Radical-Mediated Oxidation of Isolated Human Very-Low-Density Lipoprotein

Detlef Mohr, Roland Stocker

Abstract Oxidative modification of human low-density lipoprotein (LDL) has received much attention because of its suggested involvement in the early events of atherogenesis. In contrast, little data exist concerning the oxidation of human very-low-density lipoprotein (VLDL), although such modification promotes foam cell formation by these lipoproteins. We therefore investigated the radical-mediated oxidation of VLDL by using controlled oxidizing conditions and sensitive and specific methods to assess lipoprotein lipid oxidation and antioxidation. We observed that the ratio of \(\alpha \)-tocopherol to coenzyme \(Q_0 \) in VLDL was close to that of LDL, suggesting that these lipoproteins may transport some coenzyme \(Q_0 \) to extrahepatic tissues, as they do tocopherol. Most of the coenzyme \(Q_0 \) associated with VLDL was present in its reduced, antioxidant active form, ubiquinol-10. The small amounts of ubiquinol-10 in VLDL provided the lipoprotein lipids with a highly efficient antioxidant protection. Also, the kinetics of radical-mediated lipid peroxidation in VLDL resembled that in LDL and therefore also probably proceeded via the recently described tocopherol-mediated peroxidation mechanism. Oxidation competition experiments using aqueous radicals and physiological concentrations and molar ratios of LDL and VLDL indicated that in contrast to the situation with high-density lipoproteins, lipid peroxidation was initiated and detected simultaneously in the former two lipoprotein particles. However, once initiated, peroxidation propagated at an approximately twofold higher rate in VLDL than LDL. Our studies suggest that radical-mediated lipid (per)oxidation proceeds via similar mechanisms in isolated LDL and VLDL. We conclude that efficient LDL antioxidants are also likely to be effective protective agents for VLDL. (Arterioscler Thromb. 1994;14:1186-1192.)

Key Words • atherosclerosis • free radicals • triglycerides • lipid peroxidation • ubiquinol • antioxidants

Low-density lipoproteins (LDLs) are generally considered to promote atherosclerosis, whereas high-density lipoproteins (HDLs), which are involved in reverse cholesterol transport, are considered to be antiatherogenic. The proatherogenic action of LDL is associated with its modification, which can result in rapid and uncontrolled uptake of the lipoprotein by certain cells (eg, macrophages and smooth muscle cells) with concomitant transformation of the latter into lipid-laden or foam cells. While the precise molecular mechanisms underlying its modification remain to be elucidated, oxidation of LDL is now generally believed to be important for the in vivo formation of foam cells. Other modifications, such as those resulting from exposure to and interaction of LDL with human arterial proteoglycans, may also contribute to the in vivo foam cell formation either separately or in combination with oxidative modification.

The atherogenic risk associated with high levels of very-low-density lipoproteins (VLDLs) remains controversial. However, oxidatively modified VLDL, similar to LDL, may contribute to in vivo foam cell formation in humans. This notion is based on the observation that in vitro exposure of \(\beta \)-VLDL isolated from animals fed a cholesterol-rich diet to macrophages or smooth muscle cells caused oxidation of this lipoprotein, resulting in its rapid uptake and a subsequent massive intracellular accumulation of lipids. Uptake of such oxidatively modified VLDL by macrophages is not mediated by the LDL receptor but rather via a receptor similar if not identical to that for oxidized LDL. Because of its potential relevance to atherogenesis, it is important to understand the mechanism(s) of VLDL oxidation and how this process is inhibited by the antioxidants associated with this lipoprotein.

Studies on oxidative modification of VLDL have been carried out predominantly, if not exclusively, with \(\beta \)-VLDL, so that at present very little information is available on the oxidation of human VLDL isolated from normolipidemic subjects. We have studied the oxidative modification of human LDL mediated by peroxyl radicals and transition metals like copper and iron salts. We have observed that the small amounts of ubiquinol-10 (QH\(_2\)) associated with LDL provide an important and highly efficient antioxidant defense, in the absence of QH\(_2\) and other suitable reductants, \(\alpha \)-tocopherol (TOH), the quantitatively major lipid-soluble antioxidant in LDL can act as a pro-oxidant. We have also reported that during the initial stages of radical-mediated oxidation of human blood plasma from fasted donors, lipoprotein lipid oxidation occurred preferentially in HDL rather than LDL, and we suggested that this was due to the apparent absence of QH\(_2\) from HDL. In the present study we measured the endogenous antioxidants associated with freshly isolated human VLDL from healthy subjects and compared its free radical-mediated oxidation with that of LDL and HDL. The results show that VLDL contains QH\(_2\) and that the oxidation kinetics of VLDL lipids is similar to that of LDL. Furthermore, competition experiments revealed that unlike HDL lipids, VLDL lipids are oxidized simultaneously with those of LDL.

