Thrombin Induces Interleukin-6 Expression Through the cAMP Response Element in Vascular Smooth Muscle Cells

Tomotake Tokunou, Toshihiro Ichiki, Kotaro Takeda, Yuko Funakoshi, Naoko Iino, Hiroshi Shimokawa, Kensuke Egashira, Akira Takeshita

Abstract—The plasma level of interleukin-6 (IL-6) is elevated in patients with acute coronary syndromes and has prognostic value. Thrombin is a potent mitogen for vascular smooth muscle cells (VSMCs) and plays an important role in the progression of atherosclerosis. We examined the mechanism of thrombin-induced IL-6 expression in VSMCs. Thrombin induced IL-6 mRNA and protein expression in a dose-dependent manner. Pharmacological inhibition of extracellular signal–regulated protein kinase (ERK), p38 mitogen-activated protein kinase (MAPK), or epidermal growth factor receptor (EGF-R) suppressed the thrombin-induced IL-6 expression. Deletion and mutation analysis of the promoter region of the IL-6 gene by using luciferase as a reporter showed that the DNA segment between −228 and −150 bp containing the cAMP response element (CRE) site played a critical role. Thrombin also induced phosphorylation of CRE binding protein (CREB) in an ERK- and a p38 MAPK–dependent manner. Overexpression of the dominant-negative form of CREB inhibited thrombin-induced IL-6 mRNA expression. These results suggest that the CRE site and CREB play an important role in thrombin-induced IL-6 gene expression in VSMCs. Transactivation of EGF-R and activation of ERK and p38 MAPK are involved in this process. CREB may be a novel transcription factor that regulates thrombin-induced gene expression. (Arterioscler Thromb Vasc Biol. 2001;21:1759–1763.)

Key Words: interleukin-6 ■ thrombin ■ vascular smooth muscle cells ■ cAMP response element ■ epidermal growth factor receptor

It has been suggested that the inflammatory reaction characterizes the process of atherogenesis. Cytokines such as interleukin-6 (IL-6) and monocyte chemotactic protein-1 secreted from activated macrophages, lymphocytes, endothelial cells, and vascular smooth muscle cells (VSMCs)1–4 are critical mediators of inflammation in blood vessels. In a substantial proportion of patients with acute coronary syndromes, plasma levels of C-reactive protein5 and IL-66 are elevated. In addition, IL-6 has both short- and long-term prognostic value7,8 in patients with or without overt plaque rupture. It was also reported that the IL-6 concentration in coronary sinus blood was correlated with the rate of late restenosis after balloon angioplasty.7 These results suggest that IL-6 plays an important role in atherogenesis.

Thrombin belongs to the multifunctional serine protease family9 and converts fibrinogen to fibrin, which is a final reaction of the coagulation cascade. Thrombin also activates intracellular signaling pathways through the thrombin receptor (protease-activated receptor-1: PAR-1) by cleaving the amino-terminal exodomain of PAR-1 to “unmask” a new receptor amino terminus beginning with the sequence SFLLRN. Thrombin is a potent mitogen for VSMCs,10 and PAR-1 is widely expressed in the atherosclerotic lesion,11 suggesting that thrombin may contribute to inflammatory and proliferative changes of the vascular wall. PAR-1 is a member of the 7-transmembrane-domain receptor family and couples to Gq, which activates phospholipase Cβ,11 and Giα, which inhibits adenylate cyclase.12 Recently, it was reported that transactivation of the epidermal growth factor receptor (EGF-R) played an important role in thrombin signaling.13 The inhibitory effect of heparin on thrombin-induced VSMC migration was partially due to a blockade of heparin-binding EGF-like growth factor–mediated EGF-R transactivation.15,16

Induction of IL-6 by thrombin is reported in monocytes and VSMCs.17 However, the precise mechanism and signaling pathway for this induction have not been determined. We show in the present study that the cAMP response element (CRE) is critical for thrombin-induced IL-6 expression.

