Electron Paramagnetic Resonance Investigation on Modulatory Effect of 17β-Estradiol on Membrane Fluidity of Erythrocytes in Postmenopausal Women

Kazushi Tsuda, Yukiko Kinoshita, Keizo Kimura, Ichiro Nishio, Yoshiaki Masuyama

Abstract—Many studies have shown that estrogen may exert cardioprotective effects and reduce the risk of hypertension and coronary events. On the other hand, it has been proposed that cell membrane abnormalities play a role in the pathophysiology of hypertension, although it is not clear whether estrogen would influence membrane function in essential hypertension. The present study was performed to investigate the effects of 17β-estradiol (E2) on membrane fluidity of erythrocytes in normotensive and hypertensive postmenopausal women. We determined the membrane fluidity of erythrocytes by means of an electron paramagnetic resonance and spin-labeling method. In an in vitro study, E2 significantly decreased the order parameter for 5-nitroxide stearate and the peak height ratio for 16-nitroxide stearate obtained from electron paramagnetic resonance spectra of erythrocyte membranes in normotensive postmenopausal women. The finding indicates that E2 might increase the membrane fluidity of erythrocytes. The effect of E2 was significantly potentiated by the NO donor, S-nitroso-N-acetylpenicillamine, and a cGMP analogue, 8-bromo-cGMP. In contrast, the change in the membrane fluidity evoked by E2 was attenuated in the presence of the NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester, and asymmetric dimethyl-L-arginine. In hypertensive postmenopausal women, the membrane fluidity of erythrocytes was significantly lower than that in normotensive postmenopausal women. The effect of E2 on membrane fluidity was significantly more pronounced in the erythrocytes of hypertensive postmenopausal women than in the erythrocytes of normotensive postmenopausal women. The results of the present study showed that E2 significantly increased the membrane fluidity and improved the microviscosity of erythrocyte membranes, partially mediated by an NO- and cGMP-dependent pathway. Furthermore, the greater action of E2 in hypertension might be consistent with the hypothesis that E2 could have a beneficial effect in regulating rheological behavior of erythrocytes and could have a crucial role in the improvement of the microcirculation in hypertension.

Methods

Study I

Subjects

To investigate the effects of E2 on the membrane fluidity in vitro, erythrocytes were obtained from postmenopausal women who were

Received March 26, 2001; revision accepted May 10, 2001.

From the Division of Cardiology (K.T., Y.K., K.K., I.N.), Department of Medicine, Wakayama Medical University, Wakayama, Japan, and Tokyo Rosai Hospital (Y.M.), Tokyo, Japan.

Correspondence to Kazushi Tsuda, MD, Division of Cardiology, Department of Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama 641-8509, Japan. E-mail tsudak@mail.wakayama-med.ac.jp

© 2001 American Heart Association, Inc.

Arterioscler Thromb Vasc Biol. is available at http://www.atvbaha.org

1306
normotensive volunteers \((n=78\), aged \(61 \pm 2\) [mean\(\pm\)SEM] years, blood pressure \(130.0 \pm 2.4/79.1 \pm 1.5\) mm Hg, heart rate \(76.8 \pm 1.4\) bpm, body mass index \(22.8 \pm 0.3\) kg/m\(^2\), and plasma \(E_2\) concentration \(4.5 \pm 0.7\) pg/mL). Written informed consent was obtained from all volunteers.

Effects of \(E_2\) Alone on Membrane Fluidity of Erythrocytes in Normotensive Postmenopausal Women In Vitro

