Plasma Concentrations of a Novel, Adipose-Specific Protein, Adiponectin, in Type 2 Diabetic Patients

Kikuko Hotta, Tohru Funahashi, Yukio Arita, Masahiko Takahashi, Morihiro Matsuda, Yoshihisa Okamoto, Hiromi Iwahashi, Hiroshi Kuriyama, Noriyuki Ouchi, Kazuhiisa Maeda, Makoto Nishida, Shinji Kihara, Naohiko Sakai, Tadahisa Nakajima, Kyoichi Hasegawa, Masahiro Muraguchi, Yasukazu Ohmoto, Tadashi Nakamura, Shizuya Yamashita, Toshiaki Hanafusa, Yuji Matsuzawa

Abstract—Adiponectin is a novel, adipose-specific protein abundantly present in the circulation, and it has antiatherogenic properties. We analyzed the plasma adiponectin concentrations in age- and body mass index (BMI)–matched nondiabetic and type 2 diabetic subjects with and without coronary artery disease (CAD). Plasma levels of adiponectin in the diabetic subjects without CAD were lower than those in nondiabetic subjects (6.6±0.4 versus 7.9±0.5 μg/mL in men, 7.6±0.7 versus 11.7±1.0 μg/mL in women; P<0.001). The plasma adiponectin concentrations of diabetic patients with CAD were lower than those of diabetic patients without CAD (4.0±0.4 versus 6.6±0.4 μg/mL, P<0.001 in men; 6.3±0.8 versus 7.6±0.7 μg/mL in women). In contrast, plasma levels of leptin did not differ between diabetic patients with and without CAD. The presence of microangiopathy did not affect the plasma adiponectin levels in diabetic patients. Significant, univariate, inverse correlations were observed between adiponectin levels and fasting plasma insulin (r=−0.18, P<0.01) and glucose (r=−0.26, P<0.001) levels. In multivariate analysis, plasma insulin did not independently affect the plasma adiponectin levels. BMI, serum triglyceride concentration, and the presence of diabetes or CAD remained significantly related to plasma adiponectin concentrations. Weight reduction significantly elevated plasma adiponectin levels in the diabetic subjects as well as the nondiabetic subjects. These results suggest that the decreased plasma adiponectin concentrations in diabetes may be an indicator of macroangiopathy. (Arterioscler Thromb Vasc Biol. 2000;20:1595-1599.)

Key Words: adiponectin ▪ diabetes mellitus ▪ coronary artery disease ▪ adipose tissue

Atherosclerotic cardiovascular complications are the major causes of morbidity and mortality in type 2 diabetic patients.1 The precise mechanism underlying the development of atherosclerotic vascular disease has not been fully elucidated. Abnormalities in lipid metabolism and hemostatic factors and the presence of insulin resistance are thought to contribute to atherosclerotic vascular damage in diabetes. Plasma plasminogen activator inhibitor type 1 (PAI-1) concentrations are elevated in type 2 diabetic patients, and increased plasma PAI-1 reduces fibrinolytic activity, which may play a role in the development of vascular complications. 2,3 Recent experimental and clinical studies have revealed that adipose tissue, especially intra-abdominal visceral adipose tissue, is an important source of plasma PAI-1. 4,5 Traditionally, adipose tissue has been considered to be an organ that passively stores excess energy as fat. Substantial research has explored the notion that adipose tissue secretes a variety of biologically active molecules, including cytokines, growth factors, and complement factors, into the circulation.6–9 Tumor necrosis factor (TNF)-α decreases tyrosine kinase activity of the insulin receptor and is overproduced in adipose tissues in insulin-resistant rodents and humans, suggesting that it is a possible mediator of insulin resistance in obesity and diabetes.6,10,11 Leptin is produced specifically by adipose tissue and transmits a satiety signal to the central nervous system.7 The molecule also affects glucose metabolism and insulin sensitivity.12,13 These data suggest that the multiple molecules produced by adipose tissue contribute to the development of insulin resistance and atherosclerotic complications in diabetes mellitus.