Received November 18, 1993; revision accepted March 29, 1994.
From The Heart Research Institute, Camperdown, Australia.
Reprint requests to Dr R. Stocker, The Heart Research Institute, 145 Missenden Rd, Camperdown NSW 2050, Australia.
© 1994 American Heart Association, Inc.
Methods

Affi-Gel Blue Gel (50 to 100 mesh) was obtained from Bio-Rad, and trioleate, trilinoleate, cholesteryl oleate, cholesteryl linoleate, and cholesteryl arachidonate were from Sigma Chemical Co. Ubiquinone-10 and (all E)-lycopene were generous gifts from Mitsubishi Gas Chemicals and H. Koller (Hoffmann-La Roche), respectively. The OH₂ standard was prepared from ubiquinone-10 by dithionite reduction¹⁸ and used immediately after its preparation. Lipid hydroperoxide standards were prepared from the corresponding purified lipids.¹⁹ Organic solvents of high-performance liquid chromatography (HPLC) quality and "nanopure" water were used throughout. All aqueous solutions and buffers were treated with Chelex-100 (Bio-Rad) to remove contaminating transition metals. All other chemicals used were the same as described¹⁹ and were of the highest purity available.

Plasma was prepared from blood obtained from nonfasted, healthy, normolipidemic subjects (25 through 40 years old) under the guidelines of and with approval from the local human ethics committee. The blood was heparinized immediately, and VLDL was isolated by three consecutive centrifugations, using a benchtop ultracentrifuge (TI75, Beckman Instruments). Briefly, 5.1-mL polyallomer tubes (Beckman) were filled with 3 mL phosphate-buffered saline (PBS; 150 mmol/L NaCl and 50 mmol/L PO₄³⁻, pH 7.4) containing 0.1% EDTA and underlayered with 2 mL plasma, the density of which had been adjusted to d = 1.21 g/mL with solid KBr. The tubes were placed into a TLA-100.4 fixed-angle rotor (Beckman) and centrifuged at 15°C and 417 000g for 10 hours. The visible LDL band was withdrawn by appropriately piercing the tubes, and the LDL-obtained gel was filtered by using a PD-10 Sephadex G-25M column (Pharmacia LKB Biotechnology) and used for the VLDL/LDL oxidation-competition experiments.

For VLDL isolation, the tubes were sliced at the top, and the triglyceride (TG)-rich lipoprotein (TRL)—containing top fraction was collected. Separation of TRL into chylomicrons and VLDL was achieved by using the method of Traber et al.²⁰ with minor modifications. The TRL-containing fraction was dispensed (0.75 mL) into 2-mL polyallomer tubes and carefully overlayered with PBS of density d = 1.006 g/mL, and containing 0.1% EDTA. The samples were centrifuged at 100 000 rpm for 5 minutes at 4°C by using a TLA-100.2 fixed-angle rotor (Beckman), and centrifuged at 15°C and 417 000g for 3 hours. The visible LDL band was withdrawn by appropriately piercing the tubes, and the LDL-obtained gel was filtered by using a PD-10 Sephadex G-25M column (Pharmacia LKB Biotechnology) and used for the VLDL/LDL oxidation-competition experiments.

For VLDL oxidation, pure VLDL (2 mL, 0.26 to 0.53 mg protein/mL, corresponding to 50 to 100 nmoL/L) was incubated in PBS at 37°C with aqueous solutions of the thermolabile peroxyl radical generator 2,2'-azobis(2-amidinopropane hydrochloride) (AAAPH). At various time intervals, 200-mL aliquots of the reaction solution were withdrawn, added to cold methanol (2 mL) containing 0.02% acetic acid, and extracted by vigorous shaking with cold hexane (10 mL). After centrifugation of the biphasic extract, the hexane phase was removed and evaporated to dryness, and the residue was redissolved in methanol/β-butyrol alcohol (1:1, vol/vol) and analyzed immediately for lipid-soluble antioxidants, TGs, and unoxidized CE and free cholesterol by HPLC methods.¹²,¹³ The formation of hydroperoxides of CEs (CEOOHs) and TGs (TGOOHs) during oxidation of VLDL or isolated TGs was monitored by HPLC with postcolumn chemiluminescence detection by using the described HPLC system (250-mm C₁₈ column, 5-µm particle size, Supelco) but with methanol/β-butyrol alcohol (9:1, vol/vol) at 1 mL/min as eluent and a CLD-110 chemiluminescence detector (Tohoku Electronic). The detection limit for chemiluminescence was determined to be approximately 1 pmol, i.e., about an order of magnitude more sensitive than that reported by Stocker et al.¹³ This difference in sensitivity is likely due to the different solvent and chemiluminescence detector used.

