Sterol Efflux Mediated by Endogenous Macrophage ApoE Expression Is Independent of ABCA1

Zhi Hua Huang, Chen-Yi Lin, John F. Oram, Theodore Mazzone

Abstract—Sterol efflux importantly contributes to preservation of cellular cholesterol homeostasis, and multiple pathways may be involved for mediating such efflux. Recently, an important role has been ascribed to ABCA1 in facilitating lipid efflux from cells, including macrophages, to extracellular lipid-free apolipoproteins. Macrophages are relatively unique among cells because they express apoprotein E (apoE) as a major protein product, and this endogenous expression of apoE increases sterol and phospholipid efflux from macrophages. The studies in this article were designed to test whether the sterol efflux mediated by the endogenous expression of apoE in macrophages was dependent on ABCA1 expression. These studies were facilitated by comparing apoE-expressing J774 cells (J774E⁺) with nonexpressing parental cells (J774E⁻). Sterol efflux was higher from J774E⁺ cells compared with J774E⁻ cells, but the increment in efflux between these cell types was not increased by induction of ABCA1 expression with cAMP. Induction of ABCA1 with cAMP, however, did increase sterol efflux to exogenously added apoA1 from both cell types. Inhibitors of ABCA1 activity significantly reduced (by 40% to 50%) sterol efflux from both J774E⁺ and J774E⁻ cells treated with cAMP and apoA1. This inhibitor did not, however, reduce the increment in sterol efflux due to the expression of endogenous apoE. The results of these studies indicate that the increment in sterol efflux mediated by the endogenous expression of apoE in macrophages does not depend on ABCA1 expression or activity. (Arterioscler Thromb Vasc Biol. 2001;21:2019-2025.)

Key Words: atherosclerosis ▪ macrophages ▪ apolipoprotein E ▪ sterol efflux ▪ ABCA1

Accumulation of cholesterol in the vessel wall is the hallmark of human and experimental atherosclerosis. Most of this vessel wall cholesterol is derived from circulating apoB-containing lipoproteins, and a great deal of data in humans and animals has demonstrated the importance of increased delivery by these lipoproteins for the development of vessel wall lesions. More recently, however, the importance of cholesterol removal mechanisms for preserving vessel wall cholesterol homeostasis has been appreciated. In experimental animals, altering the efficiency of sterol removal from the vessel wall has a profound effect on the development of atherosclerotic lesions. Human diseases thought to be associated with decreased removal of cholesterol from vessel wall cells are also characterized by accelerated atherosclerosis.

There are likely multiple mechanisms that contribute to sterol efflux from vessel wall cells, including aqueous diffusion and scavenger receptor class B type 1–mediated efflux. Most recently, the importance of the ATP binding cassette A1 (ABCA1) transporter protein has been emphasized for facilitating sterol efflux to lipid-free apoA1 from multiple cell types. A defect in expression of this protein underlies Tangier disease and accounts for the dramatic reduction in sterol efflux to lipid-free apoA1 observed in cells derived from Tangier disease patients. Extensive study of the ABCA1 transporter in cultured cells has indicated that it may bind to apoA1 to facilitate sterol efflux. In the absence of ABCA1, there is markedly reduced sterol efflux to lipid-free apoA1, although sterol efflux to protein-free phospholipid vesicles, cyclodextrins, albumin, or trypsinized HDL is maintained.