Methods

Reagents

Dulbecco’s modified Eagle’s medium (DMEM) and fetal bovine serum were purchased from Gibco BRL. Thrombin was purchased from Ito Ham Co. One unit per milliliter thrombin is approximately equivalent to 20 nmol/L. PAR-1 agonist, a 6–amino acid peptide (SFLLRN), was purchased from Bachem. PD98059, an extracellular
signal–regulated protein kinase (ERK) kinase inhibitor, was obtained from Research Biochemicals International. SB203580, a p38 mitogen–activated protein kinase (MAPK) inhibitor, was a generous gift from SmithKline Beecham Pharmaceuticals (UK). AG1478, an EGF-R inhibitor, was obtained from Sigma. All antibodies used in the experiments were obtained from New England Biolabs except for an antibody against activating transcription factor-2 (ATF-2; Santa Cruz Biotechnology, Inc.) and the horseradish peroxidase–conjugated second antibodies (anti-rabbit or anti-mouse IgG, Vector Laboratories Inc). A recombinant adenovirus vector expressing a mutant of CRE binding protein (CREB) (AdCREBM1),17 in which the phosphorylation site at Ser133 is changed to alanine, was a gift from Dr Anthony J. Zeleznik (University of Pittsburgh, Pittsburgh, Pa). Unless mentioned otherwise, other chemical reagents were purchased from Wako Pure Chemicals.

Cell Culture
VSMCs were isolated from the thoracic aortas of Sprague-Dawley rats and maintained as described previously.18 Passages between 5 and 15 were used. VSMCs were grown to confluence, growth-arrested in DMEM with 0.1% bovine serum albumin for 2 days, and used for the experiments.

Quantification of Rat IL-6 by Sandwich ELISA
An ELISA for rat IL-6 was performed with a Cytoscreen ELISA kit (BioSource International) according to the manufacturer’s instructions, as described previously.18

Northern Blot Analysis
Total RNA was prepared according to an acid guanidinium–phenol-chloroform extraction method.19 Northern blot analysis of IL-6 mRNA was performed as described previously.18 The hybridized membrane was stripped by boiling in a 0.5% SDS solution and hybridized to a 32P-labeled 18S ribosomal RNA probe to obtain a reference for the amount of applied RNA. The radioactivity of hybridized bands of IL-6 or 18S ribosomal RNA was quantified with a MacBAS bioimaging analyzer (FUJIFILM).

Mutations of the IL-6 Gene Promoter Region and Transfection to VSMCs
Deletion mutants of the IL-6 gene promoter fused with the luciferase gene and of the IL-6 gene promoter construct with mutation at the CRE site were described previously18 and introduced into VSMCs with the DEAE dextran method according to the manufacturer’s instruction’s (Promega Corp) with the LacZ gene driven by an SV40 promoter-enhancer sequence. After transfection, the cells were cultured in DMEM with 10% fetal bovine serum for 48 hours, washed twice with PBS, and stimulated with 1 U/mL thrombin for 24 hours. The amount of IL-6 was detected in the supernatant of unstimulated VSMCs. Figure 1B shows that thrombin dose-dependently increased IL-6 production after 24 hours of stimulation.

Expression of IL-6 mRNA by Thrombin
We examined the expression of IL-6 mRNA by Northern blot analysis in thrombin-stimulated VSMCs. Two species of IL-6 gene transcript were detected.18 For quantification of IL-6 mRNA, the radioactivities of both mRNA species were taken into account. As shown in Figure 2A, the protein level of IL-6 in the tissue culture medium of thrombin-stimulated VSMCs was increased significantly in a time-dependent manner. A small amount of IL-6 was detected in the supernatant of unstimulated VSMCs. Figure 1B shows that thrombin dose-dependently increased IL-6 production after 24 hours of stimulation.

Results
Thrombin-Induced IL-6 Production
VSMCs were stimulated with thrombin, and the protein level of IL-6 in the supernatant was measured by sandwich ELISA. As shown in Figure 1A, the protein level of IL-6 in the tissue culture medium of thrombin-stimulated VSMCs was increased significantly in a time-dependent manner. A small amount of IL-6 was detected in the supernatant of unstimulated VSMCs. Figure 1B shows that thrombin dose-dependently increased IL-6 production after 24 hours of stimulation.

Expression of IL-6 mRNA by Thrombin
We examined the expression of IL-6 mRNA by Northern blot analysis in thrombin-stimulated VSMCs. Two species of IL-6 gene transcript were detected.18 For quantification of IL-6 mRNA, the radioactivities of both mRNA species were taken into account. As shown in Figure 2A, thrombin induced IL-6 mRNA expression with a peak at 30 minutes of stimulation. VSMCs were incubated with varying concentrations of thrombin for 30 minutes (Figure 2B). Thrombin dose-dependently increased IL-6 mRNA expression. Figure 2C shows that an oligopeptide, SFLLRN, which activates PAR-1 independently of proteolysis, also induced expression of IL-6 mRNA at 30 minutes after stimulation, suggesting that the thrombin-induced IL-6 mRNA expression is mediated by PAR-1.

