Increased Intima-Media Thickness of the Common Carotid Artery in Hypercholesterolemic Children

Paolo Pauciullo, Arcangelo Iannuzzi, Renata Sartorio, Concetta Irace, Giuseppe Covetti, Anna Di Costanzo, Paolo Rubba

Abstract Common carotid intima-media thickness was measured by B-mode ultrasound imaging in 46 children (mean age, 7.4 years) with serum cholesterol ≥6.4 mmol/L (mean, 8.25 mmol/L) and in 48 children (mean age, 6.4 years) with serum cholesterol <6.4 mmol/L (mean, 4.60 mmol/L). Maximum thickness was significantly higher in hypercholesterolemic children than in control children (0.50 versus 0.47 mm, P=.007). Subgroup analysis showed that only in children >6.2 years old (the median of all the children's ages) was maximum thickness significantly higher in hypercholesterolemic children than in control children (0.51 versus 0.48 mm, P=.014). The odds ratio (OR) of common carotid intima-media thickening (maximum thickness of the far wall higher than the 95th percentile of the control group, 0.51 mm) between patients and control subjects was statistically significant both in univariate analysis (OR, 6.39; 95% confidence interval, 1.19 to 32.3; P=.025) and after age (OR, 5.96; 95% confidence interval, 1.09 to 32.4; P=.039) and sex (OR, 7.54; 95% confidence interval, 1.38 to 41.2; P=.020) were controlled for. Children >6 years old with serum cholesterol ≥6.4 mmol/L show increased thickness of the common carotid intima-media. (Arterioscler Thromb. 1994;14:1075-1079.)

Key Words: children • atherosclerosis • carotid arteries • hypercholesterolemia

The relationship between hypercholesterolemia and coronary artery diseases (CAD) has been proved in adult CAD patients. The significance of this relationship is more controversial in healthy subjects, particularly if their serum cholesterol is <6.4 mmol/L. Children form a special subgroup of healthy individuals. Population-based or "high-risk"-based screenings for serum cholesterol are usually recommended, although others oppose this view on the basis of potential harm and of nonproven efficacy in the prevention of adult CAD.

Autopsy studies on arterial specimens of human subjects have shown that fatty streaks (nonraised lesions) can be found in the aortas even of 3-year-olds and appear in the coronary arteries during the second decade of life. More advanced coronary atherosclerosis was seen in a majority of young adults in whom autopsies were performed during the Korean and Vietnam wars. Aortic fatty streaks detected in subjects who had died between full-term birth and age 29 years appeared to be strongly related to antemortem levels of both total and low-density lipoprotein (LDL) cholesterol. Raised lesions, like fibrous plaques, are related to clinical CAD, but the progression of fatty streaks to fibrous plaques is uncertain. Arterial fibrous plaques have been found in autopsy specimens from children, but no data are available on noninvasive evaluation of the arterial wall in children, which could allow an anatomically based screening of children with early signs of atherosclerosis. B-mode ultrasound imaging of the extracranial carotid arteries offers a valid and repeatable noninvasive method for quantifying the early signs of atherosclerosis. Its findings have been shown to be related to the presence and extent of CAD. Increased thickness of the intima-media of common carotid arteries has been found in adult hypercholesterolemic individuals compared with control groups. The aim of the present study is to evaluate whether hypercholesterolemic children have a thicker intima-media in the common carotid artery compared with that of a control group comparable for sex and age distribution.

Methods

Patients

Data published in Italy suggest that the 95th percentile of serum cholesterol concentration in the age range of 2 to 15 years lies between 6.0 and 6.4 mmol/L. Therefore, 46 normotriglyceridemic (<2 mmol/L) children (>2 and <14 years old) with serum total cholesterol ≥6.4 mmol/L were included in the present study. A complete physical examination and blood tests were performed to exclude secondary forms of hyperlipidemia. All children had first-degree relatives or grandparents with hypercholesterolemia and/or history of CAD before age 55 years. On the basis of the above-mentioned criteria, hypercholesterolemic children qualified for the clinical diagnosis of familial hypercho-

Received October 5, 1993; revision accepted March 25, 1994.

From the Institute of Internal Medicine and Metabolic Diseases and the Department of Pediatrics (R.S., A. Di C.), Federico II University, Naples, Italy.

Correspondence to Dr Paolo Pauciullo, Institute of Internal Medicine and Metabolic Diseases, Federico II University, Via Sergio Pansini, 5, 80131 Naples, Italy.

