Effect of Elevated Glucose on Cyclic GMP and Eicosanoids Produced by Porcine Aortic Endothelium

Robert M. Weisbrod, Michael L. Brown, and Richard A. Cohen

The short-term effects of elevated glucose on cyclic GMP (cGMP) and eicosanoid production in pig aortic endothelial cell monolayers was determined by incubating cells in 5.5 mM or 44 mM glucose for 6 hours. Bradykinin- or A23187-stimulated cGMP production was significantly reduced in cells incubated in 44 mM glucose compared with 5.5 mM glucose. Stimulation of cGMP levels with exogenously added nitric oxide (NO) was also decreased to a similar extent in cells exposed to 44 mM glucose. These data suggest that NO production stimulated by bradykinin or A23187 was unchanged by elevated glucose. Assayed eicosanoids, including 6-ketoprostaglandin (PG) F_1α, PGE_2, PGF_2α, and 15(S)-hydroxy-(5Z, 8Z, 11Z, 13E)-eicosatetraenoic acid, stimulated by bradykinin or A23187, were increased in cells exposed to 44 mM glucose. These eicosanoid products formed from exogenously added arachidonic acid did not differ between cells incubated in 5.5 mM or 44 mM glucose. Hyperosmolar concentrations of mannose or sucrose had no effect on cGMP levels but did mimic the effect of elevated glucose on eicosanoid production. These data suggest that hyperglycemia in diabetes may interfere with NO-induced guanylate cyclase activation but not NO production in the endothelium and that increased phospholipase activity, secondary to hyperosmolarity, may account for elevated eicosanoid levels. (Arteriosclerosis and Thrombosis 1993;13:915-923)

KEY WORDS • pig aortic endothelial cells • nitric oxide • cyclic GMP • eicosanoids • glucose • diabetes mellitus

The endothelium is an important source of vasoactive substances that regulate vascular tone. Endothelium-derived relaxing factor (EDRF), which has been identified as nitric oxide (NO), stimulates smooth muscle guanylate cyclase to produce cyclic GMP (cGMP) and initiate relaxation. Eicosanoids also produced in the endothelium may act as vasodilators or vasoconstrictors, depending on the vascular bed and species. Alterations in the production or action of these substances may explain abnormal endothelium-dependent vasomotor responses in several vascular diseases, including diabetes mellitus, hypertension, and hypercholesterolemia.

Studies on diabetic rabbit and rat models and human vascular tissue have shown decreased endothelium-dependent relaxations. It is possible that the abnormal relaxation seen in diabetes is due to decreased levels of NO, increased vasoconstrictor eicosanoids, or a combination of both. Tesfamariam et al have shown that acetylcholine-induced relaxations of the aorta are reduced in the alloxan-induced diabetic rabbit and that there is a development of dose-dependent contractions that occurs concomitantly with increased production of vasoconstrictor eicosanoids. Since the abnormal relaxations are restored and the contractions are blocked by cyclooxygenase inhibitors or the prostaglandin (PG) H₂/thromboxane A₂ receptor antagonist SQ29548, increased activity of the cyclooxygenase pathway has been implicated in the abnormal vasomotor response. Alternatively, Abiru et al have suggested that the abnormal relaxation of diabetic arteries is due to decreased NO production, because decreased cGMP levels were measured in diabetic rabbit aorta.

The abnormal production of vasoactive substances by the endothelium that is observed in diabetic rabbit aorta is believed to be directly caused by exposure of the endothelial cells to hyperglycemia, because following a 6-hour exposure to 44 mM glucose, normal rabbit aortic rings show reduced endothelium-dependent relaxation and increased eicosanoid production quite similar to those seen in the diabetic rabbit aorta. To better understand the mechanism by which elevated glucose level alters the function of the endothelium in intact arteries in the short-term, the present studies were designed to determine the effects of exposure of cultured endothelial cells for 6 hours to elevated glucose levels under conditions similar to those used for the studies of intact arteries. Pig aortic endothelial cells (PAECs) are an apt model with which to study the...
effects of elevated glucose levels, as Brown et al. have demonstrated that exposure of PAECs to elevated glucose levels for several days causes a decreased A23187-induced release of arachidonic acid but an increased production of 15(S)-hydroxy-(5Z, 8Z, 11Z, 13E)-eicosatetraenoic acid (15-HETE). In the present study NO was assessed by measuring the accumulation of endothelial cell cGMP that occurs during NO production. Eicosanoids were measured by radioimmunoassay. A preliminary report of some of these observations has been made.