Blood samples were obtained in patients by venipuncture after a minimum of 30 minutes of bed rest while fasting. After plasma and buffy coat were carefully removed by centrifugation at 1550g for 10 minutes at 4°C, washed erythrocytes were resuspended in the isotonic buffer (140 mmol/L NaCl and 20 mmol/L Tris-HCl, pH 7.4) at a hematocrit of 50%. The erythrocyte suspension (100 \(\mu\)L erythrocytes and 100 \(\mu\)L Tris-HCl buffer, 200 \(\mu\)L total) was incubated for 2 hours at 37°C in the NaCl-Tris buffer (100 mmol/L) alone or \(17\beta\)-estradiol (1 \(\times\) 10\(^{-5}\) to 1 \(\times\) 10\(^{-4}\) mol/L) alone, because the preliminary examination demonstrated that the maximal effect of \(E_2\) on the membrane fluidity of erythrocytes was obtained after a 2-hour incubation at 37°C. After incubation with \(E_2\), 100 \(\mu\)L of the solution containing fatty acid spin-label agents (5-nitroxide stearate [5-NS] and 16-nitroxide stearate [16-NS], 5 \(\times\) 10\(^{-5}\) mol/L) was added to the erythrocyte suspension (300 \(\mu\)L). The mixed solution was then incubated for 2 hours at 37°C with gentle shaking, and the EPR measurements were performed.

Effects of \(E_2\) in Combination With SNAP and 8-Bromo-cGMP on Membrane Fluidity of Erythrocytes in Normotensive Postmenopausal Women In Vitro

To examine the effects of \(E_2\) in combination with an NO donor and cGMP, erythrocytes (100 \(\mu\)L) were pretreated with the same volume of Tris-HCl solution containing 5-nitroso-N-acytelpenicillamine (SNAP) or a cGMP analogue (8-bromo-cGMP) before the application of \(E_2\). After a 2-hour incubation with 100 \(\mu\)L \(E_2\) (1 \(\times\) 10\(^{-5}\) to 1 \(\times\) 10\(^{-4}\) mol/L) at 37°C, 100 \(\mu\)L of the solution containing fatty acid spin-label agents (5-NS and 16-NS, 5 \(\times\) 10\(^{-5}\) mol/L) was added to the erythrocyte suspension (300 \(\mu\)L). The mixed solution was then incubated for 2 hours at 37°C with gentle shaking, and the EPR measurements were performed.

Effects of \(E_2\) in Combination With L-NAME and ADMA on Membrane Fluidity of Erythrocytes in Normotensive Postmenopausal Women

To examine the effects of N\(^\circ\)-nitro-L-arginine methyl ester (L-NAME) and asymmetric dimethyl-L-arginine (ADMA), erythrocytes (100 \(\mu\)L) were pretreated with the same volume of Tris-HCl solution containing L-NAME (1 \(\times\) 10\(^{-5}\) mol/L) or ADMA (1 \(\times\) 10\(^{-5}\) mol/L) before the application of \(E_2\) (1 \(\times\) 10\(^{-5}\) to 1 \(\times\) 10\(^{-4}\) mol/L). The mixed solution was incubated at 37°C for 2 hours. Then the spin-label agents (5-NS and 16-NS in 100 \(\mu\)L of Tris-HCl buffer, 5 \(\times\) 10\(^{-3}\) mol/L) were added to the erythrocyte suspension. After a 2-hour incubation at 37°C with gentle shaking, the EPR measurements were performed.

EPR Measurements of Erythrocytes

The EPR measurements were performed by using an EPR spectrometer (model Jeol JEES-2FXG, Nihon Denshi) with a microwave unit (model Jeol ES-SCXA, Nihon Denshi). The microwave power was 5 mW, and the modulation frequency was 100 KHz, with a modulation amplitude of 2.0 G. The temperature of the measurement was controlled at 30°C. The receiver scan width was 3280 G, with a sweep time of 8 minutes, and receiver gain was 4.0 \(\times\) 10\(^3\) to 7.9 \(\times\) 10\(^3\), with a response time of 1.0 second. The fatty acid spin-label agents (5-NS and 16-NS) are believed to be anchored at the lipid-aqueous interface of the cell membranes by their carboxyl ends, whereas the nitroxide group moves rapidly from the superficial membrane layers, whereas 16-NS could be an indicator referring to more hydrophobic core of the lipid membranes. For indexes of membrane fluidity, we have evaluated the values of outer and inner hyperfine splitting (2\(T'\) and 2T\(^\circ\) in gauss, respectively) in the EPR spectra for 5-NS and calculated the order parameter from 2\(T'\) and 2T\(^\circ\). In the EPR spectra for 16-NS, we used the peak height ratio (ho/h-1) for an index of the membrane fluidity. The greater the values of the order parameter and ho/h-1, the lesser is the freedom of motion of the spin labels in the biomembrane bilayers, indicating lower membrane fluidity.