© 1994 American Heart Association, Inc.
TABLE 1. Anthropometric Parameters, Serum Cholesterol and Triglycerides, and Blood Pressure of Patients and Control Subjects

<table>
<thead>
<tr>
<th></th>
<th>Patients</th>
<th>Control Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (M, F)</td>
<td>46 (22, 24)</td>
<td>48 (27, 21)</td>
</tr>
<tr>
<td>Age, y</td>
<td>7.4±3.39</td>
<td>6.4±2.77</td>
</tr>
<tr>
<td>Weight/height, centiles</td>
<td>71±24.4</td>
<td>72±24.2</td>
</tr>
<tr>
<td>Serum cholesterol, mmol/L</td>
<td>8.25±1.56*</td>
<td>4.62±0.83</td>
</tr>
<tr>
<td>Serum triglycerides, mmol/L</td>
<td>1.03±0.60</td>
<td>0.83±0.27</td>
</tr>
<tr>
<td>Systolic blood pressure, mm Hg</td>
<td>102±10.4</td>
<td>99.7±11.1</td>
</tr>
<tr>
<td>Diastolic blood pressure, mm Hg</td>
<td>63.4±7.22</td>
<td>60.0±8.96</td>
</tr>
</tbody>
</table>

Values are mean±SD. *P<.001 by analysis of variance.

Homozygous FH children were not included.

Serum cholesterol values presented in the study refer to blood samplings performed before any lipid-lowering intervention was begun. By the time of ultrasonographic examination (on average, 6 months after the baseline blood sampling), 23 children were on a lipid-lowering diet; the others were on diet plus cholestyramine 8 g/d.

Forty-eight clinically healthy normotriglyceridemic children, comparable to the patient group for age (P=.133, t test for difference) and sex distribution, with serum total cholesterol <6.4 mmol/L on at least two consecutive determinations made 3 months apart and attending the Pediatric Outpatient Clinic in the same period for a general checkup (which is provided at no cost by the National Health Service), were recruited as a control group (Table 1). All parents were offered a free serum lipid measurement and a noninvasive vascular examination of their children according to the same protocol adopted for hypercholesterolemic children. All parents took advantage of this opportunity. None of the control children received any prescription after the visit. None of the children included in this study (patient or control) had any acute illness, metabolic disease, or malabsorption syndrome.

Procedures
Biochemical Analysis
Venous blood was drawn after a 12-hour fast. Serum cholesterol and triglycerides were measured by the enzymatic colorimetric method (Trinder, Boehringer). Coefficients of variation were <5% for cholesterol and <5% for triglycerides. All analyses were performed under World Health Organization quality control procedures.

Carotid Ultrasonography
Real-time B-mode imaging of distal common carotid arteries (common carotid arteries below the bulb, 1 cm proximal to the bifurcation) was performed with a Biosound 2000 II Sa real-time imager with an 8-MHz annular array probe. Theoretical axial resolution was 0.3 mm. Theoretical lateral resolution was 0.7 mm.

Scans were performed by one sonographer, who was unaware of the children's serum cholesterol levels. Subjects were examined in the supine position. The near and far walls of the common carotid arteries were visualized on a longitudinal plane with a circumferential examination procedure. The probe was moved from a lateral to an anterior projection with the subject's head parallel to the axis of the neck and then moved back to the lateral projection. After examination in the lateral projection, the subject's head was turned by 45° contralateral to the carotid artery under examination, and the probe was moved backward to achieve a posterior projection.

Whole-Procedure Reproducibility
The carotid arteries of 15 children (10 patients, 5 control subjects) were scanned twice by the same sonographer 24 hours apart. Mean intima-media thickness of the far wall (first measurement) in these 15 children was 0.34±0.04 mm (range, 0.28 to 0.43 mm). Maximum intima-media thickness of the far wall (first measurement) was 0.39±0.04 mm (range, 0.33 to 0.50 mm). Fig 1 shows the reproducibility of the measurement of far-wall maximum intima-media thickness in these 15 children. The line shown in the figure is the identity line. The
correlation coefficient was .81 (P<.001). The tapes of these 15 children underwent a totally blinded reading procedure.

The coefficient of variation for each pair of intima-media thickness measurements performed in each of these children was calculated according to the following formula: (standard deviation/mean)×100.29 The average coefficient of variation for each intima-media thickness parameter is the mean of the 15 coefficients of variation available.

The average coefficients of variation were for mean thickness, near wall, 3.3%; far wall, 3.3%; and both walls, 2.5%; for maximum thickness, near wall, 5.2%; far wall, 5.0%; and both walls, 5.1%.

Reading-Procedure Reproducibility

A second reading procedure was carried out on the tapes of 10 children by the same reader 4 months after the first reading. Average coefficients of variation, calculated as previously described, were for mean thickness, near wall, 2.9%; far wall, 3.0%; and both walls, 2.4%; for maximum thickness, near wall, 4.2%; far wall, 2.7%; and both walls, 3.5%.

