. FVII staining in these regions was typically not associated with TF (Figure 1). Consistent with previous studies, TF was not detected in the endothelial or smooth muscle layers of the normal vessels but was localized primarily in adventitial fibroblasts. Many vessels displayed significant FVII staining of monocytes and inflammatory cells in the adventitia (Figure 1). Serial sections stained with the TF antibody failed to find any corresponding TF in these cells in the same regions. We hypothesize that FVII may be deposited or induced in these tissues during the surgical procedure to isolate the vessels due to mechanical injury or thrombosis. In support of this hypothesis, perfusion-fixed baboon vessels typically show no medial FVII staining at all (Figure 1) and rarely have significant numbers of inflammatory cells in the adventitia. FX staining was not detected in any normal vessels (not shown).

Localization of FVII, FX, and TF by Immunohistochemistry in Atherosclerotic Vessels

Human aortas with early (n=4) and advanced (n=4) atherosclerotic lesions as well as carotid arteries with advanced atherosclerotic lesions (n=6) were examined by immunohistochemistry for the distribution of FVII, FX, and TF.

FVII and TF immunostaining were found colocalized throughout atherosclerotic development from the earliest fatty streaks to the most advanced lesions. In early intimal thickenings, TF and FVII were colocalized with CD68-positive foamy macrophages, whereas FX staining was not detected in these vessels (Figure 2). In advanced lesions, FVII protein staining was found in macrophages overlying the necrotic core (Figure 3) and in spindle-shaped SMCs in the fibrous cap (Figure 4). A comparison of the distribution of FVII and α-smooth muscle actin staining on the serial sections suggested that the spindle-shaped cells were either SMCs or myofibroblasts. FX protein was consistently found distributed throughout the matrix of the necrotic core and in the regions adjacent to the cholesterol clefts in areas that also contained immunoreactive TF (Figure 3). In some advanced carotid lesions, TF, FX, and FVII were all colocalized in the inflammatory zone overlying the necrotic core (online Figure II, available at http://atvb.ahajournals.org).

Localization of FVII mRNA in Human Normal and Atherosclerotic Aorta by In Situ Hybridization

To confirm that FVII immunostaining was attributable to local synthesis of FVII in the vessel wall, in situ hybridization was performed using an 35S-labeled human FVII antisense riboprobe (Figure 5). FVII mRNA was found in inflammatory and mesenchymal-appearing cells in the intima of early and advanced atherosclerotic aorta. The mRNA localization by in situ hybridization colocalized with FVII protein staining. FVII mRNA was not found in medial SMCs of normal or atherosclerotic vessels but could often be found in the adventitia in mesenchymal-appearing cells surrounding the vasa vasorum. Control in situ hybridizations were performed using either an 35S-labeled human FVII sense riboprobe or a riboprobe directed against VWF mRNA, which either showed no hybridization or localization to endothelial cells, respectively (not shown).

RT-PCR Studies

To confirm the presence of FVII mRNA in vascular tissues, we also examined snap-frozen normal human IMAs and carotid endarterectomy samples as well as cultured cells for the presence of FVII mRNA by RT-PCR (Figure 6). These results confirmed the presence of FVII mRNA in both normal and atherosclerotic vessels. FVII mRNA was also detected in human aortic SMC as well as dermal fibroblasts and keratinocytes in vitro. Together these results suggest that many different types of cells make FVII outside the liver.

Discussion

TF is a highly thrombogenic protein. In normal vessels, TF is typically found in the adventitia sequestered away from the blood and the circulating coagulation proteins. Thus the
coagulation cascade is only activated when a blood vessel breaks and the circulating factors come into contact with TF localized in the adventitia. Previous studies have shown that TF is upregulated in the setting of atherosclerosis and may be involved in thrombus formation associated with plaque rupture. Additional studies have demonstrated that TF is upregulated at sites of vascular injury after angioplasty and may play a role in the proliferative process associated with restenosis, possibly attributable to local thrombin generation in the intima. Very little information exists, however, about the distribution or synthesis of other coagulation factors outside of the liver, specifically FX and FVII, which are required for TF activity.

Previous work concluded that FVII is a liver-specific gene. However, there are several reports indicating that macrophages or monocytes may produce FVII. Mouse peritoneal macrophages in culture make several vitamin K-dependent coagulation factors. Human alveolar macrophages in vitro make FVII protein, and these cells also display procoagulant activities in FVII-depleted serum, which is blocked by FVII antibodies. Human peripheral blood monocytes produce a proteolytically active form of FVII when stimulated with endotoxin. Macrophages can be induced to synthesize TF on stimulation with inflammatory cytokines and produce TF in human atherosclerotic plaques. We therefore began this study with the hypothesis that macrophages in the atherosclerotic lesion might make both FVII and TF, thus increasing the prothrombotic potential of the lesions. Our results confirmed our initial hypothesis but indicate that the expression of FVII is much more widespread than initially thought.