The macrophage is a cell type of major importance for understanding the pathophysiology of atherosclerosis. Macrophages are among the earliest cell type to accumulate after hyperlipemic insult to the vessel wall, are a prominent source of vessel wall foam cells, and produce a number of the cytokines and proteases found in atheroma. Necrosis or apoptosis of vessel wall macrophages secondary to the excessive intracellular accumulation of sterol may be important for the genesis of many of the features of complicated vessel wall lesions. Sterol efflux from this cell type, then, is likely to be important for maintaining normal vessel wall homeostasis. ABCA1 is expressed in macrophages and is important for cholesterol efflux to lipid-free A1, as has been found in other cells. However, macrophages are unique among vessel wall cells in that they express apoE as a major protein product. Endogenous expression of apoE in the macrophage facilitates sterol efflux from these cells.
endogenous apoE-dependent increment in efflux can be observed in the absence of specific extracellular sterol acceptors but is magnified when HDL, 2-hydroxypropyl β-cyclodextrin (βCD), or phosphatidylcholine (PC) vesicles are incubated with cells.12,14 In transgenic and knockout mouse models, it has been shown that macrophage-specific expression of apoE in the vessel wall can be atheroprotective, and its role in facilitating sterol efflux from macrophages likely contributes to this protection. Although it has been well established that ABCA1 is required for sterol efflux from macrophages to exogenous lipid-free apoA1, there is less information regarding whether ABCA1 expression is required for the sterol efflux that results from endogenous expression of apoE in the macrophage. The studies in this report were designed to test whether the increment in sterol efflux mediated by the endogenous expression of apoE in macrophages was dependent on ABCA1 expression.

Methods

Materials

Purified apoA1 isolated from human HDL and purified apoE isolated from human VLDL were purchased from Calbiochem. cAMP and 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) were purchased from Sigma. All other materials were from previously identified sources.12,14

Cells

The generation and characterization of the apoE-expressing (J774E+) and the nonexpressing (J774E−) J774 macrophages have been previously described in detail.12,14,17 Both cell lines were transfected with a neomycin resistance vector, selected, and maintained in medium was initiated by the addition of 0.1% BSA (2.3-fold higher, P<0.01). cAMP treatment did not increase sterol efflux from either J774E+ or J774E− cells. Therefore, the difference in efflux between cell types (ie, endogenous apoE-dependent efflux) is not enhanced as a result of cAMP induction of ABCA1 expression. To further confirm this result in another model, we evaluated the effect of cAMP treatment on sterol efflux from mouse peritoneal macrophages that express their endogenous apoE gene. These results are shown in Figure 2. Similar to the results in the

medium were sampled at the time points indicated and centrifuged at 10,000 rpm×15 minutes to pellet the detached cells and cellular debris. The [3H] radioactivity in the supernatant was quantified by liquid scintillation counting. The efflux is expressed as a percentage, calculated as the [3H]cholesterol radioactivity released divided by that measured in cells at the beginning of the efflux incubation. At the completion of each experiment, cell monolayers were washed 3 times with PBS dissolved in 0.1N NaOH and assayed for protein and cholesterol mass. There were no differences in cellular sterol mass or cell protein between J774E+ and J774E− cells.

ApoE Secretion

Secretion rates of apoE were measured by biosynthetically labeling apoE by incubating the cells with [35S]methionine (50 \textmu Ci/mL) with 10 \textmu mol/L unlabeled methionine. After 6 hours, culture supernatants were collected for the quantitative immunoprecipitation and quantification of secreted apoE, as previously described in detail.13 Levels of labeled apoE in the media were corrected for any differences in total protein secretion. Treatment with cAMP and DIDS was done exactly as described for the sterol efflux experiments.

Other Analyses

Cell protein was measured by using a DC protein assay kit (Bio-Rad). The cholesterol mass in extracts of cells was measured by gas-liquid chromatography with coprostanol as the internal standard as previously described.14 Statistical comparisons were made by ANOVA with SPSS software (SPSS Inc).

Results

Induction of ABCA1 With cAMP Does Not Increase the Increment in Sterol Efflux Mediated by the Endogenous Expression of Macrophage ApoE

