Brief Reviews

Nonnuclear Actions of Estrogen
Karen J. Ho, James K. Liao

Abstract—Estrogen has long been observed to endow cardiovascular protective effects, as evidenced by sex-specific differences in the incidence of hypertensive and coronary artery disease, the development of atherosclerosis, and myocardial remodeling after infarction. To exert its tissue-specific effects, the classic estrogen receptor (ER) functions as a ligand-dependent transcription factor. However, there is growing evidence that in response to 17β-estradiol and heterologous signals, the ER can also mediate signaling cascades at the membrane and in the cytoplasm via various second messengers, such as receptor-mediated protein kinases. This review summarizes the current understanding of nonnuclear ER signaling and discusses the relevance to eliciting the beneficial cardiovascular effects of estrogen. These include vasodilation, inhibition of response to vessel injury, limiting myocardial injury after infarction, and attenuating cardiac hypertrophy. Defining the full repertoire of ER function promises to expose novel, highly specific targets for pharmacological interventions and may ultimately lead to the primary and secondary prevention of cardiovascular diseases. (Arterioscler Thromb Vasc Biol. 2002;22:1952-1961.)

Key Words: estrogen • estrogen receptors • transcription • vasculature • signaling

Sex-based differences in the incidence of hypertensive heart disease and coronary artery disease, the development of atherosclerosis, and cardiac remodeling after myocardial infarction have long been observed.1–3 In addition to improving risk factors, such as the lipid profile, estrogen also has direct effects on the myocardium, endothelium, and vascular smooth muscle. Although the estrogen receptor (ER) is classically a ligand-dependent transcription factor, it is becoming apparent that the receptor also modulates the activity of intracellular second messengers and membrane-associated receptors and signaling complexes, some of which can also enhance the classic activity of the ER. In the heart and vasculature, these nonnuclear signaling pathways mediate rapid vasodilation,4 inhibition of the response to vessel injury,5–10 reduction in myocardial injury after infarction,11,12 and attenuation of cardiac hypertrophy.13,14

ER Structure and Function
The binding of 17β-estradiol (E2) to the ER initiates a myriad of possible signal transduction pathways that, depending on the cellular context, elaborate responses as varied as survival, adhesion, and proliferation and culminate in physiological processes as divergent as cardiovascular protection, bone preservation, organogenesis, and cancer. The 2 subtypes of ER, ERα and ERβ, are synthesized from separate genes and are structurally and functionally distinct. Both subtypes are classic steroid hormone receptors and are members of the nuclear receptor superfamily.15,16 The 5 steroid hormone receptors, constituting class I of the superfamily, share the same modular organization of a ligand-binding domain, DNA-binding domain, and 2 transcriptional activation function domains (Figure 1A). A central feature of classic ER action is ligand-dependent regulation of gene expression in target tissues.1,2,17 Binding of estrogen to ER releases the receptor from an inhibitory complex with heat shock proteins, leading to homodimerization and translocation of the receptor complex into the nucleus. The ER then binds to a 15-bp palindromic sequence called the estrogen response element (ERE), located in the promoter region of target genes. Maximum transcriptional activity requires the concerted actions of the ligand-independent activation function (AF)-1 domain (an area of site-specific phosphorylation) in the amino terminus and the ligand-dependent AF-2 in the carboxy terminus. Together, they recruit a coregulator complex to the promoter; the tissue, cell, and promoter-specific complex components expose the transcriptional template, resulting in transactivation or transrepression.18,19