Statistical Analysis

Two-sided analysis of variance was used for comparisons between groups after testing for equality of variances and degree of skewness in the distribution. Because of the significant direct relationship (Pearson correlation coefficients) existing between age and carotid intima-media thickness parameters (for maximum thickness, near wall, r=.26, P<.05; far wall, r=.24, P<.05; both walls, r=.28, P<.01), comparisons were controlled for age by covariance analysis. Covariance analysis was also used to correct for the confounding effect of sex. Odds ratios with 95% confidence limits were calculated from two-sided χ² tests. Two-sided Mantel-Haenszel χ² test was used to test categorical frequencies after age and sex were controlled for.29

Results

In the whole group of children (patients+control subjects, n=94), it was found that boys (n=49) had significantly higher intima-media thickness of the carotid artery than girls (n=45): 0.41±0.03 versus 0.39±0.03 mm (P=.007) for mean thickness of the far wall and 0.41±0.03 versus 0.40±0.02 mm (P=.007) for mean thickness of both walls; 0.47±0.05 versus 0.45±0.04 mm (P=.031) for maximum thickness of the far wall and 0.50±0.04 versus 0.47±0.04 mm (P=.007) for maximum thickness of both walls. Children of the two sexes did not significantly differ for other parameters. No significant difference was found in the distribution of the two sexes in the two groups of patients and control subjects.

No significant correlation was found in the whole group of children between intima-media thickness parameters and serum cholesterol values.

Table 2 shows means values for measurements of common carotid intima-media mean and maximum thickness in patients and control subjects. Maximum thicknesses of far walls and both walls were higher in patients than in control subjects (P=.012 and P=.007, respectively). Statistical significance in the comparisons of these two parameters of maximum thickness remained also after age (P=.025 and P=.017, respectively) and both age and sex (P=.012 and P=.006, respectively) were controlled for. No significant difference was found for the other parameters.

Fig 2 and Table 3 present subgroup distribution and analysis of common carotid intima-media maximum thickness in patients and in control subjects divided according to the median of age in the whole population of children included in the study (6.2 years). Mean ages of children ≤6.2 years old were 4.3±1.4 years in patients versus 4.1±1.1 years in control subjects (P=.706, t test for difference). Mean ages of children >6.2 years old were 10.1±2.2 years in patients versus 9.4±1.9 years in control subjects (P=.235, t test for difference). A significantly higher common carotid intima-media maximum thickness of hypercholesterolemic patients versus control subjects was detectable only in children >6.2 years old (P=.025 for far wall and P=.014 for both walls). Table 4 shows odds ratios and 95% confidence intervals for common carotid intima-media thickening (maximum thickness >95th percentile in the control group, ie, >0.51 mm) between patients and control subjects. Univariate, age-controlled, and sex-controlled

![Fig 2](http://atvb.ahajournals.org/)

Fig 2. Plot showing distribution and mean of maximum thickness of common carotid intima-media (far wall) in patients and control subjects divided according to median age of all children.
Table 4. Odds Ratios and 95% Confidence Intervals of Common Carotid Arteries in Patients and Control Subjects Divided According to Median Age of All Children

<table>
<thead>
<tr>
<th>Age (yr)</th>
<th>Patients (n=46)</th>
<th>Control Subjects (n=48)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td><6.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Near wall</td>
<td>0.47±0.05</td>
<td>0.46±0.03</td>
<td>.662</td>
</tr>
<tr>
<td>Far wall</td>
<td>0.46±0.05</td>
<td>0.45±0.03</td>
<td>.303</td>
</tr>
<tr>
<td>Both walls</td>
<td>0.48±0.06</td>
<td>0.47±0.03</td>
<td>.284</td>
</tr>
<tr>
<td>>6.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Near wall</td>
<td>0.49±0.05</td>
<td>0.47±0.04</td>
<td>.131</td>
</tr>
<tr>
<td>Far wall</td>
<td>0.48±0.06</td>
<td>0.45±0.04</td>
<td>.025</td>
</tr>
<tr>
<td>Both walls</td>
<td>0.51±0.05</td>
<td>0.48±0.04</td>
<td>.014</td>
</tr>
</tbody>
</table>

Values are in millimeters, mean±SD.

Discussion

This article addresses the following question: are there differences in the intima-media thickness of the common carotid arteries in hypercholesterolemic children compared with a control group with a similar age and sex distribution? A noninvasive evaluation by B-mode ultrasound imaging indicates that hypercholesterolemic children >6 years old show increased carotid intima-media maximum thickness.