We have previously shown that endogenous apoE expression leads to increased lipid efflux from macrophages.12–14 Specifically, expression of physiological levels of human apoE in the J774 macrophage line (which does not express its own apoE gene) significantly increases cholesterol and phospholipid efflux. This increase can be observed in the absence of extracellular sterol inhibitors and is magnified by addition of HDL, βCD, or PC vesicles. In the first series of experiments, we evaluated efflux from the apoE-expressing J774 cells (J774E+) and control nonexpressing cells (J774E−) in the presence or absence of cAMP. We performed this experiment because in multiple cell types, including J774 macrophages, it has been shown that cAMP treatment enhances ABCA1 expression and results in increased sterol efflux to exogenously added lipid-free apoproteins.9,19 Figure 1 shows the results of an experiment conducted in the absence of exogenously added sterol acceptors in J774E+ and J774E− cells. As we have previously shown,14 cholesterol efflux was significantly higher from J774E+ cells compared with J774E− cells (compare left and right panels). Sterol efflux was higher in J774E+ cells compared with J774E− cells in both DMEM with 0.1% BSA (2.3-fold higher, P<0.01) and DMEM alone (2.9-fold higher, P<0.01). cAMP treatment did not increase sterol efflux from either J774E+ or J774E− cells. Therefore, the difference in efflux between cell types (ie, endogenous apoE-dependent efflux) is not enhanced as a result of cAMP induction of ABCA1 expression. To further confirm this result in another model, we evaluated the effect of cAMP treatment on sterol efflux from mouse peritoneal macrophages that express their endogenous apoE gene. These results are shown in Figure 2. Similar to the results in the
transfected J774 model, induction of ABCA1 with cAMP treatment did not increase sterol efflux from mouse peritoneal macrophages.

Sterol Efflux From J774E⁺ and J774E⁻ Cells to Exogenous ApoA1 Is Increased by cAMP

The above results indicated that the increment in sterol efflux due to endogenous apoE expression was not enhanced by cAMP treatment to induce ABCA1 expression. To confirm that the cAMP treatment was inducing ABCA1-dependent efflux, we measured sterol efflux to exogenous lipid-free apoA1 from each cell type in the presence and absence of cAMP. These results are shown in Figure 3. At 12 hours, sterol efflux to apoA1 was 8% and 16% from J774E⁻ cells without and with cAMP, respectively, a 2-fold increase (left panel). At the same time, sterol efflux from J774E⁺ cells was 3% and 10% without and with cAMP, respectively, a 3.3-fold increase (right panel). Therefore, cAMP treatment significantly increased ABCA1-dependent efflux from each cell type. cAMP induction of efflux in each cell type required 6 to 8 hours into the time course. This result is consistent with the reported time course for ABCA1 induction by cAMP in J774 cells. 19 Although sterol efflux was significantly increased in the presence of cAMP plus apoA1 from J774E⁻ cells, the absolute level of efflux remained lower than that achieved from J774E⁺ cells under the same incubation conditions (compare left and right panels). This difference was unexpected and was observed in apoE-expressing clones derived from multiple transfections and from clones expressing both higher and lower levels of apoE than the clone used for these experiments (not shown). This apoE-dependent change in sterol efflux to apoA1 is different from what was observed after addition of βCD or PC vesicles to J774E⁺ and J774E⁻ cells. With the use of βCD or PC vesicles as acceptors, the absolute level of sterol efflux was substantially greater from J774E⁻ cells than from J774E⁺ cells. 14

ABCA1 Protein Level Is Reduced in J774E⁻ Compared With J774E⁺ Cells but Is Induced by cAMP in Both Cell Types

There are multiple potential explanations for the lower absolute level of sterol efflux to apoA1 as a result of apoE expression in J774E⁻ cells. However, the fact that this was observed only to apoA1, an ABCA1-specific efflux agent, and not to βCD or phospholipid vesicles led us to first examine ABCA1 expression levels in these 2 cell lines. The results of representative experiments are shown in Figure 4. In the top panel of Figure 4, we show an immunoblot analysis

Figure 1. cAMP does not further enhance the increment in sterol efflux from J774E⁺ compared with J774E⁻ cells. Cells were plated and labeled as described in Methods. The efflux was measured over the time course shown, in the presence of 0.1% BSA alone or this medium with 0.3 mmol/L cAMP. Values shown are the mean±SD from triplicate wells of cells. Where SD bars are not visible, they are contained within the symbol.