Phospholipid hydroperoxides were determined by analysing the aqueous methanol phase of the samples after hexane extraction by using an LC-NH₂ column (250 mm, 5-µm particle size, Supelco) connected to the above-mentioned HPLC-UV/chemiluminescence system and 5% NaH₂PO₄ (40 mMol/L) in methanol as eluent at a flow rate of 1 mL/min. In some cases, free and total cholesterol contents were determined by using the cholesterol oxidase-p-aminophenazone method (± cholesterol esterase) (Boehringer Biodiagnostika kit, Boehringer Mannheim GmbH). Data obtained in this way were in good agreement with HPLC determination in the case of free cholesterol, but CE values derived from HPLC were somewhat lower. This was likely due to the small amounts of VLDL cholesteryl palmitate, which absorbs poorly at 210 nm, which were not included in our calculation. CEEOHs and TGOOHs present in the organic extract prepared from oxidized VLDL were internally standardized against free cholesterol, and their concentrations were determined by using Chl8:2-OOH as a standard, assuming that the chemiluminescence response factor of the latter is similar to that of other CEEOHs and TGOOHs.²²

To verify the chemical nature of the chemiluminescence-positive compounds as lipid hydroperoxides,²⁴ the evaporated hexane phase of some oxidized VLDL samples (500 µL) was dissolved in 500 µL methanol/β-butyrol alcohol (1:1, vol/vol), mixed with 500 µL of a fresh solution of NaBH₄ (10 mg/mL) prepared in methanol, and incubated for 60 minutes at 4°C in the dark. Sodium borohydride reduces lipid hydroperoxides to their corresponding alcohols, which are chemiluminescence inactive. Methanol (1 mL) and water (500 µL) were then added, the mixture was extracted with 10 mL hexane, and the hexane phase was analyzed as described above. Control incubations were done in the absence of sodium borohydride.

The three major TG groups of VLDL separated by HPLC and monitored at 210 nm were collected either together or as three separate fractions and oxidized in ethanol at 37°C for 15 hours in the presence of 2,2'-azobis(2,4-dimethylvaleronitrile) (AMVN, 4 mMol/L). TG oxidation products were subsequently separated by using the HPLC method described above, and the corresponding VLDL oxidation products were assigned to them.

To compare the susceptibility of LDL and VLDL lipids to aqueous peroxyl radicals, both lipoproteins were isolated.
Lipids and Antioxidants in Human VLDL From Plasma of Six Healthy Subjects

<table>
<thead>
<tr>
<th>Subject, Sex</th>
<th>VLDL, nmol/L</th>
<th>Protein, mg/mL</th>
<th>TG, mmol/L (mg/dL)</th>
<th>Free Cholesterol, μmol/L (mpp)</th>
<th>Cholesteryl Esters, μmol/L (mpp)</th>
<th>Coenzyme Q 10* μmol/L (mpp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>50.8</td>
<td>0.4†</td>
<td>1.25 (111)</td>
<td>139 (2736)</td>
<td>247 (4862)</td>
<td>0.30 (1.5)</td>
</tr>
<tr>
<td>M</td>
<td>67.1</td>
<td>n.d.</td>
<td>1.71 (151)</td>
<td>309 (4605)</td>
<td>664 (9896)</td>
<td>0.41 (6.4)</td>
</tr>
<tr>
<td>M</td>
<td>128</td>
<td>0.56</td>
<td>3.34 (296)</td>
<td>457 (3567)</td>
<td>1069 (8352)</td>
<td>0.31 (2.5)</td>
</tr>
<tr>
<td>F</td>
<td>7.0</td>
<td>0.02</td>
<td>0.16 (18)</td>
<td>20.6 (2943)</td>
<td>33 (4714)</td>
<td>0.02 (2.9)</td>
</tr>
<tr>
<td>M</td>
<td>30.7</td>
<td>0.16</td>
<td>0.78 (69)</td>
<td>100 (3257)</td>
<td>152 (4951)</td>
<td>0.07 (2.2)</td>
</tr>
<tr>
<td>M</td>
<td>75.7±14.62</td>
<td>0.4±0.03</td>
<td>2.0 (177)</td>
<td>311 (3988)</td>
<td>567 (7484)</td>
<td>0.55 (7.0)</td>
</tr>
</tbody>
</table>

n=5 ±0.43 (38.5) ±62.3 (292) ±185 (1025) ±0.24 (1.83)

