Inhibition of Thromboxane Biosynthesis and Platelet Function by Indobufen in Type II Diabetes Mellitus

G. Davi, C. Patrono, I. Catalano, N. Custro, C. Giammarresi, A. Ganci, F. Cosentino, A. Notarbartolo

Indobufen is a reversible inhibitor of platelet prostaglandin G/H-synthase. To verify the dose dependence of the antiplatelet effect of indobufen on ex vivo and in vivo indexes of thromboxane (TX) biosynthesis and TXA₂-dependent platelet function, we studied nine patients with non-insulin-dependent diabetes mellitus (NIDDM). This was a randomized, double-blind, crossover study in which each patient was treated with three different daily regimens (50 mg BID, 100 mg BID, and 200 mg BID) of indobufen for 1 week, with a 7-day washout period between treatments. Urinary 11-dehydro-TXB₂ excretion averaged 58.2±21.8 ng/h at baseline. TX metabolite excretion was reduced dose dependently by indobufen: by 67% at 50 mg BID, 72% at 100 mg BID, and 81% at 200 mg BID. Platelet cyclooxygenase activity, ATP release, collagen-induced platelet aggregation, and bleeding time also were modified dose dependently by indobufen. Biochemical demonstration of suppressed platelet TXA₂ in vivo was accompanied by evidence of inhibited platelet function as assessed ex vivo. Under pathophysiological conditions, such as NIDDM, which are associated with enhanced TXA₂ synthesis, more than 95% suppression of platelet cyclooxygenase activity may be necessary to produce virtually maximal inhibition of platelet TXA₂ biosynthesis in vivo. (Arterioscler Thromb. 1993;13:1346-1349.)

KEYWORDS • thromboxane • diabetes mellitus • indobufen • platelet function • in vivo platelet activation

Methods
Patient Selection
Nine patients with NIDDM (five women and four men; age range, 50 to 67 years) were studied on several occasions between May 1989 and February 1991. NIDDM was defined in accordance with the criteria of the American Diabetes Association. The mean±SD duration of NIDDM was 10.3±5.2 years (range, 2 to 19 years). All patients were hospitalized because of inadequate metabolic control, as assessed in our diabetes clinic, after treatment with oral hypoglycemic drugs. Consequently, insulin therapy was instituted on hospital admission.

All patients had a history or physical examination positive for evidence of macrovascular complications. Five patients had stable angina pectoris or had had a myocardial infarction, and four had peripheral vascular disease. Patients with coronary heart disease were in a stable phase, as judged on the basis of clinical symptoms, electrocardiographic (ECG) monitoring during exercise, and Holter monitoring. Patients with peripheral vascular disease were in Fontaine stage II (intermittent claudication, ankle-arm pressure index of less than 0.85, and no resting pain) with a constant level of pain while walking. Their disorder had been diagnosed on the basis of clinical symptoms, ability to walk a distance, bicycle ergometry, and Doppler echographic study of the lower limbs.

In none of the nine patients had vascular disease undergone detectable progression during the previous
12 months, as judged by evaluation during outpatient visits. Moreover, all had mild-to-moderate symptoms compatible with a virtually normal lifestyle. Three patients were current smokers. Only one patient had arterial hypertension (170/100 mm Hg). Blood cholesterol level was 210.7±42.0 mg/dL. All patients continued to take cardiovascular medication during the study period (ß-blockers, calcium channel blockers, or diuretic agents); they were asked to abstain from taking aspirin-like drugs. Patients with renal disease (creatinine clearance of less than 1.3 mL/s, serum creatinine level of more than 175 μmol/L, urinary albumin excretion of more than 0.3 g/d) as well as patients with a body mass index of more than 28 were excluded. At the time of study, all patients were being treated with three daily injections of insulin (intermediate-acting and regular insulin) that had begun 2 to 3 days earlier.

Study Design

This was a randomized, double-blind, crossover study in which each patient was treated with three different daily regimens (50 mg BID, 100 mg BID, and 200 mg BID) of indobufen (Ibustrin, Farmitalia Carlo Erba, Milan, Italy). Each dose was given orally for 1 week in identical tablets in a randomized sequence with a 7-day washout period between treatments.

Peripheral venous blood samples for platelet functional and biochemical studies were obtained after an overnight fast, at baseline, on the eighth day of each treatment period (ie, approximately 12 hours after the last dose), and at the end of each washout period. Three consecutive 24-hour urine collections were performed at baseline and on the fifth, sixth, and seventh days of each treatment or washout period. Urine samples were frozen immediately and kept at −20°C until extraction.

Informed consent was obtained from each patient, and the protocol was approved by the institutional review board.