Figure 2. cAMP does not increase sterol efflux from mouse peritoneal macrophages. Mouse peritoneal macrophages were plated and grown as described in Methods. Cellular sterol was labeled as described in Methods, and efflux was measured at the indicated time points from cells incubated in 0.1% BSA alone (control) or this medium with 0.4 mmol/L cAMP. All values are the mean±SD from triplicate wells of cells. Where SD bars are not visible, they are contained within the symbol.

Figure 3. cAMP treatment increases efflux in the presence of exogenous apoA1 from both J774E⁺ and J774E⁻ cells. Cells were plated and labeled as described in the legend to Figure 1. In the left panel, sterol efflux to apoA1 (10 μg/mL) was measured in J774E⁻ cells with and without cAMP (0.3 mmol/L). In the right panel, results are shown for efflux to apoA1 from J774E⁻ cells with and without cAMP. Values shown are the mean±SD from triplicate wells of cells. Where SD bars are not visible, they are contained within the symbol.
Effects of cAMP on Sterol Efflux to Exogenous Lipid-Free ApoE

Other laboratories have reported that cAMP induction of ABCA1 expression can enhance sterol efflux to exogenously added lipid-free apoE. This situation is different from the above results with endogenously expressed apoE. We further confirmed this difference between endogenous and exogenous apoE-dependent pathways by evaluating the effect of cAMP on sterol efflux from J774E- cells in the presence of exogenously added lipid-free apoE. The results of a representative experiment are shown in Figure 5. Addition of cAMP led to a significant increase in sterol efflux to exogenous lipid-free apoE added at 1 and 9 μg/mL. Therefore, different from what is observed with sterol efflux dependent on endogenous apoE expression (Figures 1 and 2), cAMP-induced expression of ABCA1 is associated with increased efflux to exogenously added lipid-free apoE. The accumulation of apoE in the medium that results from the endogenous expression of apoE (even after cAMP stimulation; see above) does not increase efflux. This finding is likely related to the decreased ABCA1 levels in apoE-expressing cells but cAMP stimulation; Figure 4) and to functional differences in the nature of the particle formed by endogenous expression versus the exogenous addition of apoE that we have previously observed.

ABCA1 Inhibitors Do Not Reduce the Increment in Sterol Efflux Dependent on Endogenous ApoE Expression

On the basis of the above observations, we predicted that inhibitors of ABCA1 activity would reduce sterol efflux from both J774E- and J774E+ cells incubated with exogenous apoA1 plus cAMP but not reduce the efflux due to the endogenous expression of apoE. We tested this prediction in the experiments shown in Figure 6. In the top panel of this figure, we show the effect of DIDS, an ABCA1 inhibitor, on sterol efflux from J774E- and J774E+ cells that were treated with cAMP and incubated with apoA1. In the presence of

Figure 4. Basal and stimulated ABCA1 levels are reduced in J774E- compared with J774E+ cells. J774E- and J774E+ cells were incubated for 24 hours in 0.1% BSA in DMEM alone or with 0.3 mmol/L cAMP. In the top panel, cells incubated in 0.1% BSA alone were harvested, and lysates were used for Western blotting (200 μg cell protein per well), as described in Methods. In the top panel, samples from triplicate wells were analyzed, and the gel was overexposed to show the ABCA1 band obtained from J774E- cells. ABCA1 in J774E+ cells remained undetectable. In the bottom panel, the effect of cAMP stimulation was examined in each cell type. The film was not overexposed, so basal levels of ABCA1 are undetectable in both cell types without cAMP treatment. Samples shown are representative of 3 separate experiments.