VLDL indicates very-low-density lipoprotein; TG, triglycerides; and mpp, molecules per VLDL particle. Concentrations given refer to the VLDL preparations obtained. The concentration of VLDL was calculated from both protein and triglyceride determinations of the lipoprotein, assuming a mean molecular weight for VLDL of 4.5x10^7 D and mean relative molecular masses of 50% and 10% for VLDL triglycerides and proteins, respectively.22-33 Both calculations gave comparable molar concentrations of VLDL. Triglyceride concentrations were calculated as triolein equivalent. The bottom row represents mean±SD values of one individual determined from five independent isolations. Other results are mean (SD).

*Coenzyme Q 10 is ubiquinone-10+ubiquinol-10.
†VLDL sample not passed over Affi-Gei Blue Gei column.

Results

The Table shows the concentrations of lipid-soluble antioxidants, TGs, cholesterol, and CE in VLDL prepared at different concentrations from plasma obtained from six different normolipidemic individuals. Also shown are the mean±SD values of VLDL lipids and antioxidants of one individual determined from five independent isolations. The relative concentrations of individual lipids and antioxidants varied substantially among the six subjects, consistent with similar large variations reported for human LDL.24 TOH was quantitatively the major antioxidant, with its levels and those of β-carotene detected in our study being in good agreement with literature data.29 There is little information available at present on the concentration of QH2 in human VLDL preparations.27 The Table presents the sum of the reduced (QH2) and oxidized (ubiquinone-10) forms of coenzyme Q10. Although in most VLDL preparations the redox status of coenzyme Q10 favored ubiquinone-10, this was likely the result of inadvertent auto-oxidation of QH2 (to ubiquinone-10) during the lengthy isolation procedure. This is supported by the fact that with increasing isolation speed and care to prevent auto-oxidation (by performing as many steps of the isolation procedure as possible under argon), the redox status of coenzyme Q10 in the resulting VLDL increased to a QH2/ubiquinone-10 ratio of up to 3:1. A redox ratio in favor of the reduced form is consistent with our observation on VLDL-containing TRL isolated rapidly from human plasma.13 We conclude from both these results that VLDL, like LDL, contains small but significant amounts of QH2.

To examine VLDL oxidation and antioxidant, we exposed freshly prepared VLDL (0.29 mg protein/mL, corresponding to 65 nmol/L) to a constant flux of aqueous peroxyl radicals produced by the thermal decomposition of the azo compound AAPH.28 The radical initiator was used at 0.5 mmol/L to give a calculated rate of peroxyl radical generation (Rg) of 5.5 x 10^-10 mol/L • s^-1 (Rg=1.1 x 10^-6 [AAPH], as described for aqueous protein-containing solutions).29 Determination of the effective rate of peroxidation initiation (R0) in VLDL (R0=2d[TOH]/dt) revealed a value of 1.2 x 10^-19 mol/L • s^-1, suggesting that most of the radicals generated in the aqueous phase by AAPH reacted with each other rather than with components of VLDL. A low efficacy of lipid oxidation initiation by AAPH has been observed with LDL.12,30 Exposure of VLDL to such radical flux resulted in immediate disappearance of QH2, with approximately 80% being consumed rapidly and linearly within the first hour of incubation (Fig 1). In contrast, a corresponding control incubation of VLDL in the absence of AAPH resulted in a much slower rate of (auto)oxidation of QH2, with more than 20% of this antioxidant remaining even after 5 hours of incubation (not shown). Also, peroxyl radical-induced consumption of TOH (Fig 1), lycopene, and β-carotene (not shown) was very slow (d[TOH]/dt=5.7 x 10^-11 mol/L • s^-1), and even after 5 hours of incubation of VLDL with 0.5 mmol/L AAPH at 37°C more than 90% of these antioxidants remained present.

Lipid hydroperoxides were detected neither in freshly isolated VLDL nor in the lipoprotein during the first 30 minutes of the oxidation, suggesting that the endogenous antioxidants associated with this lipoprotein efficiently protected its lipids from oxidative damage. Only small amounts of lipid hydroperoxides were detectable

separately by using the methods described above. The concentration of each lipoprotein was determined before they were recombined at a ratio resembling that of these two lipoproteins in normal, nonfasted human plasma, ie, about 37 LDL particles for 1 VLDL particle. The lipoprotein mixture (4 mL) (LDL 0.56 mg protein/mL or 1.12 mmol/L, VLDL 0.39 mg protein/mL or 0.074 mmol/L) was incubated under air at 37°C but significant amounts of QH2.

both these results that VLDL, like LDL, contains small

with our observation on VLDL-containing TRL iso-

lated rapidly from human plasma.13 We conclude from

both these results that VLDL, like LDL, contains small but significant amounts of QH2.