Methods

Cell Culture

Pig thoracic aortas were obtained from a local abattoir and were aseptically prepared by removing the perivascular connective tissue and opening longitudinally to expose the luminal surface. The PAECs were obtained by scraping the luminal surface once with a razor blade. They were transferred to a 100-mm-diameter Petri dish (Costar, Cambridge, Mass.) containing 10 mL medium and dispersed by pipetting up and down several times. Cells were grown in Dulbecco's modified Eagle's medium (DGMEM, GIBCO No. 430–1600, Grand Island, N.Y.) supplemented with 3.7 g/L NaHCO3, 10% fetal bovine serum (FBS; Hazelton or Sigma), 100 units/mL penicillin, and 100 μg/mL streptomycin (GIBCO). The media were changed every 2–3 days. Cell cultures were maintained in a humidified incubator at 37°C in the presence of 5% CO2 to keep the media buffered at a pH of 7.4. Once individual primary cultures reached confluence, cells from six to 12 pigs were pooled and divided into aliquots for freezing (-70°C) in a solution containing 70% DMEM, 20% FBS, and 10% dimethyl sulfoxide. When needed, aliquots were rapidly thawed at 37°C and grown in a 75-cm2 flask as the first passage. Cells were subcultured using trypsin (0.05%) diluted 1:2 in calcium-free and magnesium-free Dulbecco's phosphate-buffered saline (GIBCO). Second-passage cells were obtained for experiments, grown in 9.6-cm2 six-well plates, and used after the cells reached confluence. There were approximately 104 cells per well. Cultures exhibited typical endothelial cell characteristics of contact inhibition, cobblestone appearance at confluence, and uniform uptake of fluorescently labeled acetylated low density lipoprotein (Biomedical Technologies Inc., Stoughton, Mass.).

Confluent monolayers in six-well plates were incubated for 6 hours with physiological salt solution (PSS) of the following composition (in mM): NaCl, 118.3; KCl, 4.7; MgSO4, 1.2; KH2PO4, 1.2; CaCl2, 2.5; NaHCO3, 25.0; and Na2EDTA, 0.026. To mimic diabetes, paired cultures reached confluence, cells were detached with a rubber policeman and placed in a 1.5 mL Eppendorf vial. The cells were washed with another 0.4 mL of 6% trichloroacetic acid that was combined with the first aliquot for a total volume of 1 mL. The vial was centrifuged at 12,000 rpm to separate denatured proteins. The supernatant was deciadified by washing four times with 4 volumes of water-saturated ethyl ether and concentrated by lyophilization. The residue was then resuspended in 0.1 M sodium acetate buffer, and cGMP levels were quantified after acetylation with a commercially available cGMP radioimmunoassay kit (Biomedical Technologies Inc.). The protein pellet was solubilized by resuspending in 250 μL IN NaOH and heating overnight at 60°C. Protein was quantified by using a bicinchoninic acid assay (Pierce, Rockford, Ill.). Results are expressed as femtomoles cGMP per microgram cell protein.

Eicosanoid Radioimmunoassay

At the end of agonist stimulation, the 2 mL PSS on the cells was immediately removed, combined with 50 μL IN formic acid, and frozen (-70°C) until analysis. Radioimmunoassay was used to quantify the levels of 6-keto-PGF1α (the stable hydrolytic product of prostacyclin), PGE2, PGF2α, thromboxane B2 (TXB2, the stable hydrolytic product of thromboxane A2), and 15-HETE in the PSS. Radioimmunoassays were performed by using specific antiserum for 6-keto-PGF1α, PGE2, PGF2α, TXB2, and 15-HETE (Advanced Magnetics, Cambridge, Mass.), tritiated standards (DuPont–New England Nuclear, Boston), and unlabeled standards (UpJohn, Kalazamoo, Mich.). Cross-reactivity with other measured eicosanoids was ≤5%. The limits of sensitivity of the radioimmunoassay were 1 pg/mL for 6-keto-PGF1α, PGE2, PGF2α, TXB2, and 15-HETE, and 10 pg/mL for PGE2. Results are expressed as nanograms eicosanoid per well.