Clinical Characteristics and Laboratory Findings for NT and HT Groups

<table>
<thead>
<tr>
<th></th>
<th>HT</th>
<th>NT</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>28</td>
<td>33</td>
</tr>
<tr>
<td>Age, y</td>
<td>62 \pm 2</td>
<td>61 \pm 2</td>
</tr>
<tr>
<td>BMI, kg/m(^2)</td>
<td>23.2 \pm 0.5</td>
<td>22.4 \pm 0.3</td>
</tr>
<tr>
<td>Systolic blood pressure, mm Hg</td>
<td>154.9 \pm 2.8*</td>
<td>120.4 \pm 1.6</td>
</tr>
<tr>
<td>Diastolic blood pressure, mm Hg</td>
<td>90.7 \pm 1.4*</td>
<td>69.6 \pm 1.2</td>
</tr>
<tr>
<td>Heart rate, bpm</td>
<td>79.0 \pm 2.0</td>
<td>75.0 \pm 2.0</td>
</tr>
<tr>
<td>Erythrocyte counts, 10(^3) cells/(\mu)L</td>
<td>431 \pm 7</td>
<td>430 \pm 6</td>
</tr>
<tr>
<td>Hemoglobin, g/dL</td>
<td>13.1 \pm 0.2</td>
<td>13.4 \pm 0.2</td>
</tr>
<tr>
<td>Hematocrit, %</td>
<td>39.1 \pm 0.6</td>
<td>40.4 \pm 0.5</td>
</tr>
<tr>
<td>Leukocyte counts, 10(^3) cells/(\mu)L</td>
<td>6.0 \pm 0.3</td>
<td>6.2 \pm 0.2</td>
</tr>
<tr>
<td>Platelets, 10(^4) cells/(\mu)L</td>
<td>23.2 \pm 0.8</td>
<td>24.6 \pm 0.7</td>
</tr>
<tr>
<td>Total cholesterol, mg/dL</td>
<td>226.2 \pm 6.0</td>
<td>226.2 \pm 4.0</td>
</tr>
<tr>
<td>Triglycerides, mg/dL</td>
<td>171.4 \pm 12.0</td>
<td>137.6 \pm 10.4</td>
</tr>
<tr>
<td>Serum creatinine, mg/dL</td>
<td>0.7 \pm 0.1</td>
<td>0.7 \pm 0.1</td>
</tr>
<tr>
<td>Plasma (E_2) concentration, pg/mL</td>
<td>4.7 \pm 1.0</td>
<td>4.5 \pm 1.2</td>
</tr>
</tbody>
</table>

HT indicates postmenopausal women with essential hypertension; NT, normotensive postmenopausal women; and BMI, body mass index. Values are mean \(\pm\)SEM. *P < 0.05 between HT and NT.

Study II

Subjects and Protocol

Twenty-eight postmenopausal women with mild essential hypertension were studied and compared with 33 age-matched normotensive postmenopausal women. The characteristics of the hypertensive patients and normotensive subjects are given in the Table. Written informed consent was obtained from all participants after they were informed about the nature and objective of the study. All hypertensive patients had no cardiovascular complications and had no medication at least 4 weeks before the EPR study. In addition, they had no other diseases, such as hematological or hepatic disorders. The effect of \(E_2\) (1 \(\times\) 10\(^{-5}\) to 1 \(\times\) 10\(^{-4}\) mol/L) on membrane fluidity of erythrocytes in vitro was compared between hypertensive and normotensive subjects by means of EPR and the spin-labeling method.

Measurement of Plasma \(E_2\) Concentration

Plasma \(E_2\) concentration was measured with a radioimmunoassay kit (Shionogi Co., Ltd).