To examine VLDL oxidation and antioxidant, we exposed freshly prepared VLDL (0.29 mg protein/mL, corresponding to 65 nmol/L) to a constant flux of aqueous peroxyl radicals produced by the thermal decomposition of the azo compound AAPH.28 The radical initiator was used at 0.5 mmol/L to give a calculated rate of peroxyl radical generation (Rg) of 5.5 x 10^-10 mol/L • s^-1 (Rg=1.1 x 10^-6 [AAPH], as described for aqueous protein-containing solutions).29 Determination of the effective rate of peroxidation initiation (R0) in VLDL (R0=2d[TOH]/dt) revealed a value of 1.2 x 10^-19 mol/L • s^-1, suggesting that most of the radicals generated in the aqueous phase by AAPH reacted with each other rather than with components of VLDL. A low efficacy of lipid oxidation initiation by AAPH has been observed with LDL.12,30 Exposure of VLDL to such radical flux resulted in immediate disappearance of QH2, with approximately 80% being consumed rapidly and linearly within the first hour of incubation (Fig 1). In contrast, a corresponding control incubation of VLDL in the absence of AAPH resulted in a much slower rate of (auto)oxidation of QH2, with more than 20% of this antioxidant remaining even after 5 hours of incubation (not shown). Also, peroxyl radical-induced consumption of TOH (Fig 1), lycopene, and β-carotene (not shown) was very slow (d[TOH]/dt=5.7 x 10^-11 mol/L • s^-1), and even after 5 hours of incubation of VLDL with 0.5 mmol/L AAPH at 37°C more than 90% of these antioxidants remained present.

Lipid hydroperoxides were detected neither in freshly isolated VLDL nor in the lipoprotein during the first 30 minutes of the oxidation, suggesting that the endogenous antioxidants associated with this lipoprotein efficiently protected its lipids from oxidative damage. Only small amounts of lipid hydroperoxides were detectable
TGs constitute more than 60% of the total lipids in VLDL, with palmitic, oleic, and linoleic acids being the dized) TG groups of complex fatty acid composition.

The initial (0-minute) concentrations of ubiquinol-10 (solid squares) and α-tocopherol (solid circles) were 2.1 ±0.05 (0.94) mmol/L lipoprotein) was added to a mixture of isolated, combined TG peaks 1 through 3' representing the major (unoxidized) TG groups of complex fatty acid composition. TGs constitute more than 60% of the total lipids in VLDL, with palmitic, oleic, and linoleic acids being the major fatty acid esters.²² Because of their complexity in composition we did not attempt to separate all individual species of VLDL TGs and resulting TGOOHs. Under identical chromatographic conditions, authentic trilinoleate and trileoleate eluted with retention times of 8.8 and 12.8 minutes, respectively (not shown). Fig 2 (bottom) shows a typical chromatogram of an organic lipid extract prepared from AAPH-oxidized VLDL with Ch18:2-OOH, the major hydroperoxide of the CE of the lipoprotein, eluting at around 35 minutes, as identified by coelution with an authentic standard. Lipid hydroperoxides were verified as such by sodium borohydride treatment⁴ of VLDL extracts, which led to a complete disappearance of the hydroperoxides of TGs and cholesteryl esters (dotted line).

![Fig 2](image-url)

Fig 2. Typical high-performance liquid chromatography (HPLC) traces of the organic extract of an unoxidized (top) and a 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH)-oxidized very-low-density (VLDL) (bottom) sample with UV210 nm and chemiluminescence detection, respectively. For the oxidized sample, VLDL (0.4 mg protein/mL) was incubated with AAPH (1 mmol/L) for 2 hours. Samples were processed and analyzed by reversed-phase HPLC by using methanol/f-butyl alcohol (9:1, vol/vol) for unoxidized and methanol/t-butyl alcohol (9:1, vol/vol) for oxidized lipids. Peaks 1 through 3 (top) represent triglycerides (TG) of unknown composition; free cholesterol (FC), cholesteryl arachidonate (Ch20:4), Ch18:2, and cholesteryl oleate (Ch18:1) were identified and quantified by coelution with authentic standards of known concentration. Peaks 1' through 3' (bottom) correspond to the oxidation products derived from peaks 1 through 3 (top). Inset, Chemiluminescence chromatogram obtained when the isolated, combined TG peaks 1 through 3 were oxidized with 2,2'-azobis(2,4-dimethylvaleronitrile). Assignment of peaks 1' through 3' was based on oxidation results of isolated, individual TG peaks 1 through 3 (not shown). Ch18:2-OOH was identified by coelution with an authentic standard. Lipid hydroperoxides were verified as such by sodium borohydride treatment⁴ of VLDL extracts, which led to a complete disappearance of the hydroperoxides of TGs and cholesteryl esters (dotted line).