Adiponectin is a novel, adipose-specific protein belonging to the collectin family.14,15 The protein is present abundantly in the circulation, accounting for ≈0.01% of total plasma protein.16 When the endothelium of the carotid arteries is injured by a balloon catheter in rats, adiponectin accumulates in the vascular walls.17 Recently, we observed that adiponec-
Adiponectin suppressed the attachment of monocytes to endothelial cells, which is an early event in atherosclerotic vascular change. Adiponectin may have a role in protection against vascular damage. Although the expression of adiponectin mRNA is restricted in adipose tissue, its plasma concentrations are decreased in obesity. The significance of adiponectin may have a role in protection against atherosclerotic vascular complications.

Methods

ELISA of Plasma Adiponectin and Leptin

All blood samples were drawn after an overnight fast unless otherwise indicated. Plasma samples were kept at −80°C for subsequent assay. The concentration of plasma adiponectin was determined by ELISA as described previously. The plasma leptin levels were also determined by ELISA. Briefly, recombinant human leptin cloned into pET3a (Novagen Inc) was expressed in *Escherichia coli* BL21 (DE3) (Novagen Inc). Monoclonal and polyclonal anti-leptin antibodies were produced and used in the recombinant leptin. Ten microliters of plasma was applied to a 96-well microtiter plate coated with mouse anti-leptin monoclonal antibody. The wells were washed and further incubated with rabbit anti-leptin polyclonal antibody, followed by incubation with horseradish peroxidase–labeled anti-rabbit IgG. Each well was reacted with o-phenylenediamine dihydrochloride (Sigma), and the absorbance at 492 nm was measured. Recombinant human leptin protein as described above was used as the standard.

Change in Plasma Adiponectin Concentrations Before and After Weight Reduction

To study the effect of weight reduction on plasma adiponectin levels, 13 nondiabetic, obese subjects (6 men and 7 women; BMI, 36.8 ± 1.2 kg/m²; age, 45 ± 5 years) and 9 diabetic, obese subjects (6 men and 3 women; BMI, 34.8 ± 2.6 kg/m²; age, 50 ± 3 years) were hospitalized and placed on a calorie-restricted diet to reduce their body weight. The weight reduction therapy was performed according to the calorie restriction program in our clinic. In brief, starting at 2000 kcal/d, the total calorie intake was decreased sequentially (−400 kcal/d for 2 weeks) to 800 kcal/d (carbohydrate 50%, fat 25%, and protein 25%), and this calorie level was maintained. Their BMI decreased significantly within 2 months (nondiabetic, 33.2 ± 1.0 kg/m²; P < 0.001; diabetic, 30.4 ± 2.0 kg/m², P < 0.01). Mean BMI changes of 10 ± 1% in nondiabetic subjects and of 12 ± 2% in diabetic subjects were achieved. The plasma was obtained before and at the end of the weight reduction period.

Daily Profile of Plasma Adiponectin Concentrations

The circadian variation in plasma adiponectin concentrations was investigated in 7 nondiabetic subjects (3 men and 4 women) and 6 diabetic subjects (4 men and 2 women). Their BMI was 31.1 ± 2.4 kg/m² (range, 24.5 to 39.3 kg/m²) in nondiabetic subjects (age, 54 ± 5 years) and 33.0 ± 3.5 kg/m² (range, 22.4 to 44.8 kg/m²) in diabetic subjects (age, 54 ± 8 years). Each subject was hospitalized and received breakfast at 7 AM, lunch at noon, and dinner at 6 PM. Plasma was obtained from each subject at 6:30, 9:30, and 11:30 AM and at 2:30, 5:30, 8:30, and 9:30 PM. The plasma levels of glucose, insulin, adiponectin, and leptin were determined.

Statistics

Data are expressed as mean ± SEM. Intergroup differences in the parameters were analyzed by *t* test. Significant group differences and daily changes in the plasma adiponectin and leptin levels were
compared by one-way ANOVA and tested further by the Fisher multiple comparison method. Linear relationships between key variables were tested by Pearson’s correlation coefficient. Multiple linear regression analysis was performed to evaluate the independent relationship of the studied variables.