The present series of experiments provides evidence that FVII is synthesized outside of the liver and is found in a variety of cells in normal and atherosclerotic vessels. Normal vessels showed only weak staining for FVII, possibly associated with some tissue injury during surgical isolation. No

Figure 3. Localization of FVII, TF, and FX protein in foam cell regions of advanced carotid atherosclerotic plaques. FVII (A), FX (B), and TF (C) were localized in advanced atherosclerotic plaques obtained from carotid endarterectomy surgery by immunohistochemistry. FVII protein staining was found in the luminal endothelial cells and macrophage foam cells overlying the necrotic core (nc). FX staining was not cell-associated but was found distributed throughout the necrotic core separate from FVII. TF was colocalized with FVII in foamy macrophages just beneath the luminal surface in the necrotic core colocalized with FX. The presence of a continuous endothelial layer and macrophages in this lesion was confirmed by staining of serial sections with Ulex lectin or CD68, respectively (not shown). Magnification ×125.

Figure 4. Localization of FVII in SMCs in the fibrous cap of advanced human atherosclerotic lesions. Human carotid endarterectomy specimens were stained with antibodies against FVII (A), TF (B), α-smooth muscle actin (C), or CD68 (D). FVII protein was consistently localized in spindle-shaped SMCs (A) in the fibrous cap. Note that the region where the FVII-positive cells are located is rich in α-actin-positive SMCs (C) but devoid of CD68-positive macrophages (D). Magnification ×125.
Several studies have suggested a correlation between lipids and the coagulation factors TF, FX, and FVII. Macrophages express TF on stimulation by plasma lipoproteins, modified LDL, or oxidized LDL in vitro. Oxidized LDL has also been demonstrated to stimulate endothelial production of TF in vitro. In the setting of atherosclerosis, TF can be detected in foam cells present in the early fatty streak and is also found in advanced lesions in macrophages and foam cells in regions adjacent to cholesterol clefts. These observations suggest a role for oxidized lipids in the induction of TF expression in macrophages. Levels of FVII and FX in plasma are positively related to plasma cholesterol and triglyceride concentrations. Plasma levels of HDL-cholesterol and LDL-cholesterol are correlated with FVII and FX activity in the plasma, and chylomicron and VLDL have a strong binding affinity for FVII. Tissue factor pathway inhibitor circulates in the blood in association with plasma lipoproteins, and tissue factor pathway inhibitor levels are also correlated with plasma lipid levels as well. The colocalization of FVII and FX with TF in macrophages in the atherosclerotic plaques in the present study may suggest that lipids may play a role in the activation of the TF-dependent coagulation pathway in these vessels.

FVII mRNA and protein were found in SMC/myofibroblasts in the fibrous cap of the advanced atherosclerotic lesions. It is interesting to note that several coagulation factors that contain EGF-like domains, including FVII, have mitogenic activities on SMC in culture. The localization of FVII in mesenchymal-appearing cells, SMCs, and fibroblasts may suggest that this protein has a role different from that as a cofactor of TF for the activation of the coagulation cascade. Recent work suggests that the interaction of FVII with TF may directly activate a thrombin-independent signaling cascade, resulting in an increase in cytosolic calcium and upregulation of egr-1 and several other growth-related genes. The colocalization of TF and FVII in SMCs and macrophages in atherosclerotic lesions raises the possibility of autocrine or paracrine signaling, which might affect cell proliferation within the lesions.

In conclusion, these studies indicate that FVII and FX are found in the setting of atherosclerosis in association with TF, suggesting the possibility of a partial activation of the coagulation cascade within the intima of the developing plaque, which may increase the thrombotic potential of the lesions. Alternatively, autocrine production of TF and FVII may stimulate a thrombin-independent signaling pathway, resulting in expression of several growth-associated genes. The novel finding of widespread synthesis of FVII in extrahepatic tissues raises the possibility of alternative cellular functions for this coagulation factor.

Acknowledgments
This work was supported by NIH grants HL49743 and HL48667 (to Dr. Wilcox). The authors wish to thank Hongzhi Xu for expert technical assistance and Mirella Esban of Novo Nordisk for useful discussions and providing the FVII antibody and the Western blot in online Figure I.
References

Extrahepatic Synthesis of Factor VII in Human Atherosclerotic Vessels
Josiah N. Wilcox, Sumiko Noguchi and Juan Casanova

Arterioscler Thromb Vasc Biol. 2003;23:136-141; originally published online October 24, 2002; doi: 10.1161/01.ATV.0000043418.84185.3C
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2002 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/23/1/136

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at: http://atvb.ahajournals.org//subscriptions/