![Fig 1](image-url)

Fig 1. Line graph showing peroxidation of human very-low-density lipoprotein (VLDL) by a low steady flux of aqueous peroxyl radicals. Controlled oxidation of isolated VLDL (29 mg protein/mL, corresponding to 65 mmol/L lipoprotein) was achieved by exposing the lipoprotein to 2,2'-azobis(2-amidinopropane hydrochloride) (0.5 mmol/L) at 37°C. At the times indicated, aliquots of the reaction mixture were withdrawn and analyzed for the hydroperoxides of cholesteryl esters (open squares with crossed lines) and triglycerides (open squares with diagonal lines). The initial (0-minute) concentrations of ubiquinol-10 (solid squares) and α-tocopherol (solid circles) were 2.1 and 6.4 μmol/L, respectively. The results shown are representative of five independent experiments performed with VLDL isolated from different donors, with the initial concentrations of antioxidants within the range shown in the Table.
achieved by exposing the lipoprotein to 2,2'-azobis(2-amidino-peroxyl radicals. Controlled oxidation of isolated VLDL (0.3 mg protein/mL, corresponding to 67 nmol/L lipoprotein) was achieved by exposing the lipoprotein to 2,2'-azobis(2-amidino-propane hydrochloride) (16 mmol/L) at 37°C. At the times indicated, aliquots of the reaction mixture were withdrawn and analyzed for the hydroperoxides of cholesteryl esters (open squares with crossed lines) and triglycerides (open squares with diagonal lines). The initial (0-minute) concentrations of ubiquinol-10 (solid squares) and α-tocopherol (solid circles) were 0.03 and 7.9 μmol/L, respectively. The results shown are representative of three independent experiments performed with VLDL isolated from different donors, with the initial concentrations of antioxidants within the range shown in the Table.

individual peaks (chromatograms not shown) with the lipid-soluble radical generator AMVN in methanol/1-butyl alcohol (1:1, vol/vol) led to the series of chemiluminescence-positive peaks 1 through 3.

The oxidation of lipids in isolated LDL exposed to either oxygen-saturated buffer,31 low concentrations of transition metals,32 or a mild radical flux30 proceeds in different stages, which may be divided into (1) a strongly inhibited phase (during which QH2 is consumed), (2) a TOH-inhibited phase (during which TOH is consumed), and (3) a TOH-uninhibited phase (following consumption of TOH and other antioxidants). While not observed during the present studies, an interesting feature of LDL oxidation studies is that the rate of lipid oxidation during the TOH-inhibited phase is comparable to and in some cases even higher than that during the TOH-uninhibited period.30,32 We have also observed such kinetic behavior of lipid peroxidation during radical-mediated LDL oxidation and explained it on experimental and theoretical grounds by postulating that TOH acts as both a phase- and peroxidation chain-transfer agent.14-16 To examine whether oxidation of VLDL lipids proceeded with similar kinetics to those of LDL, we exposed the former to a higher concentration of AAPH (16 mmol/L) and examined R5 during the TOH-inhibited and TOH-uninhibited periods. As expected, such treatment resulted in very rapid consumption of QH2, and TOH disappeared from the beginning at an initially linear rate of 2.7X10-9 mol/L·s-1 (Fig 3). A lag phase for the formation of TG/OOHs and C/E/OOHs (Fig 1) could not be observed clearly under these conditions, and TGs peroxidized at 4.75X10-9 mol/L·s-1, corresponding to υshap=0.9. Similar to the situation with LDL,14,16 the peroxidation rate slowed when approximately 85% of TOH was consumed (corresponding to approximately 30 molecules of TOH remaining per VLDL particle). Following consumption of all TOH, R5 increased to a rate close to double that observed during the inhibited period.