Platelet Studies

Peripheral venous blood was obtained between 8 AM and 9 AM and collected in tubes containing 3.8% sodium citrate (1 mL/9 mL blood). Platelet-rich plasma and platelet-poor plasma were prepared as described previously. Platelet aggregation was measured in an Elvi 840 (Logos, Milan) aggregometer according to the method of Born. For each agonist, the threshold concentration of the agent that caused from 50% to 60% increase in light transmittance within 3 minutes.

Statistical Analysis

The data were analyzed by nonparametric methods to avoid assumptions about the distribution of the measured variables. A one-way analysis of variance was performed. Subsequent pairwise comparisons were made with the Wilcoxon matched-pairs sign-rank test. Moreover, the correlations between platelet function parameters were assessed by stepwise regression analysis and multiple linear regression. To this effect, the logarithm of the ratio between posttreatment and basal measurements was regressed against the indobufen dose. All values are given as mean±SD. Statistical significance was considered to be indicated by P<.05.

Results

Serum TXB2, a measure of the maximum cyclooxygenase-dependent biosynthetic capacity of blood platelets, averaged 282±76 ng/mL at baseline, 303±52 ng/mL at the end of the first washout period, and 300±73 ng/mL at the end of the second washout period. The intrasubject coefficient of variation averaged 10±4.1%, as determined on the basis of these three separate measurements performed over a period of 4 weeks. As depicted in Fig 1, indobufen-induced platelet aggregation was inhibited with a statistically significant linear regression of changes in TAC over the dose of indobufen (y=−1.582−0.00525x; r2=−.62; P<.001). These biochemical changes were associated with changes in platelet function, as detailed in the Table. Thus, collagen-induced platelet aggregation was decreased by 28±10%, as determined on the basis of these nine separate control measurements performed throughout the first day of each treatment, on the seventh and last days of each treatment or washout period.

Urinary 11-Dehydro-TXB2 Assay

Immunoreactive 11-dehydro-TXB2 was extracted from 20-mL aliquots of each urine sample (pH was adjusted to 4.0 to 4.5 with formic acid) on Sep-Pak C-18 cartridges (Waters Associates, Milford, Mass) and eluted with ethyl acetate. The eluate was subjected to silicic acid column chromatography and further eluted with a benzene–ethyl acetate–methanol solution (60:40:30, vol/vol/vol). The overall recovery from silicic acid columns was assayed at a final dilution of 1:15 to 1:100, as described elsewhere.

Urineary TXB2

Urineary TXB2 was measured as described previously. Serum TXB2, a measure of the maximum cyclooxygenase-dependent biosynthetic capacity of blood platelets, averaged 282±76 ng/mL at baseline, 303±52 ng/mL at the end of the first washout period, and 300±73 ng/mL at the end of the second washout period. The intrasubject coefficient of variation averaged 10±4.1%, as determined on the basis of these three separate measurements performed over a period of 4 weeks. As depicted in Fig 1, indobufen-induced platelet aggregation was inhibited with a statistically significant linear regression of changes in TAC over the dose of indobufen (y=−1.582−0.00525x; r2=−.62; P<.001). These biochemical changes were associated with changes in platelet function, as detailed in the Table. Thus, collagen-induced platelet aggregation was decreased by 28±10%, as determined on the basis of these nine separate control measurements performed throughout the first day of each treatment, on the seventh and last days of each treatment or washout period.
Arteriosclerosis and Thrombosis
Vol 13, No 9 September 1993

FIG 1. Plot of thromboxane B₂ (TXB₂) formation during whole blood clotting at 37°C for 1 hour (serum TXB₂ before and after daily administration of indobufen (50, 100, and 200 mg BID for 1 week) in patients with type II diabetes mellitus. Level of serum TXB₂ is expressed as a percentage (mean±SD; n=9) of the level observed before each indobufen administration. Each patient served as his or her own control. Blood samples were obtained between 8 AM and 9 AM, at baseline (B), on the eighth day of each treatment period (ie, approximately 12 hours after the last oral dose), and at end of each washout (W) period.