Statistical Analysis
Statistical analyses were performed by 1-way ANOVA and multiple comparison (Fisher) tests when appropriate. A value of P<0.05 was considered significant. Data were expressed as mean±SE.
Activation of IL-6 Gene Promoter by Thrombin

To determine the promoter region responsible for the induction of IL-6 gene expression by thrombin, deletion analysis of the promoter region was performed. We constructed luciferase expression vectors with varying lengths of the promoter region of the IL-6 gene (Figure 4A). Luciferase activity was measured after 24 hours of thrombin stimulation. Thrombin increased luciferase activity (Figure 4A, constructs No. 1 through 4). The response to thrombin, however, was not observed in the construct that lacked the DNA segment between -228 and -150 bp (Figure 4A, construct No. 5). In the DNA segment between -228 and -150 bp, CRE is present. Therefore, we introduced a mutation into the CRE site. Figure 4B shows that the thrombin-induced luciferase activity expressed by the IL-6 gene promoter with a mutation in the CRE site was completely inhibited compared with that expressed by an intact promoter construct. These data suggest that the CRE site in the IL-6 gene promoter is important for thrombin-induced upregulation.

Thrombin-Induced Phosphorylation of CREB

Next, we examined whether thrombin activated CREB by Western blot analysis with an antibody that specifically recognizes the phosphorylated form of CREB, which is the active form. Thrombin indeed induced phosphorylation of CREB (online Figure I, which can be accessed at http://atvb.ahajournals.org). We examined the effect of PD98059, SB203580, and AG1478 on thrombin-induced CREB phosphorylation. PD98059 or SB203580 dose-dependently inhibited thrombin-induced CREB phosphorylation (online Figures IA and IB). We also examined whether PD98059 and SB203580 specifically inhibited ERK kinase and p38 MAPK, respectively. PD98059 dose-dependently inhibited thrombin-induced phosphorylation of CREB, ERK, and p38 MAPK (online Figure IB), and AG1478 inhibited the thrombin-induced phosphorylation of CREB, ERK, and p38 MAPK (online Figure IC). These data suggest that transactivation of EGF-R by thrombin activates ERK and p38 MAPK, which is followed by CREB, ERK, and p38 MAPK (Figures 3A and 3B). AG1478 also inhibited the thrombin-induced phosphorylation of ERK (online Figure IA). SB203580specifically inhibited phosphorylation of ATF-2, which is phosphorylated by p38 MAPK (online Figure IB), and AG1478 inhibited the thrombin-induced phosphorylation of CREB, ERK, and p38 MAPK, which is followed by CREB phosphorylation.

Inhibition of Thrombin-Induced IL-6 mRNA Expression by Overexpression of the Dominant-Negative Form of CREB

To confirm the role of CRE in thrombin signaling, we overexpressed the dominant-negative form of CREB by an
adenovirus vector (AdCReBM1), which inhibits CREB function by replacing endogenous CREB with the overexpressed mutant molecule. Infection with AdCReBM1 strongly inhibited thrombin-induced IL-6 mRNA expression in VSMCs (Figure 4C), whereas infection with AdLacZ (used as a negative control) did not affect thrombin-induced IL-6 mRNA expression.

Discussion

We demonstrate in the present study that (1) thrombin-induced IL-6 expression is dependent on CRE in the promoter region of the IL-6 gene and (2) thrombin-induced EGF-R transactivation and activation of ERK and p38 MAPK play an important role for the induction of IL-6 expression. Induction of IL-6 by thrombin has been reported in epithelial cells and monocytes as well as VSMCs. This study, to the best of our knowledge, is the first report showing that EGF-R, MAPKs, and CRE are critical for thrombin-induced IL-6 expression in VSMCs.

An association of plasma IL-6 level with atherosclerotic diseases has been reported. The plasma concentration of IL-6 is higher in patients with unstable angina than in those with stable angina and is an important factor for prognosis. In unstable angina and myocardial infarction, the hemostatic mechanism is activated, and thrombosis and fibrotic organization contribute to the progression of atherosclerosis after rupture of atherosclerotic plaques. PAR-1 is also widely expressed in the atherosclerotic lesion. These data suggest that inflammatory and coagulation systems are activated simultaneously in the coronary atherosclerotic region. The relationship and balance of these 2 systems are critical for the progression of the atherosclerotic region. IL-6 has been shown to be a potent stimulator of platelet production, and inhibition of IL-6 function by a neutralizing antibody was reported to attenuate endotoxin-induced blood coagulation. These results may suggest an important role for IL-6 in blood coagulation and the pathological significance of thrombin-induced IL-6 production.