Figure 5. Effect of cAMP treatment on efflux to exogenously added apoE. J774E cells were plated, and sterol was labeled as described in Methods. Sterol efflux was measured after a 24-hour incubation in 0.1% BSA with exogenously added apoE (at 1 or 9 μg/mL) alone (control) or with 0.3 mmol/L cAMP as indicated in the figure. Values shown are the mean ± SD from triplicate wells of cells. The differences between control and cAMP are significant at P<0.01 for 1 μg/mL apoE and at P<0.002 for 9 μg/mL apoE.
apoE-expressing macrophages with parental macrophages that did not express apoE. Although our data do not exclude the participation of ABCA1 in facilitating endogenous apoE-dependent efflux under any condition (see below), they do establish that this efflux can be independent of ABCA1 expression. This conclusion is supported by several lines of evidence. First, sterol efflux is higher from J774E\(^+\) cells compared with J774E\(^-\) cells in 0.1% BSA, even though ABCA1 levels (by immunoblot) and activity (by efflux to lipid-free apoA1) were substantially lower in J774E\(^-\) cells. Second, cAMP induction of ABCA1 levels significantly increased efflux from both J774E\(^+\) cells and J774E\(^-\) cells to exogenous lipid-free apolipoproteins but did not enhance the increment in efflux resulting from the endogenous expression of apoE in the absence of exogenously added apolipoproteins. Third, inhibition of ABCA1 activity significantly reduced efflux from cAMP-treated J774E\(^+\) cells and J774E\(^-\) cells to lipid-free apoA1 but did not reduce the increment in efflux resulting from the expression of endogenous apoE in macrophages. These results taken in aggregate establish that the increment in efflux, due to the endogenous expression of apoE in macrophages, does not depend on ABCA1 expression or activity.

Our finding that ABCA1 levels were markedly reduced as a result of apoE expression in macrophages was unexpected. A recent report\(^{21}\) also suggested an interaction between ABCA1 and apoE expression in the macrophage. In those studies, cAMP enhanced apoE secretion, and ABCA1 antisense oligonucleotides or inhibitors of ABCA1 reduced apoE secretion. On the basis of those observations, it was concluded that ABCA1 expression facilitated apoE secretion from macrophages. We observed similar effects of modulating ABCA1 activity on apoE secretion in our cell model. Our observation that increased apoE expression reduced ABCA1 expression, however, indicates that the relationship between ABCA1 and apoE expression in macrophages is complex. Both apoE and ABCA1 share common regulatory signals for gene transcription, being modulated by intracellular oxysterols via liver X receptor elements.\(^{22–24}\) Changes in the intracellular flux or metabolism of oxysterols due to apoE expression may, therefore, modulate expression of the ABCA1 gene. ABCA1 and apoE could also interact posttranslationally. These interactions could modulate the subcellular distribution of these proteins or their degradation rates and could be influenced by numerous factors, such as lipid flux in the cell. Alternatively, changes in ABCA1 level after changes in apoE expression may not reflect direct interaction but instead may reflect an indirect cellular adaptation. The potential complexity that underlies changes in ABCA1 expression, after changes in apoE expression, requires additional studies in isolated cell systems. After additional mechanistic information is available, it may be worthwhile to investigate cells isolated from various models of engineered mice. A model incorporating a bone marrow transplant approach would have the benefit of minimizing potential developmental differences (eg, hyperlipidemia) that could confound comparison of macrophages harvested from mouse models. Regardless of the nature of the relationship between apoE expression and ABCA1 level, the higher sterol efflux that we observed as a result of endogenous apoE expression, in the presence of reduced ABCA1 levels, underscores the

Discussion

The studies in this article provide new insight into the relationship between ABCA1 expression and the sterol efflux that results from the endogenous expression of apoE in macrophages. The experiments were facilitated by comparing

Figure 6. Effect of ABCA1 inhibitors on sterol efflux from J774E\(^+\) and J774E\(^-\) cells. In the upper panel, J774E\(^+\) and J774E\(^-\) cells were plated and labeled for measurement of efflux, as described in Methods. Efflux was measured after 24 hours in 0.1% BSA in DMEM with 10 µg/mL apoA1 and 0.3 mmol/L cAMP (closed bars) or this medium plus 0.4 mmol/L DIDS (open bars). In the lower panel, the effect of DIDS on efflux from J774E\(^+\) and J774E\(^-\) cells in 0.1% BSA in DMEM alone was shown. Values shown are the mean ± SD from triplicate wells of cells. In the bottom panel, there is no difference between efflux after treatment with DIDS. In the bottom panel, the increase in sterol efflux from J774E\(^+\) cells compared with J774E\(^-\) cells is significant at \(P<0.02\).