Discussion
Inhibition of TXA₂-dependent platelet function by aspirin is associated with a reduced risk of vaso-occlusive events. Aspirin dose dependently inhibits the cyclooxygenase activity of platelet prostaglandin G/H-synthase. At the doses (30 to 75 mg) used in recently completed clinical trials, aspirin causes more than 95% suppression of platelet cyclooxygenase activity, as reflected by serum TXB₂ and 70 to 80% reduction in vivo TXA₂ biosynthesis, as reflected by urinary TX metabolite excretion. The relation between the two has been explored by Reilly and FitzGerald and found to be nonlinear in healthy volunteers. Thus, more than 90% reduction in platelet biosynthetic capacity was required to produce a dose-dependent reduction in TX metabolite excretion, suggesting that a small residual enzymatic activity may be sufficient to sustain the very low level of TXA₂ biosynthesis under physiological circumstances. Whether this applies to clinical conditions characterized by enhanced TXA₂ biosynthesis has not been investigated previously. Our study assessed the dose dependence of the effects of indobufen, a reversible inhibitor of platelet prostaglandin G/H-synthase, on ex vivo and in vivo indexes of TXA₂ biosynthesis and TXA₂-dependent platelet function. We chose a fourfold range of daily doses (50 to 200 mg BID) to the highest recommended therapeutic dose of the drug. Because indobufen pharmacokinetics dictates a twice-daily dosing regimen, we performed biochemical and functional measurements 12 hours after the last dose so as not to overestimate the early effects of lower doses. Thus, when such measurements are performed 2 hours after dosing, no clearcut dose dependence is found for the inhibition of platelet function by indobufen.

Blood samples were obtained between 8 AM and 9 AM, at baseline, on the eighth day of each treatment period (ie, approximately 12 hours after the last oral dose), and at end of each washout period.

ATP release was induced by collagen (2 μg/mL). Values are mean±SD.

*P<.02; †P<.005; ‡P<.001 vs baseline.
§P<.05; ¶P<.02; ||P<.01 vs 50 mg BID.

Indexes of Platelet Function in Patients With Type II Diabetes Mellitus Before, During, and After Daily Treatment With Indobufen

Collagen threshold, μg/mL

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Indobufen, 50 mg BID</th>
<th>Washout</th>
<th>Indobufen, 100 mg BID</th>
<th>Washout</th>
<th>Indobufen, 200 mg BID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>1.32±0.47</td>
<td>2.15±0.85*</td>
<td>1.37±0.28</td>
<td>3.24±1.73*</td>
<td>1.03±0.59</td>
<td>5.40±2.34f</td>
</tr>
<tr>
<td>Arachidonate threshold, mmol/L</td>
<td>0.61±0.15</td>
<td>0.97±0.17†</td>
<td>0.61±0.22</td>
<td>1.05±0.16†</td>
<td>0.62±0.20</td>
<td>1.02±0.19f</td>
</tr>
<tr>
<td>ATP release, (nmol/L)/mL</td>
<td>1.35±0.38</td>
<td>1.10±0.33</td>
<td>1.43±0.77</td>
<td>0.74±0.44†</td>
<td>1.52±0.59</td>
<td>0.71±0.34f</td>
</tr>
<tr>
<td>Bleeding time, s</td>
<td>307±29</td>
<td>380±50†</td>
<td>297±35</td>
<td>393±44†</td>
<td>290±37</td>
<td>403±47</td>
</tr>
</tbody>
</table>
findings of enhanced TXA₂ biosynthesis in patients with NIDDM with macrovascular complications. This was a relatively reproducible finding over the course of the study, as assessed repeatedly during the two washout periods.

Indobufen caused a dose-dependent suppression of TX metabolite excretion that was more than 80% at the highest dose only (Fig 2). This is comparable to the 80% reduction in 11-dehydro-TXB₂ excretion found in patients with NIDDM after 1-week dosing with low-dose aspirin (50 mg/d). Biochemical demonstration of suppressed platelet TXA₂ biosynthesis in vivo was accompanied by evidence of inhibited platelet function, as assessed ex vivo (Table). Bleeding time was prolonged only marginally by indobufen, a finding consistent with previous observations.

We conclude that under pathophysiological conditions associated with enhanced TXA₂ production, more than 95% suppression of platelet cyclooxygenase activity may be necessary to produce virtually maximal inhibition of platelet TXA₂ biosynthesis in vivo. This can be obtained with repeated daily dosing with low-dose aspirin, as a consequence of cumulative inactivation of platelet prostaglandin G/H-synthase, as reported previously; or with the reversible inhibitor of the same enzyme, indobufen, at 200 mg BID, as a function of constant substrate competition during the dosing interval, as demonstrated in the present study.

Acknowledgments
This study was supported by a grant from Farmitalia Carlo Erba. The authors are grateful to Dr Giulio Corvi and Prof Enzo Ballartori for expert advice and comments on statistical analysis of the data.

References
Inhibition of thromboxane biosynthesis and platelet function by indobufen in type II diabetes mellitus.

G Davì, C Patrono, I Catalano, N Custro, C Giammarresi, A Ganci, F Cosentino and A Notarbartolo

doi: 10.1161/01.ATV.13.9.1346

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/13/9/1346