The definition of hypercholesterolemia in children may vary among different populations and cannot refer, as in adulthood, to a measurable increased risk of cardiovascular morbidity. It can only reflect deviations from statistical normality, there being no objective cutoff point available. Data published in Italy suggest that the 95th percentile of serum cholesterol concentration in the age range of 2 to 15 years lies between 6.0 and 6.4 mmol/L. Since concern has been expressed about the effectiveness and safety of lipid-lowering treatments in children and since the benefit derived from reduction of moderately raised serum cholesterol levels has not been clearly established even in adulthood, the highest value, that is, 6.4 mmol/L, was chosen as a cutoff point for the control group of children.

In addition to serum cholesterol levels ≥6.4 mmol/L, all our patients also had a positive family history for hypercholesterolemia (≥6.4 mmol/L) and/or premature CAD. According to the statements of the American Expert Panel on Blood Cholesterol Levels in Children and Adolescents, our young patients must be considered as heterozygotes for FH, a condition usually associated with increased CAD risk in adulthood. This was the rationale for their admission to the Outpatient Lipid Clinic and their inclusion as "patients" in the present study.

A major objection against an early screening and lipid-lowering treatment of hypercholesterolemic children was that there is no evidence that their arteries are different from those of their normocholesterolemic peers. To test the null hypothesis, two echographic parameters were chosen in the present study to evaluate the status of the carotid intima-media: mean thickness, ie, the average of all measurements in each subject, and maximum thickness, ie, the highest value of thickness found in each subject. A separate analysis of near-wall, far-wall, and both-wall parameters was carried out, since concern has been expressed about the validity of near-wall measurements. In the present article, far-wall data accounted for most of the differences between groups.

Maximum thickness was found to be increased in hypercholesterolemic children. This is the first demonstration by noninvasive methodology of arterial intima-media abnormalities in hypercholesterolemic children. Functional (but not anatomic) abnormalities have recently been demonstrated in the arteries of boys heterozygous for FH. A relationship between common carotid artery intima-media thickness and age has already been described in adults. The data indicate that an increased common carotid intima-media maximum thickness in hypercholesterolemic children is already detectable after the age of 6 years. The same is not true for mean thickness (data not shown). This might suggest that thickening is focal rather than diffuse. The measurement of common carotid intima-media thickening, expressed by the parameter of maximum thickness, was able to discriminate between normocholesterolemic and hypercholesterolemic children after age 6 years, while no significant difference was present before that age, irrespective of serum cholesterol levels. No significant correlation was found in the two groups of children between common carotid intima-media thickness parameters and serum cholesterol levels (data not shown), a relationship that has been observed in adults. The lack of this correlation and the presence of significant sex-related differences in intima-media thickness pa-
rameters indicate that other factors besides serum cholesterol are involved in the process of wall thickening. Our finding of increased thickness parameters in boys compared with girls is in agreement with the results of the Pathobiological Determinants of Atherosclerosis in Young Adults (PDAY) Study, which demonstrated that young male subjects have a higher prevalence of raised lesions in coronary arteries than young girls.

An increased common carotid intima-media thickness does not per se mean early atherosclerosis. Stary's autopsy observations in coronary arteries of children and young adults suggest that arterial wall diffuse intimal thickening, probably occurring as part of the intima-media thickening measured by the parameter of mean thickness, is rarely associated with the development of atherosclerotic lesions. Conversely, focal areas of eccentric thickening in the intima were often found to be associated with frankly atherosclerotic lesions such as fibrous plaques. The parameter of maximum thickness, which was found to be increased in hypercholesterolemic children compared with control subjects, is more likely to reflect eccentric than diffuse thickening.

In conclusion, the present study indicates that, in children >6 years old, hypercholesterolemia is associated with detectable modifications of common carotid intima-media. Ongoing prospective studies in adults will demonstrate whether or not this increased carotid intima-media thickness implies an increased risk of cardiovascular events.

Acknowledgment

We are grateful to Rosanna Scala for reviewing the manuscript.

References

36. Kruijzen JT, Hermus RJJ, Hautvast JGAJ. Serum total and high density lipoprotein (HDL) cholesterol concentrations in rural and urban boys from 16 countries. Atherosclerosis. 1980;36:529-537.

Increased intima-media thickness of the common carotid artery in hypercholesterolemic children.

P Pauciullo, A Iannuzzi, R Sartorio, C Irace, G Covetti, A Di Costanzo and P Rubba

Arterioscler Thromb Vasc Biol. 1994;14:1075-1079
doi: 10.1161/01.ATV.14.7.1075

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/14/7/1075

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/