Drugs

Agents used were bradykinin, A23187, ATP, arachidonic acid, indomethacin, IBMX, N-nitro-L-arginine (NNA), SOD (Sigma Chemical Co., St. Louis, Mo.), and NO (Matheson Gas, Gloucester, Mass.). Concentrations are expressed as final molar concentrations. Indomethacin was prepared in 2% Na2CO3 immediately before use. A23187 was prepared in 95% ethanol.
IBMX was prepared in dimethyl sulfoxide. NO was prepared in water (4°C) in air-tight Vacutainer tubes (Becton Dickinson, Rutherford, N.J.) that were purged of O₂ by vacuum for 20 minutes and bubbling with N₂ for 20 minutes. NO gas was bubbled in 8 mL water for 10 minutes to yield a saturated solution (approximately 10⁻³ M) and was serially diluted 1:10 so that a 100-fold dilution of the NO solution occurred when it was added to the cells. NO solutions were made up immediately before addition to the cells.

Data Analysis

Data are expressed as mean±SEM. Statistical evaluation of the data was achieved using Student’s t test for paired comparisons between cells incubated in 5.5 mM or 44 mM glucose PSS from the same plate or with unpaired comparisons between drug treatments in different plates. A value of p<0.05 was considered significant. In all experiments, n represents the number of 9.6-cm² wells used. On any one day, from one to three replicates of each experimental condition were performed.

Results

cGMP Levels

After 30 minutes of equilibration in the presence of IBMX, basal cGMP levels in PAECs exposed to 5.5 mM glucose were 13.7±3.6 fmol/µg. Bradykinin (10⁻⁷ M) increased cGMP to 348.9±51.2 fmol/µg at 1 minute, and values had decreased to 51.1±9.7 after 10 minutes (Figure 1). Basal levels of cGMP were not significantly different in PAECs exposed to 44 mM glucose for 6 hours (12.2±2.4 fmol/µg). cGMP levels at 1 minute after bradykinin stimulation were significantly decreased in cells incubated in 44 mM glucose compared with cells incubated in 5.5 mM glucose, but at 10 minutes there was no significant difference (Figure 1).

In cells incubated in 5.5 mM glucose for 6 hours, A23187- (10⁻⁶ M) stimulated cGMP levels at 1 minute were similar to those after addition of bradykinin, but cGMP increased further at 10 minutes (Figure 1). In PAECs exposed to 44 mM glucose for 6 hours, A23187-stimulated levels of cGMP were significantly less than control cells at 1 and 10 minutes (Figure 1). ATP (10⁻⁵ M) also stimulated cGMP levels at 1 minute (Figure 2) and returned to near basal levels at 10 minutes (data not shown). Although the average ATP-stimulated cGMP levels were less in cells exposed for 6 hours to 44 mM glucose, the differences were not significant (Figure 1). Exogenous NO (10⁻⁶ M) stimulated cGMP levels maximally at 1 minute, and levels decreased at 10 minutes (data not shown). Levels of cGMP 1 minute after NO stimulation were significantly less in cells exposed to 44 mM glucose for 6 hours compared with those exposed to 5.5 mM glucose (Figure 1).

In the presence of SOD (150 units/mL; n=6) added throughout the 6-hour period, elevated glucose still caused a statistically significant decrease in cGMP levels stimulated by bradykinin (10⁻⁷ M; Figure 1).

In the absence of IBMX, basal cGMP levels (4.8±1.2 fmol/µg; n=3) were stimulated by A23187 (10⁻⁴ M) at 1 and 10 minutes (24±1.0 and 15±2.0 fmol/µg, respectively). In PAECs exposed to 44 mM glucose, basal levels of cGMP in the absence of IBMX were unchanged (4.2±0.8 fmol/µg), but A23187-stimulated levels were significantly less at 1 and 10 minutes (14±0.7 and 6.1±1.3 fmol/µg, respectively; n=3) compared with 5.5 mM glucose.