Results

Plasma Adiponectin Levels in Nondiabetic and Diabetic Subjects With and Without CAD

Plasma levels of the adipose-specific proteins adiponectin and leptin were measured in 183 patients with type 2 diabetes and in 82 age- and BMI-matched healthy subjects with normal glucose tolerance. There was no significant difference in the plasma levels of leptin between diabetic and nondiabetic groups. In contrast, plasma levels of adiponectin were significantly lower in the diabetic than in the nondiabetic subjects in both men and women (5.7±0.3 versus 7.9±0.5 μg/mL in men, P<0.001; 7.2±0.5 versus 11.7±1.0 μg/mL in women, P<0.001). The diabetic subjects were subdivided into 2 groups, those with and without CAD. Plasma adiponectin concentrations in diabetic women without CAD were significantly lower than those in nondiabetic women (7.6±0.7 versus 11.7±1.0 μg/mL, P<0.001). Diabetic women with CAD exhibited even lower plasma adiponectin concentrations (Table 1 and Figure 1). In men, diabetic subjects without CAD also showed lower plasma adiponectin levels compared with nondiabetic subjects (6.6±0.4 versus 7.9±0.5 μg/mL, P=0.07), although this difference was not statistically significant. Plasma adiponectin levels in diabetic men with CAD were even lower and statistically significant when compared with diabetic men without CAD (4.0±0.4 versus 6.6±0.4 μg/mL, P<0.001). No significant difference was found in plasma leptin concentrations between diabetic subjects with and without CAD. The plasma adiponectin levels did not differ between patients with and without retinopathy (6.1±0.9 versus 5.5±0.5 μg/mL in men, 7.6±0.9 μg/mL versus 6.9±0.8 μg/mL in women) nor in those with and without nephropathy (5.2±0.6 versus 5.8±0.7 μg/mL in men, 6.1±0.9 μg/mL versus 7.4±0.9 μg/mL in women). There was no correlation between plasma adiponectin levels and urinary albumin concentrations (men, r=0.11; women, r=0.14).

Next we analyzed the correlation between plasma levels of adiponectin and other parameters. Plasma levels of adiponectin were negatively correlated with BMI (r=−0.29, P<0.001) as previously reported.16 No significant correlation was found between the plasma levels of adiponectin and age (r=0.05). The plasma concentration of adiponectin was negatively correlated with plasma glucose level (r=−0.26, P<0.001), the value of hemoglobin A1c (r=−0.23, P<0.001), and plasma insulin level (r=−0.18, P<0.01). Among the lipid parameters, the serum triglyceride level was negatively correlated (r=−0.32, P<0.001) and the HDL cholesterol level positively correlated (r=0.35, P<0.001) with the plasma adiponectin level. Total cholesterol level was not correlated with plasma adiponectin level (r=0.12). A multiple linear regression analysis revealed that the presence of diabetes and CAD was significantly associated with the decreased plasma level of adiponectin, independent of BMI in women. In men, the presence of CAD but not of diabetes was significantly associated with the decreased plasma adiponectin concentration. Plasma insulin and HDL cholesterol levels were not independent parameters associated with the decreased plasma adiponectin concentration. Serum triglyceride concentration remained an independent parameter to the plasma adiponectin level (Table 2).

Regulation of Plasma Adiponectin Levels in Diabetic Patients

Fasting plasma levels of adiponectin were decreased in diabetic subjects. Regulation of plasma levels of adiponectin may be disturbed in the diabetic state. It is well known that plasma leptin levels are regulated by adiposity, and they are reduced by weight reduction.19,20 We investigated the effect of weight reduction on plasma adiponectin concentrations in both nondiabetic and diabetic subjects. An ≈10% reduction...
of BMI (nondiabetics, \(-10\pm1\%\); diabetics, \(-12\pm2\%\)) was achieved in 13 nondiabetic and 9 diabetic subjects. Plasma leptin levels were decreased in both nondiabetic (\(-58\pm4\%, P<0.001\)) and diabetic (\(-46\pm9\%, P<0.01\)) subjects. On the other hand, plasma adiponectin significantly increased after body weight reduction in nondiabetic subjects (\(42\pm13\%, P<0.01\)). An equivalent increase was observed in diabetic subjects (\(65\pm22\%, P<0.05\); Figure 2). Therefore, the plasma adiponectin level is negatively regulated by adiposity. Regulation by adiposity was conserved in the diabetic subjects.