The cardiovascular importance of estrogen has been probed with receptor gene deletion or mutation studies20 (Figure 1B). A young man with a homozygous disruption in the ERα gene resulting in the expression of a truncated receptor lacking DNA and hormone-binding domains developed premature coronary artery disease and impaired brachial endothelium-dependent vasodilation.21,22 However, this is only a single case study and should be viewed with caution because other genes may also be affected. Early studies in ovarietomized mice demonstrated that E2 inhibits intimal and medial vascular smooth muscle proliferation,9 suggesting a direct protective effect of estrogen on endothelial and vascular smooth muscle cells (VSMCs). In subsequent ca-
rotid injury studies, E2 inhibited medial thickening and VSMC proliferation in wild-type and ERα knockout (ERαKO) mice, implying that the protective effect of E2 could be mediated in an ERα-independent manner. Furthermore, in ERα and ERβ double-knockout mice, E2 inhibited only VSMC proliferation, suggesting instead that a retained splice variant of ERα that lacked only the amino-terminal activation function domain could mediate partial protection. This quandary was resolved with the production of complete ERα null mice, which exhibit increased medial area, VSMC proliferation, and deposition of proteoglycans in response to vascular injury. Similarly, hearts from ERαKO mice subjected to global ischemia and reperfusion exhibit greater global ischemia and a higher incidence of arrhythmias. Hearts from ERαKO mice also have higher calcium accumulation, implying that E2 inhibits calcium influx and attenuates the harmful effects of calcium overload during myocardial ischemia/reperfusion. The mechanism of these effects may involve NO, which ameliorates coronary dysfunction and reduces tissue edema by decreasing microvascular permeability, inasmuch as hearts from ERαKO mice demonstrate decreased NO release. ERα also mediates the neuroprotective effects of E2 after cerebral ischemia, as demonstrated by greater stroke sizes in ovariectomized ERαKO mice subjected to permanent cerebral ischemia.

In addition, there is growing evidence that ERβ may also have an important function in the vasculature. ERβ expression is induced in VSMCs after vascular injury, and ERβ knockout mice exhibit hypertension and ion channel dysfunction in VSMCs.

This review, however, will focus on ERα, given the greater body of work available. Discerning the components of the rapidly expanding ER signaling network and understanding its potential role in disease states may provide new opportunities for highly context-specific therapeutic strategies.

Nonnuclear Actions of Estrogen

Our appreciation of the potency and versatility of ERα signaling is growing in light of accumulating evidence that ERα can also elicit rapid cellular effects that peak minutes after stimulation in multiple cell types (Figures 2 and 3). Given that the rapidity of activation makes modulation of gene transcription less likely and that the effects are not blocked by inhibitors of protein or RNA synthesis, these extranuclear mechanisms are commonly referred to as “nonnuclear” or “nongenomic” effects of estrogen. These signaling cascades recruit second messengers including calcium and NO, receptor tyrosine kinases including epidermal growth factor (EGF) receptor and insulin-like growth factor (IGF)-1 receptor, G-protein–coupled receptors (GPCRs), and protein kinases including phosphoinositide-3 kinase (PI3K), serine-threonine kinase Akt, mitogen-activated protein kinase (MAPK) family members, nonreceptor tyrosine kinase Src, and protein kinases A and C (see reviews; Figure 2).

Because many of these estrogen-stimulated pathways are typically initiated at the plasma membrane, many investigators have sought to determine the existence of a membrane-associated ER. Indeed, membrane binding sites for E2 were first implicated in 1977, but the precise nature of the receptor remains elusive.

Figure 1. A, Functional domains of human ERα include ligand-independent AF-1, DNA-binding domain, hormone-binding domain, and ligand-dependent AF-2. Putative regions of interaction with other proteins and sites of phosphorylation by various kinases are also shown. B, Schematic diagram is shown of truncated ERα in man with homozygous gene mutation (top) and of retained ERα splice variant in ERαKO mouse produced by insertion of neomycin cassette in exon 2 (bottom).
Figure 2. Selected nuclear and nonnuclear activities of ERα. The binding of E2 to ERα leads to translocation of liganded receptor to the nucleus and subsequent “nuclear effects,” ie, activation of ERE-dependent transcription. Alternatively, activated receptor can recruit MAPK family cascades, including ERK-1/2, JNK, and p38 by activation of and complex formation with proximal kinases, including Src and Ras. E2-independent cross talk with growth factors EGF and IGF-1 occurs through interaction with the respective RTKs. Non-nuclear activation of MAPK cascades leads to downstream cytoplasmic events or transcriptional events involving potentiation of AF-1 activity. In ECs, activated ERα can also elicit PI3K and Akt to activate eNOS, which leads to enhanced NO release. Nonnuclear could also be mediated by a GPCR that has yet to be identified.

Studies with E2, which has been conjugated to BSA or fluorescent macrocomplexes, suggest that a small population of cellular ERα may be localized to the cellular membrane, inasmuch as both membrane-impermeable forms and immunohistochemistry and from studies with membrane-impermeable ligands or overexpressed nuclear receptors.