Drugs

\(E_2\) was obtained from Biomedical Technologies Inc, and its stereoisomer, \(17\beta\)-estradiol, was obtained from Sigma Chemical Co. The spin label agents, 5-NS and 16-NS, were purchased from Aldrich Co. Ltd. SNAP, 8-bromo-cGMP, L-NAME, and ADMA were obtained from Funakoshi Co. Ltd. All other drugs were standard laboratory reagents of analytical grade.

Statistical Analysis

Values are expressed as mean \(\pm\)SEM. The differences between the means of the drug treatment and their corresponding controls were...
tested with a 1-way ANOVA. To compare the means of the different study groups, the Wilcoxon signed rank sum test was used. The differences between hypertensive and normotensive postmenopausal women were analyzed with a 2-way ANOVA, followed by the Mann-Whitney U test. A value of \(P < 0.05 \) was accepted as the level of significance.

Results

Effects of E2 Alone on Membrane Fluidity of Erythrocytes in Normotensive Postmenopausal Women In Vitro

E2 (\(1 \times 10^{-7} \) to \(1 \times 10^{-6} \) mol/L) decreased the order parameter for 5-NS and peak height ratio (ho/h-1) for 16-NS obtained from erythrocyte membranes in normotensive volunteers in a dose-dependent manner (order parameter was as follows: control, \(0.716 \pm 0.004 \) [n = 6]; \(1 \times 10^{-7} \) mol/L E2, \(0.696 \pm 0.001 \) [n = 52], \(P < 0.01 \); \(1 \times 10^{-6} \) mol/L E2, \(0.688 \pm 0.002 \) [n = 52], \(P < 0.01 \); \(1 \times 10^{-7} \) mol/L E2, \(0.683 \pm 0.001 \) [n = 52], \(P < 0.01 \); and \(1 \times 10^{-6} \) mol/L E2, \(0.679 \pm 0.002 \) [n = 52], \(P < 0.01 \); ho/h-1 was as follows: control, \(4.93 \pm 0.02 \) [n = 52]; \(1 \times 10^{-7} \) mol/L E2, \(4.85 \pm 0.02 \) [n = 52], \(P < 0.01 \); \(1 \times 10^{-6} \) mol/L E2, \(4.78 \pm 0.02 \) [n = 52], \(P < 0.01 \); and \(1 \times 10^{-5} \) mol/L E2, \(4.74 \pm 0.02 \) [n = 52], \(P < 0.01 \). This finding shows that E2 increased the membrane fluidity of erythrocytes. On the other hand, 17α-estradiol, the stereoisomer of E2, showed no significant effects of membrane fluidity of erythrocytes (order parameter was as follows: control, \(0.711 \pm 0.004 \) [n = 5]; \(1 \times 10^{-7} \) mol/L 17α-estradiol, \(0.711 \pm 0.006 \) [n = 5]; \(1 \times 10^{-6} \) mol/L 17α-estradiol, \(0.715 \pm 0.008 \) [n = 5]; and \(1 \times 10^{-5} \) mol/L 17α-estradiol, \(0.715 \pm 0.009 \) [n = 5]); ho/h-1 was as follows: control, \(5.24 \pm 0.08 \) [n = 5]; \(1 \times 10^{-7} \) mol/L 17α-estradiol, \(5.30 \pm 0.12 \) [n = 5]; \(1 \times 10^{-6} \) mol/L 17α-estradiol, \(5.30 \pm 0.11 \) [n = 5]; and \(1 \times 10^{-5} \) mol/L 17α-estradiol, \(5.29 \pm 0.10 \) [n = 5]).