Plasma leptin levels are known to show circadian variation: they are low in the morning and high in the evening.\(^{21}\) The daily profile of plasma adiponectin was investigated. Plasma glucose and insulin levels were elevated after every meal. Plasma leptin level showed a single peak at 6 PM. Plasma adiponectin showed no daily change in both the nondiabetic and diabetic subjects (Figure 3).

Discussion

Adiponectin is a collagen-like protein produced specifically by adipose tissue and is abundantly present in the circulation. When the vascular endothelium is injured, adiponectin accumulates in the subintimal space of the arterial wall through its interaction with collagens in the vascular intima.\(^{17}\) Adiponectin attenuates TNF-\(\alpha\)-induced expression of adhesion molecules in endothelial cells,\(^{18}\) which is an initial step of atherosclerosis.\(^{22,23}\) The significance of adiponectin in human disease has not been fully elucidated. In a previous study, we showed that obese subjects and subjects with CAD exhibited decreased plasma concentrations of adiponectin.\(^{16,18}\) In the present study, we investigated the plasma adiponectin concentrations in subjects with type 2 diabetes mellitus.

The subjects with type 2 diabetes mellitus showed significantly decreased plasma adiponectin concentrations. Although plasma adiponectin levels are negatively correlated with BMI, diabetic subjects had lower values of plasma adiponectin than did nondiabetic subjects, independent of BMI. Insulin regulates the secretion of various proteins from adipose tissue. Elevated plasma insulin in the diabetic subjects in this study may have been responsible for the decreased plasma adiponectin concentrations. The plasma level of leptin, another molecule specifically secreted from adipocytes, was positively correlated with fasting plasma insulin.\(^{7,19}\) On the other hand, the plasma adiponectin concentration was negatively correlated with the fasting plasma insulin level. The daily profile of plasma adiponectin levels revealed that it was not affected by food intake, in contrast with increased plasma insulin levels, suggesting that insulin does not have an acute effect on the plasma adiponectin level.

Chronic insulin resistance in type 2 diabetes may be related to decreased plasma adiponectin. Overproduction of TNF-\(\alpha\) by adipose tissue has been suggested in the development of insulin resistance.\(^{6,10,11}\) Adiponectin interferes with TNF-\(\alpha\) signaling in endothelial cells.\(^{16}\) Decreased plasma adiponectin may play a causative role in the development of insulin resistance.

Figure 2. Changes in plasma levels of leptin and adiponectin during weight reduction. Plasma levels of adiponectin and leptin were determined in 13 nondiabetic subjects (open circles) and 9 diabetic subjects (closed circles) as described in Methods. Plasma levels of leptin and adiponectin were expressed as percent change from initial values. Values shown are mean\(\pm\)SEM. \(*P<0.05*, **P<0.01*, ***P<0.001* for comparison with initial values.

Figure 3. Daily profiles of plasma glucose, insulin, leptin, and adiponectin concentrations. Plasma levels of glucose, insulin, leptin, and adiponectin were determined in 7 nondiabetic (open circles) and 6 diabetic (closed circles) subjects as described in Methods. Plasma levels of leptin and adiponectin were expressed as percent change from fasting values (ie, at 6:30 AM). Each point represents mean\(\pm\)SEM.
another possibility is that women with hypoadiponectinemia are susceptible to the development of vascular disease. Another remarkable finding in this study was that plasma adiponectin levels were decreased prominently in diabetic subjects without CAD. The causal relationship between atherosclerotic vascular disease and decreased plasma levels of adiponectin cannot be derived from our cross-sectional study. Further experimental cell research and prospective clinical studies will be necessary to clarify these points.