Figure 3. Summary of tissue-specific non-nuclear activities of ERα and proposed physiological relevance.
elicit the same rapid effects as unconjugated E2. Although contamination with unlabeled ligand is a possible confounding factor, E2-BSA competes with unlabeled E2, tamoxifen, and ERα antibody for binding to the cell membrane and enters the cytoplasm only when the cells are permeabilized.55 E2-BSA also does not activate ERE-dependent transcription, again suggesting that the compound remains extracellular.52,53 Finally, the nonnuclear cascades observed with E2-BSA stimulation are not inhibited with the intracellular pure ER antagonist ICI 182,780.52 Of particular relevance to the vascular system is the observation of a membrane receptor in endothelial cells (ECs) that binds either E2 or E2-BSA rapidly and selectively activates antiapoptotic p38 MAPK and inhibits proapoptotic p38α, leading to upregulation of MAPK-activated protein kinase-2 kinase and phosphorylation of heat shock protein hsp27.56 Downstream effects of these effects include preservation of stress fiber formation and membrane integrity, prevention of hypoxia-induced apoptosis, and induction of both EC migration and the formation of primitive capillary tubes. Thus, estrogen may exploit pathways that preserve the actin cytoskeleton during ischemia, prevent cell death, and enhance angiogenesis after injury. However, parallel studies in cultured ERαKO cells are needed to confirm the role of ERα. Furthermore, vascular smooth muscle cells and inhibits platelet activation via a mechanism for the activation of ERK by estrogen. In overexpression systems, the liganded ERα induces rapid phosphorylation of the IGF-1 receptor and activation of ERK-1/2. Indeed, the 2 receptors communoprecipitate in a ligand-dependent manner, suggesting a direct physical interaction between ERα and the IGF-1 receptor.79 In breast cancer cell lines, ERα induces rapid phosphorylation of the adapter proteins, Src and Shc, in a ligand-dependent manner, resulting in an Shc–growth factor receptor binding protein (Grb)-2–son of sevenless (SoS) complex formation.80 This leads to the subsequent activation of Ras, Raf, and MAPK. Similarly, in breast and prostate cancer cells, E2 treatment activates the Src-Ras-ERK pathway, leading to cell cycle progression.81,82 In these studies, direct interaction between phospho-Tyr537 of ERα and the Src homology domain 2 activates Src activity. In cortical neurons subjected to glutamate toxicity, estrogen also rapidly activates Src family tyrosine kinases and tyrosine phosphorylation of Ras, leading to neuroprotection.83 Furthermore, rapid phosphorylation of Src has also been observed in osteoclasts, although the ramifications for bone resorption remain to be defined.84 Interestingly, in osteoblasts, osteocytes, and embryonic fibroblasts, activation of an Src-Shc-ERK signaling pathway prevents apoptosis.85 Finally, in breast cancer cells, Src modulates PI3K-Akt signaling by a reversible cross-talk mechanism in which ligand binding induces the formation of a ternary complex between ERα, PI3K, and Src.86 Cross talk between PI3K and Src has also been observed in osteoclasts87 and bone marrow cells.88 Whether a similar complex plays a role in eNOS activation in ECs remains to be determined.
In addition to recruiting ERK-1/2, ERα also modulates other MAPK family members. ERα in the heart selectively activates MAPK cascades to modulate the development of cardiac hypertrophy.\(^{11,14,89}\) For example, mice were protected from pressure-overload hypertrophy by ERα-mediated selective inhibition of p38 MAPK.\(^{90}\) Apparently, ERK and c-Jun N-terminal kinase (JNK) are not involved,\(^{90}\) consistent with recruitment of p38 in other models of cardiac hypertrophy.\(^{91,92}\) In breast cancer cells stably transfected with ERα and resistant to the anti-estrogen tamoxifen, loss of estrogen-mediated activation of p38 MAPK is correlated with survival.\(^{93}\) In ERα-positive breast cancer cell lines, however, activation of JNK promotes survival from taxol-induced or ultraviolet radiation-induced apoptosis.\(^{53}\) Finally, induction of eNOS and inducible NOS in cardiac myocytes is blocked by the MAPK inhibitor PD98059,\(^{70}\) which may have clinical relevance because NO inhibits caspase activation and prevents the development of congestive heart failure.\(^{94}\)