We examined the role of EGF-R in thrombin-induced IL-6 expression. AG1478, an EGF-R inhibitor, inhibited thrombin-induced IL-6 expression. Transactivation of EGF-R is necessary for the activation of ERK by thrombin. PD98059, an inhibitor of ERK, also suppressed thrombin-induced IL-6 expression. SB203580, an inhibitor of p38 MAPK, also partially suppressed thrombin-induced IL-6 expression. We examined whether thrombin induced CREB phosphorylation by using a phospho-specific antibody against CREB. Thrombin induced CREB phosphorylation, and AG1478, PD98059, or SB203580 inhibited the thrombin-induced phosphorylation. p90RSK2, which is a downstream kinase activated by ERK, is reported to phosphorylate CREB. Tan et al showed that MAPK-activated kinase 2 in the region downstream from p38 MAPK also phosphorylated CREB. These reports and our data suggest that thrombin may upregulate IL-6 expression through transactivation of the EGF-R–ERK–p90RSK2 CREB pathway, and another pathway, EGF-R–p38 MAPK–MAPK-activated protein kinase 2 CREB may also be important. Further study is necessary to identify the kinase that directly phosphorylates CREB in response to thrombin.

Although AG1478 almost completely inhibited thrombin-induced IL-6 expression, overexpression of dominant-negative CREB, PD98059, or SB203580 partially suppressed it. These data suggest that another pathway activated by transactivation of EGF-R also plays a role in thrombin-induced IL-6 expression. We examined the effects of the protein kinase C inhibitor GF109203X and an extracellular Ca²⁺ chelator, EGTA, on thrombin-induced IL-6 mRNA expression. These inhibitors did not affect thrombin-induced IL-6 mRNA expression (data not shown). Further study is necessary to determine this additional pathway of PAR-1.

Results of the luciferase assay indicated that the DNA segment between −228 and −150 bp of the IL-6 gene promoter was critical for thrombin-induced IL-6 expression.
In this DNA segment, CRE (−156 to −149 bp) is present. Introduction of a mutation into the CRE site of the IL-6 promoter completely inhibited thrombin-induced luciferase activity. Overexpression of dominant-negative CREB also inhibited thrombin-induced IL-6 mRNA expression. These data indicate that CRE is 1 of the critical cis-DNA elements for thrombin-induced IL-6 gene expression. The IL-6 promoter has other cis-DNA elements, such as nuclear factor IL-6 (NF-IL-6, −147 to −137 bp) and NF-κB (−62 to −44 bp). NF-IL-6 and NF-κB may also contribute to thrombin-induced IL-6 expression, because these elements are located downstream from CRE. Deletion of the DNA segment containing NF-IL-6 and NF-κB reduced basal luciferase activity (Figure 4A, construct No. 6), and luciferase activity was not upregulated by thrombin in this construct. Therefore, these cis-DNA elements may be important for basal transcriptional activity of IL-6 gene. Further study is necessary to determine the role of these downstream cis-DNA elements.

We previously reported that angiotensin II induced IL-6 mRNA expression in VSMCs. We found that the CRE site is also important for angiotensin II–induced IL-6 expression. PD98059 completely inhibited angiotensin II–induced IL-6 mRNA expression, whereas thrombin-induced IL-6 expression was partially inhibited by the same concentration of PD98059. These data suggest that the main pathway of angiotensin II–induced IL-6 mRNA expression is the MAPK kinase/ERK pathway, and thrombin uses both MAPK kinase/ERK and p38 MAPK pathways. Eguchi et al reported that angiotensin II–induced ERK activity was inhibited by the EGF receptor inhibitor AG1478, suggesting that EGF-R is also important for angiotensin II–induced IL-6 mRNA expression as well as that of thrombin.

In summary, we have shown in this article that CRE is a crucial cis-DNA element for thrombin-induced IL-6 expression and that EGF-R plays an important role in thrombin-induced IL-6 expression.

Acknowledgments
This study was supported in part by a grant from the Welfide Medicinal Research Foundation, Osaka, Japan, and a grant-in-aid for scientific research from the Ministry of Education, Science and Culture (1177035, 12877113).

References
Thrombin Induces Interleukin-6 Expression Through the cAMP Response Element in Vascular Smooth Muscle Cells

Tomotake Tokunou, Toshihiro Ichiki, Kotaro Takeda, Yuko Funakoshi, Naoko Iino, Hiroaki Shimokawa, Kensuke Egashira and Akira Takeshita

doi: 10.1161/hq1101.098489

*Arteriosclerosis, Thrombosis, and Vascular Biology* is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2001 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/21/11/1759

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2001/10/24/21.11.1759.DC1