Effects of E2 in Combination With SNAP or 8-BromocGMP on Membrane Fluidity of Erythrocytes

A preliminary study showed that SNAP alone reduced the values of the order parameter and ho/h-1 of erythrocyte membranes (order parameter was as follows: control, \(0.716 \pm 0.004 \) [n = 6]; \(5 \times 10^{-6} \) mol/L SNAP, \(0.712 \pm 0.007 \) [n = 6]; \(5 \times 10^{-5} \) mol/L SNAP, \(0.688 \pm 0.007 \) [n = 6], \(P < 0.05 \); ho/h-1 was as follows: control, \(5.15 \pm 0.03 \) [n = 6]; \(5 \times 10^{-6} \) mol/L SNAP, \(5.11 \pm 0.06 \) [n = 6]; and \(5 \times 10^{-5} \) mol/L SNAP, \(4.76 \pm 0.09 \) [n = 6], \(P < 0.05 \). In the present experiment, it was clearly demonstrated that the effect of E2 on the fluidity was significantly potentiated by a low concentration of SNAP (\(5 \times 10^{-6} \) mol/L), which showed no effects of its own (Figure 1).

Similarly, the cGMP analogue, 8-bromo-cGMP, reduced the values of the order parameter and ho/h-1 of erythrocyte membranes (order parameter was as follows: control, \(0.704 \pm 0.004 \) [n = 6]; \(1 \times 10^{-6} \) mol/L 8-bromo-cGMP, \(0.703 \pm 0.002 \) [n = 6]; and \(1 \times 10^{-5} \) mol/L 8-bromo-cGMP, \(0.686 \pm 0.004 \) [n = 6], \(P < 0.05 \); ho/h-1 was as follows: control, \(5.31 \pm 0.05 \) [n = 6]; \(1 \times 10^{-6} \) mol/L 8-bromo-cGMP, \(5.30 \pm 0.05 \) [n = 6]; and \(1 \times 10^{-5} \) mol/L 8-bromo-cGMP, \(5.08 \pm 0.06 \) [n = 6], \(P < 0.05 \). The effect of E2 on the fluidity was significantly enhanced in the presence of a low concentration (\(1 \times 10^{-6} \) mol/L) of 8-bromo-cGMP (Figure 2), although this concentration of 8-bromo-cGMP alone showed no significant effects on the membrane fluidity of its own.

Effects of E2 in Combination With L-NAME and ADMA on Membrane Fluidity of Erythrocytes

Figure 3 shows the effects of E2 on the membrane fluidity of erythrocytes in the presence of L-NAME (\(1 \times 10^{-5} \) mol/L).
The effect of E2 was significantly attenuated in the presence of L-NAME. Similarly, ADMA (1×10^{-4} mol/L) significantly counteracted the E2-induced changes in membrane fluidity of erythrocytes (Figure 4).

Membrane Fluidity of Erythrocytes in Postmenopausal Women With Essential Hypertension and Normotensive Postmenopausal Women

The values of the order parameter and h₀/h₋₁ of the EPR spectra were significantly greater in postmenopausal women with essential hypertension than in age-matched normotensive postmenopausal women (order parameter was as follows: hypertensive group, 0.722±0.002 [n=28]; normotensive group, 0.712±0.002 [n=33], P<0.01; h₀/h₋₁ was as follows: hypertensive group, 5.25±0.03 [n=28]; normotensive group, 5.10±0.02 [n=33], P<0.01). The finding indicated that the erythrocyte membrane fluidity was decreased in postmenopausal women with essential hypertension compared with normotensive postmenopausal women.

Figure 2. Effects of E₂ in combination with 8-bromo-cGMP (8-br-cGMP) on membrane fluidity of erythrocytes in normotensive postmenopausal women.

Figure 3. Effects of E₂ in the presence of L-NAME on membrane fluidity of erythrocytes in normotensive postmenopausal women.
Effects of E2 on Membrane Fluidity of Erythrocytes in Postmenopausal Women With Essential Hypertension and Normotensive Postmenopausal Women