E2-Independent Nonnuclear Activity Potentiates AF-1 Function

The nonnuclear ERα activity has been shown to enhance the nuclear activity of the receptor in the context of E2-independent activation of the receptor. Indeed, ERα integrates a variety of heterologous signals, including dopamine,\(^{95,96}\) serum,\(^{97}\) cAMP,\(^{98,99}\) cavelin,\(^{99,100}\) and cyclins A and D.\(^{101-104}\) Activation by EGF and IGF-1 provides the best example of modulation of ERα nuclear activity by nonnuclear E2-independent stimulation. Through this cross-talk mechanism, mitogenic extracellular signals are translated into cell cycle progression or, in cancer cells, into proliferation in the absence of hormone.\(^{105}\) EGF-stimulated and IGF-1-mediated stimulation of MAPKs results in the direct phosphorylation of ERα on Ser118.\(^{73,106,107}\) Phosphorylation of ERα enhances the binding of p68 RNA helicase\(^{108}\) and accounts for enhanced AF-1 transcriptional activity in uterine and ovarian adenocarcinoma cells.\(^{109-111}\)

In addition to direct phosphorylation of the receptor, EGF can also modulate the coactivator phosphorylation state. Steroid receptor coactivator-1, a member of the p160 family of adaptor molecules that recruit other proteins to the coactivator complex, contains consensus sequences for ERK-1/2, and EGF stimulation results in ERK-1/2-mediated phosphorylation of steroid receptor coactivator-1, which potentiates ERα transcriptional activity.\(^{112}\) Alternatively, EGF or IGF-1 stimulation can activate the PI3K-Akt pathway, which in turn, activates E2-responsive target genes. In breast cancer cell lines, EGF or IGF-1 treatment cause rapid phosphorylation and activation of Akt, leading to increased levels of progesterone receptor mRNA and protein.\(^{113}\) All of these effects were blocked by the PI3K inhibitor, wortmannin, and ICI 182,780 and were mimicked in the presence of a constitutively active Akt mutant. Akt may also activate ERα by phosphorylation of Ser167 within the AF-1 domain.\(^{113}\) Interestingly, ERα binds constitutively to the p85α subunit of PI3K and activates PI3K/Akt in an E2-independent manner, implicating a feed-forward mechanism of ERα activation.\(^{114}\)

Finally, nonreceptor tyrosine kinase Src, in addition to modulating E2-dependent nonnuclear activities of ERα in the setting of mitogen and PI3K stimulation, may influence the transcriptional activity of ERα in an E2-independent manner. In cells overexpressing ERα and v-Src, Src stimulates ERα transcriptional activity by enhancing AF-1 function via 2 parallel cascades. In the first instance, an Src–Raf-1–mitogen-activated ERK kinase–ERK pathway leads to phosphorylation of Ser118 in the AF-1 domain.\(^{115}\) In the same cells, a second pathway mediated by Src, mitogen-activated ERK kinase kinase, JNK kinase, and JNK may indirectly activate transcription by modulating AF-1–associated coactivators.\(^{115}\) Although these studies have implications for the role of Src in tumor progression, it is also interesting to speculate whether there could be a feedback mechanism by which nonnuclear activation of Src by ERα enhances ERα transcriptional activity.

Membrane Origin of Nonnuclear ER Activity

The trafficking of ERα to different cellular compartments may be regulated by the nature of stimulation. In VSMCs transfected with ERα, MAPK activation mediates nuclear translocation of ERα from the membrane by E2-dependent and -independent mechanisms.\(^{116}\) Another proposed mechanism for membrane-initiated signaling by ERα involves receptor association with membrane caveolae, which are cholesterol-rich membrane domains containing signaling molecules such as G proteins, GPCRs, PKC, receptor tyrosine kinases (RTKs), and non-RTKs. In fractionated EC plasma membranes, ERα protein has been localized to caveolae, and E2 stimulates eNOS in isolated caveolae in an ERα- and calcium-dependent manner.\(^{117-119}\) The close association of ERα with caveolae and the regulation of eNOS phosphorylation and activity with hsp90 suggest an additional mechanism of action, inasmuch as caveolin-1 (cav-1), the coat protein for caveolae, and hsp90 independently coimmunoprecipitate with eNOS in EC lysates.\(^{120}\) Indeed, hsp90–eNOS–
cav-1 may exist in a heterotrimeric complex in ECs such that the cav-1 scaffolding peptide is inhibitory and, on increase in cytoplasmic calcium, calcium-activated calmodulin may aid in the further recruitment of hsp90 to the complex by facilitating the release of the caveolin from eNOS.120,121 In vivo confirmation has been obtained by systemic administration of a chimeric peptide containing the cav-1 scaffolding peptide to mice. The protein was taken up by ECs and suppressed NO production and acute inflammation.122