CAMP plus apoA1, efflux was higher from J774E\(^+\) cells (consistent with results in Figure 3). Addition of DIDS led to significant reduction of efflux in both cell types. In the bottom panel of Figure 6, we show the sterol efflux from J774E\(^+\) and J774E\(^-\) cells (without exogenously added sterol acceptors) in the presence and absence of the ABCA1 inhibitor DIDS. Endogenous apoE expression produced a significant increment in sterol efflux, and this endogenous apoE-dependent increment was not reduced by addition of DIDS. Therefore, the ABCA1 inhibitor is clearly effective in either cell type in reducing sterol efflux to apoA1 plus CAMP. It has no effect, however, on the increment in sterol efflux due to endogenous expression of apoE. Inhibition of ABCA1 activity with DIDS was also associated with a 46% decline of apoE secretion (\(P<0.01\)). This result is, again, consistent with our previously reported observation that sterol efflux due to endogenous apoE expression does not depend on the extracellular accumulation of apoE (see above).\(^{14}\)
independence of this efflux pathway from ABCA1. The observation that endogenous expression of apoE can enhance sterol efflux independent of ABCA1 has important implications for understanding cholesterol homeostasis in the macrophage and for designing therapeutic interventions for atherosclerosis.

The data in Figure 5 indicate that efflux to exogenous lipid-free apoE at 1 μg/mL is enhanced by a small but significant amount by the addition of cAMP. However, the cAMP-related increase in sterol efflux is much larger in the presence of a higher concentration (9 μg/mL) of exogenous lipid-free apoE. This result is consistent with recently reported results showing that cAMP enhances sterol efflux from J774 macrophages to exogenously added lipid-free apoE at a concentration of 20 μg/mL.19 Therefore, at higher extracellular concentrations of lipid-free apoE, cAMP induction of ABCA1 expression can importantly contribute to sterol efflux. This mechanism could also relate to the previously reported results showing that cAMP increased sterol efflux from RAW 264.7 cells transfected to express apoE.25 In those studies, because of the high level of transgene expression, extracellular apoE concentrations reached 14 μg/mL. The data above suggest that at this high concentration of extracellular apoE, ABCA1-dependent mechanisms are involved in sterol efflux. The results in this report indicate that when apoE is expressed at a lower and more physiological level, the sterol efflux due to the endogenous expression of apoE is not dependent on ABCA1. This supports a conclusion, based on previously reported observations, that endogenous expression of apoE and exogenous addition of apoE facilitate macrophage sterol efflux through distinct pathways.14,26,27 A functional difference (with respect to sterol efflux) in the nature of the extracellular particle formed by endogenous expression versus exogenous addition of apoE has been previously documented.14 This conclusion is further supported by results in this report: although cAMP and DIDS can modulate the extracellular accumulation of apoE, they do not modulate sterol efflux due to the endogenous expression of apoE. Therefore, mechanisms of efflux beyond the extracellular accumulation of apoE must be considered. For example, we have recently shown that retention of endogenous apoE expression facilitates macrophage sterol efflux, independent of ABCA1 expression, presents a question regarding the relative importance of these separate pathways for preserving macrophage sterol balance. Future studies in isolated cells can evaluate the contribution of redundant and independent pathways for defending macrophage cholesterol homeostasis.

Acknowledgments

This work was supported by grants HL-39653 and HL-59489 to T.M. and grants HL-18645 and DK-02456 to J.F.O. from the National Institutes of Health. The authors thank Stephanie Thompson for help with manuscript preparation and CV Therapeutics (Palo Alto, Calif) for providing the antibody to ABCA1.

References

Sterol Efflux Mediated by Endogenous Macrophage ApoE Expression Is Independent of ABCA1
Zhi Hua Huang, Chen-Yi Lin, John F. Oram and Theodore Mazzone

do: 10.1161/hq1201.100242
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2001 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/21/12/2019