Previous competition experiments between LDL and HDL show that the lipids of the latter are oxidized preferentially by peroxyl radicals.17 We therefore examined the relative oxidizability of VLDL versus LDL lipids by recombining the two separately purified lipoproteins at a molar ratio resembling that in human plasma, ie, [LDL]/[VLDL] is approximately 18 in human plasma versus 15 (LDL 0.56 mg protein/mL or 0.074 mmol/L, VLDL 0.39 mg protein/mL or 0.22 and 0.14 μmol/L, respectively, and those for α-tocopherol were 6.5 and 4.7 μmol/L, respectively. The results shown are typical of three independent experiments performed with LDL and VLDL mixtures obtained from different donors.

Discussion

VLDL and LDL differ greatly in particle size, a fact reflected in the different number of lipid and antioxidant molecules in the two lipoprotein particles. While
we observed that the free cholesterol levels in VLDL varied among different individuals, there were on average close to 4000 cholesterol molecules per lipoprotein particle. This value is about half of that in Lenter but agrees well with the data reported by Winocour et al. for large VLDL particles. More interesting in the context of lipoprotein oxidation, VLDL contained significant amounts of QH₂. Dietary coenzyme Q₁₀ reaches the liver, from where it and newly synthesized coenzyme Q₁₀ are secreted within VLDL; once present in the circulation, coenzyme Q₁₀ is distributed among other lipoproteins and may be taken up slowly by at least some tissues. Our observation that the ratio of TOH/ubiquinone-10+QH₂ was only somewhat higher in VLDL (Table) than LDL is consistent with these reports and suggests that these lipoproteins may, like TOH, transport some coenzyme Q₁₀ to extrahepatic tissues.

Our findings indicate further that coenzyme Q₁₀ in human VLDL is present largely in its reduced, antioxidant form. Indeed, VLDL Q₁₀ is capable of efficiently protecting VLDL lipids against radical-mediated oxidative damage. The antioxidant action of Q₁₀ in VLDL appears to be similar to that in LDL, ie, most likely mediated by reduction of α-tocopheroxyl radical within the lipoprotein. Direct radical scavenging by QH₂ is unlikely considering its similar (to TOH) reactivity toward peroxyl radicals and that there are at least 30 molecules of TOH for every molecule of QH₂ in VLDL. Also, regeneration of TOH from α-tocopheroxyl radicals alone cannot explain the high antioxidant efficacy of QH₂, as in this case the antioxidant defense of VLDL would have to rely on TOH alone. The latter notion, however, is incompatible with the observed sharp increase in the rate of lipid peroxidation during the early stages of VLDL oxidation, when the concentrations of TOH did not change substantially. Considering the similarities between the kinetics of lipid peroxidation in VLDL (this study) and LDL, we conclude that the recently proposed mechanism of tocopherol-mediated peroxidation is also likely to be operative during peroxyl-mediated and other radical-mediated VLDL oxidation. According to this mechanism, α-tocopheroxyl radicals inside VLDL (or LDL) cannot readily leave the particle and, unless eliminated, eg, through reduction by QH₂ or ascorbate, are forced to react with polyunsaturated lipids, thereby acting as an oxidation chain-carrying agent.

Oxidation competition experiments using physiological concentrations and molar ratios of LDL and VLDL revealed that the frequency with which the randomly produced radicals initiated lipid peroxidation in LDL was some 2.7-fold greater than in VLDL. This value is comparable to the ratio of the total surfaces of the two lipoproteins (ie, 13.5×1810 nm² = 24 435 nm² for LDL and 1×9503 nm² = 9503 nm² for VLDL; surface LDL(surface VLDL) = 2.6). This indicates that the aqueous peroxyl radicals do not discriminate between the two lipoprotein particles, so that neither one of them is oxidized preferentially. Since the chromanol moiety of TOH is by far the most reactive group a peroxyl radical can encounter on the surface of lipoproteins, these results suggest that the TOH/surface ratio in VLDL is similar to that in LDL. Once peroxidation is initiated within the lipoprotein particles, the resulting effective oxidation chain length is more than twofold higher in VLDL than LDL (Fig 4). Assuming that chain terminating reactions are mostly due to interactions between the single (trapped) radical within the lipoprotein particle and AAPH-derived radicals in the aqueous phase, a longer oxidation chain length in VLDL than LDL may be rationalized by the larger volume/surface ratio of the former (ie, 9.2 and 4.0 for VLDL and LDL, respectively). Thus, as the volume/surface ratio increases, the probability for a mobile tocopheroxyl radical residing in a lipoprotein to undergo oxidation chain termination reactions on the particle surface decreases. By analogy, in HDL, with its low volume/surface ratio, the oxidation chain length should be relatively small, as indeed has been observed.

In conclusion, our studies suggest that radical-mediated lipid oxidation in VLDL proceeds via similar mechanisms as in LDL. Therefore, efficient LDL antioxidants are likely to be effective protective agents for VLDL.