Nonnuclear ER\textsubscript{α} signaling also involves membrane heterotrimeric G proteins. For example, in Chinese hamster ovary cells transfected with ER\textsubscript{α} cDNA, membrane and nuclear-localized receptors are detected.50 ER\textsubscript{α} in the membrane fractions activated Go\textsubscript{i} and Go\textsubscript{q}, and rapidly stimulated inositol phosphate production and adenylyl cyclase activity, respectively. Alternatively, G-protein activation has also been shown in ECs, where E2 activation of eNOS can be inhibited with ICI 182,780, RGS-4 (a regulator of G-protein signaling specific for G\textsubscript{i} and G\textsubscript{q}), and pertussis toxin (specific for Go\textsubscript{i}). In communoprecipitation studies, ER\textsubscript{α} interacted with Go\textsubscript{i} but not Go\textsubscript{q} or Go\textsubscript{s} in a ligand-dependent manner, whereas pertussis toxin completely blocked this interaction.123

Are There Other ER Isoforms?

Nonnuclear signaling alternatively requires a GPCR that is distinct from ER\textsubscript{α}. Indeed, in macrophage cell lines, E2 and E2-BSA induced a rise in intracellular calcium that was inhibitable with pertussis toxin, and sequestration of a E2-GPCR occurred independently of clathrin-caveolin pathways.124,125 An E2-GPCR has also been postulated to exist in the hippocampus, where E2 stimulation potentiates kainate-induced currents through the modulation of protein kinase A activity.126

Recent evidence suggest that the nonnuclear effects of estrogen are, in fact, mediated by a receptor distinct from ER\textsubscript{α} or ER\textsubscript{β}. For example, in the cerebral cortex, estrogen rapidly stimulates tyrosine phosphorylation of c-Src, which then induces phosphorylation of Shc and Shc rapidly stimulates tyrosine phosphorylation of c-Src, which

Implications for SERM Development

Nonetheless, the central role of the ER signaling network in cancer, cardiovascular disease, osteoporosis, and neurological disease and an increasingly detailed understanding to the underlying cell biology have made ER an attractive target for pharmacological intervention. Selective estrogen receptor modulators (SERMs) are ER ligands that can have varying agonist or antagonist activities given the cell, promoter, and coregulator context.130,131 (Table149–153).

Tamoxifen, the prototypical SERM, is a triphenylethylene that, because of its agonist activity in the liver, reduces serum total cholesterol and LDL levels.132 Unfortunately, its strong agonist activity in the endometrium leads to endometrial hyperplasia and low-grade cancers. GW5638, a derivative of tamoxifen, shows some promise in early animal studies, inasmuch as it possesses estrogenic activity in preserving bone and lowering serum cholesterol while lacking agonist activity in the uterus.133

EM-800, a nonsteroidal compound, is the active form of EM-652 and demonstrates higher affinity for ER\textsubscript{α} compared with E2, tamoxifen, or any other SERM.134 In addition to possessing potent antitumor activity in the uterus and breast, EM-800 prevents bone loss and lowers serum cholesterol and triglyceride levels.135 Furthermore, in vitro studies in ECs suggest that EM-800, like E2, enhances NO release by sequential activation of MAPKs and PI3K-Akt, implicating an additional vascular protective effect.136

Raloxifene, which is also a nonsteroidal compound, is similar to tamoxifen in activity although it is less agonistic in the endometrium.137 Raloxifene is administered primarily for bone preservation. Regarding its effects on the vasculature, raloxifene reduces serum triglycerides and serum fibrinogen levels.138 Raloxifene and its analogue, LY117018, stimulate eNOS activity in ECs via PI3K and ERK-dependent pathways, respectively.139,140 They have also been shown to inhibit the release of reactive oxygen species from smooth muscle cells.141 Accordingly, raloxifene treatment induces coronary artery relaxation in an ER\textsubscript{α}- and NO-dependent manner.142 It also improves endothelium-dependent vasorelaxation in hypertensive rats by enhancing the expression and activity of NO synthase.143