The reason for the sex difference in adiponectin concentration in the diabetic subjects without CAD has not been made clear. Clinically normal women have higher adiponectin levels than do men, as previously reported. Sex hormones, including estrogen, progesterone, and androgen, may affect the plasma adiponectin level. However, all of the women in this study were postmenopausal. Thus, the sexual dimorphism in adiponectin level cannot be accounted for solely by the effect of estrogen and/or progesterone. Diabetic patients with CAD are often asymptomatic. The diabetic women in this study may include patients with latent atherosclerotic vascular diseases. Another possibility is that women with hypoadiponectinemia are susceptible to the development of insulin resistance and type 2 diabetes. It is necessary to investigate the effect of adiponectin on insulin signaling and glucose metabolism. Different from leptin, the new adipocyte-derived protein adiponectin could be an indicator of macroangiopathy associated with diabetes. A lower adiponectin level may increase the risk of atherosclerosis. Reduction of BMI resulted in elevation of the plasma adiponectin. Consequently, attempts to reduce body weight to normalize the plasma adiponectin levels could be effective in preventing the development of atherosclerosis. However, this requires confirmation by means of prospective studies.

Acknowledgments

This work was supported by the Japan Society for the Promotion of Science and Education (JSP-RFTF 97L08081) and grants-in-aid from the Ministry of Education, Science, Sports and Culture of Japan (09307019, 10557100, 10557101, and 10671035). The authors express their appreciation to Kayoko Yamamoto and Akiko Takamoto for expert technical assistance.

References

Plasma Adiponectin Levels in Diabetic Patients

Hotta et al

1599

resistance. The effect of adiponectin on TNF-α signaling and insulin sensitivity in muscles should be investigated.

Another remarkable finding in this study was that plasma adiponectin levels were decreased prominently in diabetic subjects with CAD. In contrast, plasma levels of leptin did not differ between the diabetic subjects with and without CAD. Experimental research has indicated that adiponectin has potential antiatherogenic properties. Thus, the decreased plasma adiponectin in diabetic subjects may play a role in the development of atherosclerotic vascular damage. Another possibility is that accumulation of adiponectin in atherosclerotic vascular walls may accelerate its half-life in plasma, resulting in the reduction of the plasma concentration of adiponectin in subjects with CAD. The causal relationship between atherosclerotic vascular disease and decreased plasma levels of adiponectin cannot be derived from our cross-sectional study. Further experimental cell research and prospective clinical studies will be necessary to clarify these points.

In the current study, the plasma adiponectin level was independently correlated with the serum triglyceride level by multiple regression analysis. Hypertriglyceridemia is 1 of the major clinical features of the insulin resistance syndrome and is often accompanied by elevated plasma PAI-1 levels. Hypertriglyceridemia may take part in the development of atherosclerosis in concert with the dysregulation of adipocyte-derived proteins, which may be induced by high triglycerides. This observation suggests that high plasma adiponectin levels may be related to the reduction of the plasma triglyceride level. However, this requires confirmation by means of prospective studies.

Abstract

Downloaded from http://atvb.ahajournals.org/ by guest on October 15, 2017
Plasma Concentrations of a Novel, Adipose-Specific Protein, Adiponectin, in Type 2 Diabetic Patients

Kikuko Hotta, Tohru Funahashi, Yukio Arita, Masahiko Takahashi, Morihiro Matsuda, Yoshihisa Okamoto, Hiromi Iwahashi, Hiroshi Kuriyama, Noriyuki Ouchi, Kazuhiisa Maeda, Makoto Nishida, Shinji Kihara, Naohiko Sakai, Tadahisa Nakajima, Kyoichi Hasegawa, Masahiro Muraguchi, Yasukazu Ohmoto, Tadashi Nakamura, Shizuya Yamashita, Toshiaki Hanafusa and Yuji Matsuzawa

Arterioscler Thromb Vasc Biol. 2000;20:1595-1599
doi: 10.1161/01.ATV.20.6.1595

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2000 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/20/6/1595

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/