Acknowledgments

This work was supported in part by the National Health and Medical Research Council, Australia (grant No. 910284 to Dr Stocker) and the Deutsche Forschungsgemeinschaft (Dr Mohr). We thank Dr D. Sullivan for advice on the isolation of VLDL and C. Contacos for her help with the enzymatic determination of cholesterol and its esters. We also thank the volunteers for providing blood samples.

References

density lipoprotein to the initiation of lipid peroxidation. *Biochim

14. Bowry VW, Ingold KU, Stocker R. Vitamin E in human low-
density lipoprotein. when and how this antioxidant becomes a

15. Ingold KU, Bowry VW, Stocker R, Walling C. Auto-oxidation of
lipids and antioxidation by α-tocopherol and ubiquinol in homo-
geneous solution and in aqueous dispersions of lipids: the unre-
cognized consequences of lipid particle size as exemplified by the
oxidation of human low density lipoprotein. *Proc Natl Acad Sci
U S A.* 1993;90:45-49.

16. Bowry VW, Stocker R. Tocopherol-mediated peroxidation: the
pro-oxidant effect of vitamin E on the radical-initiated oxidation of
6029-6044.

17. Bowry VW, Stanley KK, Stocker R. High density lipoprotein is the
major carrier of lipid hydroperoxides in fasted human plasma. *Proc

18. Lang JK, Gohil K, Packer L. Simultaneous determination of toco-
opherols, ubiquinols, and ubiquinones in blood, plasma, tissue
homogenates, and subcellular fractions. *Anal Biochem.* 1986;157:
106-116.

using high-performance liquid chromatography with isoluminoxil
chemiluminescence detection. *Methods Enzymol.* 1990;186:
371-380.

20. Traber MG, Kayden HJ, Rindler MJ. Polarized secretion of newly
synthesized lipoproteins by the Caco-2 human intestinal cell line.

21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein mea-
surement with the Folin phenol reagent. *J Biol Chem.* 1951;193:
265-275.

22. Sattler W, Puhl H, Hayn M, Kostner GM, Esterbauer H. Deter-
mination of fatty acids in the main lipoprotein classes by capillary
gas chromatography. BF3/methanol transesterification of hyph-
lized samples instead of Folch extraction gives higher yields. *Anal

23. Yamamoto Y, BrodkyMH, Baker JC, Ames BN. Detection and char-
acterization of lipid hydroperoxides at picomole levels by high-

24. Frei B, Yamamoto Y, Niclás D, Ames BN. Evaluation of an iso-
luminol chemiluminescence assay for the detection of hydroper-

Effect of antioxidants on oxidative modification of LDL. *Ann Med.*

26. Bjornden LK, Kayden HJ, Miller E, Moshell AN. The transport of
17:343-352.

27. Elmberger PG, Kalén A, Brunk UT, Dallner G. Discharge of
newly-synthesized dolichol and ubiquinone with lipoproteins to rat

28. Yamamoto Y, Niki E, Kamya Y, Shimaski H. Oxidation of lipids,
VII: oxidation of phosphatidylcholines in homogeneous solution

29. Niki E, Saito M, Yoshikawa Y, Yamamoto Y, Kamya Y. Oxidation
of lipids, XII: inhibition of oxidation of soybean phosphatidyl-
choline and methyl linolate in aqueous dispersion by uric acid.

30. Sato K, Niki E, Shimaski H. Free radical-mediated chain oxida-
tion of low density lipoprotein and its synergistic inhibition by

31. Esterbauer H, Jürgens G, Quchenberger O, Kolker E. Auto-
oxidation of human low density lipoprotein: loss of polyunsat-
urated fatty acids and vitamin E and generation of aldehydes.

DS. α-Tocopherol consumption during low-density-lipoprotein

33. Lentner C. Geigy Scientific Tables: Physical Chemistry, Composi-

34. Winocour PH, Durrington PN, Bhattachar D, Ishola M, Arrol S,
Mackness M. Abnormalities of VLDL, LDL, and HDL characterize
insulin-dependent diabetes mellitus. *Arterioscler Thromb.* 1992;12:
920-928.

35. Tomono Y, Hasegawa J, Seki T, Motegi K, Morishita N. Pharma-
cokinetic study of deuterium-labelled coenzyme Q10 in man. *Int J

Q10 from the liver to other tissues after intravenous administration

37. Mukai K, Itoh S, Morimoto H. Stopped-flow kinetic study of
vitamin E regeneration reaction with biological hydroquinones
(reduced forms of ubiquinone, vitamin K, and tocopherolquinone)