The preliminary study showed that the effect of E2 on membrane fluidity of erythrocytes was also reversed in the presence of L-NAME in hypertensive postmenopausal women (order parameter was as follows: control, 0.723 ± 0.002 [n=7]; 10^-7 mol/L E2, 0.688 ± 0.003 [n=7], P<0.05 versus control; 10^-6 mol/L E2, 0.685 ± 0.004 [n=7], P<0.05 versus control; 10^-5 mol/L L-NAME alone, 0.724 ± 0.003 [n=7]; 10^-7 mol/L E2 plus 10^-5 mol/L L-NAME, 0.725 ± 0.003 [n=7], P<0.05 versus the same concentration of E2 alone; and 10^-6 mol/L E2 plus 10^-5 mol/L L-NAME, 0.722 ± 0.004 [n=7], P<0.05 versus the same concentration of E2 alone; ho/h-1 was as follows: control, 5.38 ± 0.05 [n=7]; 10^-7 mol/L E2, 5.11 ± 0.02 [n=7], P<0.05 versus control; 10^-6 mol/L E2, 4.97 ± 0.07 [n=7], P<0.05 versus control; 10^-5 mol/L L-NAME alone, 5.39 ± 0.05 [n=7]; 10^-7 mol/L E2 plus 10^-5 mol/L L-NAME, 5.57 ± 0.06 [n=7], P<0.05 versus the same concentration of E2 alone; and 10^-6 mol/L E2 plus 10^-5 mol/L L-NAME, 5.57 ± 0.04 [n=7], P<0.05 versus the same concentration of E2 alone).

E2 (1×10^-7 and 1×10^-6 mol/L) decreased the order parameter (increased the membrane fluidity) to a greater extent in hypertensive postmenopausal women than in normotensive postmenopausal women (percent change in order parameter was as follows: for 1×10^-7 mol/L E2, -5.4 ± 0.2% in hypertensive group [n=28] and -3.2 ± 0.2% in normotensive group [n=33], P<0.01; and for 1×10^-6 mol/L E2, -5.9 ± 0.3% in hypertensive group [n=28] and -3.7 ± 0.2% in normotensive group [n=33], P<0.01). Similarly, the effect of E2 on ho/h-1 was also more pronounced in the erythrocytes of hypertensive postmenopausal women than in the erythrocytes of normotensive postmenopausal women (percent change in ho/h-1 was as follows: for 1×10^-7 mol/L E2, -6.4 ± 0.3% in hypertensive group [n=28] and -3.9 ± 0.3% in normotensive group [n=33], P<0.01; and for 1×10^-6 mol/L E2, -8.0 ± 0.3% in hypertensive group [n=28] and -4.7 ± 0.3% in normotensive group [n=33], P<0.01).

Discussion

Estrogen replacement therapy may provide beneficial effects on blood pressure and other cardiovascular regulations. However, the precise mechanisms underlying estrogen effects are unclear. In the present study, we investigated the effects of E2 on the membrane fluidity of erythrocytes in postmenopausal women by means of EPR and the spin-labeling method. We showed that E2 dose-dependently decreased the order parameter for 5-NS and the peak height ratio (ho/h-1) for 16-NS obtained from EPR spectra of erythrocyte membranes. On the other hand, 17α-estradiol, an inactive stereoisomer of E2, showed no significant effects on membrane fluidity. These findings indicated that E2 significantly increased the membrane fluidity of erythrocytes in postmenopausal women. Because membrane fluidity is inversely correlated with membrane microviscosity, it would be possible that the membrane action of E2 could be one of the mechanisms responsible for its beneficial effects in improving the rheological behavior of erythrocyte membranes. In the present study, we used a concentration range of 10^-9 to 10^-6 mol/L for E2. The concentrations might be higher than those expected by the endogenous E2 content in human plasma. However, in an in vitro preparation, higher dosages were necessary because the compound could be gradually inactivated by degradation.

It is well recognized that signal transduction induced by estrogen is mediated through intranucleus estrogen receptors (genomic receptors). Recently, it has also been shown that nongenomic estrogen receptors are present on the membranes. It was reported that when erythrocytes were incubated with estrogen in vitro, two thirds was bound to the membrane, whereas one third was in the soluble fraction.
Puca and Sica21 provided evidence for the existence of specific and high-affinity binding components to estrogen in the cytoskeletal matrix of the erythrocyte membranes. However, it is still uncertain whether erythrocytes might bear the specific receptors for estrogen, and the nonspecific action of estrogen cannot be fully excluded.

