The Role of Inflammation in Cardiovascular Disease

Lewis H. Kuller, Russell P. Tracy

The article in this issue by Gusselkoo et al.,1 “C-reactive protein is a strong but nonspecific risk factor of fatal stroke in elderly persons,” demonstrates 2 important points. First, for maximum predictive value, a variable such as C-reactive protein (CRP) should preferably be a risk factor for a specific outcome rather than for a broad range of unrelated outcomes such as stroke, coronary heart disease, cancer, and total mortality. There are some risk factors such as cigarette smoking and radiation exposure that are associated with many different outcomes, and future work may show that CRP falls into this important category. However, in general, the specificity of an association is an important component, often reflecting a causal relationship. These investigators determined that elevated CRP is not specific for stroke or other cardiovascular disease mortality. This is not surprising, since an elevated CRP level is related to inflammation,2 and increased inflammation will be noted for many diseases, such as cancer, cardiovascular disease, infection, connective tissue diseases, injury, etc.

Second, the relationship between CRP and stroke or other causes of death was time dependent; ie, the shorter the time between the measurement of CRP and death, the higher were the levels of CRP. This finding is consistent with results in older individuals from the Cardiovascular Health Study3 but not with results in middle-aged or younger individuals, such as the follow-up of the Multiple Risk Factor Intervention Trial4 or the Physicians’ Health Study.5 In older surface in response to CRP.7 However, the association of elevated CRP may therefore be an important marker of evolving disease but not necessarily in the causal pathway. It is possible, however, that elevated CRP could be related to a specific pathophysiology, such as the risk of clotting and thrombosis that is part of the final common pathway, at least for cardiovascular disease. Possible mechanisms include the expression of tissue factor on the monocyte surface in response to CRP.7 However, the association of elevated CRP with multiple outcomes in this study would be most consistent with the position that this is not the case.

In younger and middle-aged individuals, CRP may be a measure of the evolving development of subclinical disease that is not identifiable by usual clinical measurement techniques. Years later, this evolving subclinical disease may lead to clinical disease. Thus, CRP again may not be in the causal pathway but rather a marker for the extent of unmeasured subclinical disease and its evolution over time. However, as above, there are possible mechanistic alternatives. Elevated CRP reflects an increased production of proinflammatory cytokines such as interleukin-6, which may be contributing to the pathophysiology of disease either directly8 or indirectly through their relationships to other important components of inflammation, thrombosis, or fibrinolysis.9,10

It would be imprudent to jump to the conclusion that CRP and related acute-phase proteins are mechanistic risk factors for disease and to assume that lowering the CRP level will reduce the risk of disease, without the appropriate evidence to support such a position. Although the study of CRP and other acute-phase proteins is of considerable importance, we should recognize that at the present time there is no direct evidence that CRP is an independent mechanistic risk factor for cardiovascular disease. There is also no evidence that it is in the causal pathway, and it does not appear to be a marker of disease extent or severity. Finally, there is certainly no evidence that lowering CRP, or any acute-phase protein, will reduce the progression of underlying disease or the risk of future disease events.

References

Key Words: Editors’ | inflammation | stroke | C-reactive protein | cytokines

© 2000 American Heart Association, Inc.

Arterioscler Thromb Vasc Biol. is available at http://www.ahajournals.org

Received December 20, 1999; accepted December 20, 1999.

From the University of Pittsburgh, Graduate School of Public Health, Department of Epidemiology, Pittsburgh, Pa (L.H.K.), and the University of Vermont–Pathology, Colchester Research Facility, Colchester (R.R.P.).

Correspondence to Lewis H. Kuller, MD, DrPH, University of Pittsburgh, Graduate School of Public Health, Department of Epidemiology, 130 DeSoto St, Pittsburgh, PA 15261. E-mail: kuller@imap.pitt.edu

© 2000 American Heart Association, Inc.

Arterioscler Thromb Vasc Biol. is available at http://www.ahajournals.org

901
The Role of Inflammation in Cardiovascular Disease
Lewis H. Kuller and Russell P. Tracy

Arterioscler Thromb Vasc Biol. 2000;20:901
doi: 10.1161/01.ATV.20.4.901

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2000 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/20/4/901

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Arteriosclerosis, Thrombosis, and Vascular Biology* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Arteriosclerosis, Thrombosis, and Vascular Biology* is online at:
http://atvb.ahajournals.org/subscriptions/