The differential actions of estrogen and SERMs suggest complex regulatory mechanisms for suppression and activation in a context-specific manner. These mechanisms depend on the ligand, the promoter of the target gene, and the combination and exchange of coregulators.143,144 Of clinical interest, breast cancer and pituitary lactotroph tumors demonstrate enhanced apoptosis and tumor shrinkage when they are transfected with adenovirus constructs containing dominant-negative ER\textsubscript{α} mutants.145 Given evidence that dominant-negative ER\textsubscript{α} and anti-estrogens recruit transcriptionally repressive proteins to their DNA-binding complex that enhance their antagonistic activity,146,147 the precise regulatory proteins that govern ER\textsubscript{α} activity in other disease states represent promising therapeutic strategies.

Summary

We are at the threshold of understanding the full repertoire of ER action. Although the steroid receptor signaling field has
made significant strides in defining its intertwining modes of action in numerous tissue types, from the nucleus to the cytoplasm and perhaps to the plasma membrane, a full understanding of how ER functions in physiological and pathophysiological states remains to be determined. Recent data from the Heart and Estrogen/Progesterone Replacement Study (HERS) II trial, suggesting no cardiovascular benefit from extended hormone replacement therapy, underline the importance of isolating the nonnuclear mechanisms of estrogen action and delving deeper into the modulation of ER transcriptional activity by coregulators. Only after we develop a detailed understanding of these highly cell- and promoter-specific mechanisms can they be exploited for formulating clinically meaningful treatment strategies for the primary and secondary prevention of cardiovascular diseases in men and women.

Acknowledgments

J.K. Liao is an Established Investigator of the American Heart Association. K.J. Ho is a Howard Hughes Medical Institute Medical Student Fellow. We thank Dr A. Sennes for assistance in preparing the manuscript and Dr F. Limbourg, Dr M. Chin, and Dr. Y. Hiroi for critically reading the manuscript. We apologize to all authors whose work could not be cited because of space limitations.

References

40. Falkenstein E, Wehling M. Nongenomically initiated steroid actions.

62. Kahlert S, Nuedling S, Ho and Liao Nongenomic Signaling Through the Estrogen Receptor 1959

94. Chambliss KL, Shaul PW. Rapid activation of endothelial NO synthase by estrogen is mediated by estrogen receptor α (ERα) and PI3K. *Mol Endocrinol*. 2000;14:585–599.

98. Bucci M, Grattan JT, Rudic RD, Acevedo L, Rovazzio F, Cirino G, Sessa WC. In vivo delivery of the caveolin-1 scaffolding domain inhibits...
Horm Res
131. Burger HG. Selective oestrogen receptor modulators.

125. Guo Z, Krucken J, Benten WP, Wunderlich F. Estradiol-induced non-
genomic calcium signaling regulates genotropic signaling in macro-

126. Moss RL, Gu Q. Estrogen: mechanisms for a rapid action in CA1

127. Nethrapalli IS, Singh M, Guan X, Guo Q, Lubahn DB, Korach KS,
Toran-Allerand CD. Estradiol (E2) elicits SRC phosphorylation in
the mouse neocortex: the initial event in E2 activation of the MAPK

128. Singh M, Setaloo G Jr, Guan X, Frail DE, Toran-Allerand CD. Estrogen-
induced activation of the mitogen-activated protein kinase cascade in
the cerebral cortex of estrogen receptor-a knock-out mice. J Neurosci.

129. Setaloo G Jr, Singh M, Guan X, Toran-Allerand CD. Estradiol-induced
phosphorylation of ERK1/2 in explants of the mouse cerebral cortex: the

130. Osborne CK, Zhao H, Fuqua SA. Selective estrogen receptor modu-
lators: structure, function, and clinical use. J Clin Oncol. 2000;18:
3172–3186.

132. Williams JK, Wagner JD, Li Z, Golden DL, Adams MR. Tamoxifen
inhibits arterial accumulation of LDL degradation products and pro-
gression of coronary artery atherosclerosis in monkeys. Arterioscler

133. Willson TM, Norris JD, Wagner BL, Asplin I, Baer P, Brown HR, Jones
SA, Henke B, Sauls H, Wolfe S, Morris DC, McDowell DP. Dissection of
the molecular mechanism of action of GW5638, a novel estrogen
receptor ligand, provides insights into the role of estrogen receptor in

134. Martel C, Provencer L, Li X, St Pierre A, Leblanc G, Gauthier S,
Merand Y, Labrie F. Binding characteristics of novel nonsteroidal
antiestrogens to the rat uterine estrogen receptors. J Steroid Biochem

135. Labrie F, Labrie C, Belanger A, Simard J, Giguere V, Tremblay A,
Genazzani AR. Genomic and nongenomic mechanisms of nitric oxide
synthesis induction in human endothelial cells by a fourth-generation
selective estrogen receptor modulator. Endocrinology. 2002;143:
2052–2061.