In the present study, it has also been clearly shown that the effect of E\textsubscript{2} is significantly potentiated by a low concentration of SNAP, an NO donor, and a cGMP-analogue, 8-bromo-cGMP, which have no effects by themselves. These synergistic effects suggest that the action of E\textsubscript{2} might be, at least in part, mediated by the NO- and cGMP-related pathway. The hypothesis was confirmed by the finding that the effects of E\textsubscript{2} were blocked by L-NNAME and ADMA, the NO synthase inhibitors. NO is a potent stimulator of guanylate cyclase activity and is produced by different isoforms of NO synthase.22 Jubelin and Gierman23 have shown that erythrocytes of rats and humans are positive for NO synthase, which indicates that erythrocytes possess all the cellular machinery to synthesize their own NO. They proposed that erythrocytes would synthesize and use NO to modulate their own physiology. We also reported that NO might have a crucial role in the regulation of the membrane fluidity of erythrocytes.24 In other tissues, it has been demonstrated that the effects of estrogen might, at least in part, be mediated by the production of NO.25–28 These previous findings coupled with our present results suggest that NO might play a role in estrogen-induced alterations in membrane properties, although further studies should be conducted to assess more thoroughly the relationship between NO and estrogen effects on the membrane function.

The values of the order parameter and h0/h1 obtained from the erythrocyte EPR spectra were significantly greater in postmenopausal women with essential hypertension than in normotensive postmenopausal women. The results suggest that the membrane fluidity of erythrocytes was lower in hypertensive postmenopausal women than in normotensive postmenopausal women and confirm our previous reports showing that the cell membranes were stiffer and less fluid in primary hypertension.11–15 If the deformability of erythrocytes is highly dependent on the membrane fluidity,10,29 the reduction in membrane fluidity could cause a disturbance in the blood rheological behavior and in the microcirculation, which might contribute to the pathophysiology of hypertension. The present study also demonstrated that E\textsubscript{2} increased the membrane fluidity of erythrocytes to a greater extent in hypertensive postmenopausal women than in normotensive postmenopausal women. The finding might be consistent with our previous report showing that the effect of the NO donor, SNAP, on the erythrocyte membrane fluidity was more pronounced in patients with essential hypertension than in normotensive subjects.24 Although the precise role of estrogen in the regulation of membrane fluidity in hypertension is still unclear, one hypothesis is that estrogen may improve membrane fluidity and contribute to the defense against a further increase in microviscosity in hypertension.

In summary, the results of the present study showed that E\textsubscript{2} increased membrane fluidity of erythrocytes in postmenopausal women. The effects were mediated, at least to some extent, by the NO- and cGMP-dependent pathway. Our data also suggest that estrogen may have a crucial modulatory action on erythrocyte membrane fluidity that may also be of considerable biological and clinical significance in determining rheological properties of the membranes. Furthermore, the greater action of E\textsubscript{2} in hypertension might be consistent with the hypothesis that estrogen could have a beneficial effect on erythrocyte membrane function and the microcirculation in hypertensive postmenopausal women.

Acknowledgments

This study was supported in part by grants-in-aid for scientific research from the Ministry of Education, Science, and Culture of Japan (05670631, 08670819, and 10670674), the Japan Clinical Pharmacology Foundation (1992 and 1999), the Naito Foundation (1993), the Uehara Memorial Foundation (1994 and 1999), the Kimura Foundation for Cardiovascular Diseases (1996), and the Mitsui Foundation (1999).

References

Electron Paramagnetic Resonance Investigation on Modulatory Effect of 17β-Estradiol on Membrane Fluidity of Erythrocytes in Postmenopausal Women
Kazushi Tsuda, Yukiko Kinoshita, Keizo Kimura, Ichiro Nishio and Yoshiaki Masuyama

doi: 10.1161/hq0801.093507
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2001 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/21/8/1306

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/