136. Dardes RC, Schafer JM, Pearce ST, Osipo C, Chen B, Jordan VC.
Regulation of estrogen target genes and growth by selective estrogen
receptor modulators in endometrial cancer cells. Gynecol Oncol. 2002;
85:498–506.

137. Walsh BW. The effects of estrogen and selective estrogen receptor
163–167.

Mabuchi S, Takahashi K, Tsaka K, Miyamoto Y, Taniguchi N, Murata
Y. Induction of endothelial nitric-oxide synthase phosphorylation by
the raloxifene analog LY117018 is differentially mediated by Akt and
extracellular signal-regulated protein kinase in vascular endothelial

139. Simoncini T, Genazzani AR, Liao JK. Nongenomic mechanisms of
endothelial nitric oxide synthase activation by the selective estrogen

140. Wossmann S, Lauls U, Stamenkovic D, Linz W, Stasch JP, Altbory K,
Rosen R, Bohm M, Nickenig G. Raloxifene improves endothelial dys-
function in hypertension by reduced oxidative stress and enhanced nitric

141. Figgert GA, Lu Y, Webb CM, Collins P. Raloxifene acutely relaxes
rabbit coronary arteries in vitro by an estrogen receptor-dependent and

142. Katzenellenbogen BS, Choi I, Delage-Mourroux R, Ediger TR, Martini
PG, Montano M, Sun J, Weiss K, Katzenellenbogen JA. Molecular
mechanisms of estrogen action: selective ligands and receptor Pharma-

143. McDonnell DP, Chang CY, Norris JD. Capitalizing on the complexities
of estrogen receptor pharmacology in the quest for the perfect SERM.

144. Lee EJ, Jakacka M, Duan WR, Chien PY, Martinson F, Gehm BD,
Jameson JL. Adenosine-directed expression of dominant negative
estrogen receptor induces apoptosis in breast cancer cells and regression

O, Ohman L, Greene GL, Gustafsson JA, Carlquist M. Molecular basis
of agonism and antagonism in the oestrogen receptor. Nature. 1997;389:
753–758.

146. Montano MM, Ekema K, Delage-Mourroux R, Chang W, Martini P,
Katzenellenbogen BS. An estrogen receptor-selective coregulator that
potentiates the effectiveness of antiestrogens and represses the activity

147. Grady D, Herrington D, Bittner V, Blumenthal R, Davidson M, Hlatky
E, Wenger N. Cardiovascular disease outcomes during 6.8 years of
hormone therapy: Heart and Estrogen/Progestin Replacement Study

148. Fornander T, Runquist LE, Cedermark B, Glas U, Mattsson A, Sil-
tamoxifen in early breast cancer: occurrence of new primary cancers.

149. Dardes RC, O’Regan RM, Gajdos C, Robinson SP, Bentrem D, De Los
Reyes A, Jordan VC. Effects of a new clinically relevant antiestrogen
(GW5638) related to tamoxifen on breast and endometrial cancer growth

150. Gottardis MM, Jordan VC. Antitumor actions of keoxifene and
tamoxifen in the N-nitrosomethylurea-induced rat mammary carcinoma

151. Jordan VC, Gosden B. Inhibition of the uterotropic activity of estrogens
by selective estrogen receptor modulators on cardiovascular risk factors. Ann N Y Acad Sci. 2001;949:
163–167.
Nonnuclear Actions of Estrogen
Karen J. Ho and James K. Liao

doi: 10.1161/01.ATV.0000041200.85946.4A
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272
Greenville Avenue, Dallas, TX 75231
Copyright © 2002 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://atvb.ahajournals.org/content/22/12/1952

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the
Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for
which permission is being requested is located, click Request Permissions in the middle column of the Web
page under Services. Further information about this process is available in the Permissions and Rights
Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online
at:
http://atvb.ahajournals.org/subscriptions/