Eicosanoid Production

In unstimulated cells, 6-keto-PGF₁α levels were unchanged over the 30-minute period measured, and there was no significant difference in basal levels of 6-keto-PGF₁α between cells incubated in 5.5 mM or 44 mM glucose (Figure 3). 6-Keto-PGF₁α levels were stimulated by bradykinin (10⁻⁷ M), peaking at 10 minutes and unchanged at elevated levels at 30 minutes (Figure 3). The other eicosanoids measured showed similar time courses to that shown for 6-keto-PGF₁α (data not shown); in further studies, therefore, eicosanoids were...
measured after 10 minutes of agonist stimulation. Ten minutes after bradykinin stimulation, levels of 6-keto-PGF\(_{1\alpha}\), PGE\(_2\), and 15-HETE were significantly increased in cells exposed to 44 mM glucose compared with 5.5 mM glucose (Figure 4). The time course of eicosanoid production after addition of A23187 (10\(^{-6}\) M) was similar to that after addition of bradykinin (data not shown). After 10 minutes of stimulation with A23187, levels of PGE\(_2\) and PGF\(_{2\alpha}\) were significantly increased in cells exposed to 44 mM glucose, but the levels of the other eicosanoids measured were not significantly different (Figure 4). TXB\(_2\) levels did not increase after stimulation with bradykinin or A23187, and there was no significant difference between the levels produced by cells exposed to either 5.5 or 44 mM glucose.

Arachidonic acid (10\(^{-6}\) and 10\(^{-5}\) M) stimulated production of eicosanoids at 10 minutes to levels similar to those caused by bradykinin or A23187 (Figure 5). There were no apparent differences in the levels of eicosanoids produced from exogenous arachidonic acid in cells exposed to 44 mM glucose compared with 5.5 mM glucose (Figure 5).

Effects of Hyperosmolarity

Supplementing 5.5 mM glucose for 6 hours with mannose (38.5 mM) or sucrose (38.5 mM) to achieve equivalent osmolarity to 44 mM glucose had no significant effect on cGMP levels under basal conditions or at 1 or
Physiological salt solution for 6 hours. Values are expressed as mean±SEM; n=4 wells performed on four separate days. Note that the right y axis has a different scale for TxB2 and 15-HETE.

Interactions Between cGMP and Eicosanoids

Treatment with indomethacin (10⁻⁶ M) markedly inhibited production of all prostanoids as well as 15-HETE (Table 1), but had no apparent effect on basal or A23187-stimulated cGMP levels (Table 2). NNA had no apparent effect on A23187-stimulated eicosanoids levels (Table 1). IBMX (10⁻⁴ M), which markedly increased cGMP levels at 1 or 10 minutes after stimulation with A23187, had no significant effect on levels of eicosanoids produced by PAECs (Table 1).

Effect of Elevated Glucose on cGMP

A 6-hour exposure to elevated glucose significantly decreased agonist-stimulated cGMP levels; the lower levels were noted during the peak stimulation by bradykinin but persisted throughout the stimulation by A23187. The difference caused by glucose is unlikely to be due to a change in phosphodiesterase activity because the difference was noted both in the presence and absence of A23187.
Effect of Elevated Glucose on Eicosanoid Production

Although basal levels of eicosanoids were unaffected by exposure to elevated glucose, there was a generalized increase when production was stimulated by either bradykinin or A23187 in cells exposed to elevated glucose. The effect of elevated glucose on the response to the two agonists was similar, with the notable exception of 15-HETE, which was increased when cells exposed to elevated glucose were stimulated with bradykinin but not when they were stimulated with A23187. The increased eicosanoid production caused by exposure to elevated glucose could explain the decrease in cyclic nucleotide observed. This is less likely, given that SOD did not prevent the decrease in cGMP.

Effect of Elevated Glucose on Eicosanoid Production

Although basal levels of eicosanoids were unaffected by exposure to elevated glucose, there was a generalized increase when production was stimulated by either bradykinin or A23187 in cells exposed to elevated glucose. The effect of elevated glucose on the response to the two agonists was similar, with the notable exception of 15-HETE, which was increased when cells exposed to elevated glucose were stimulated with bradykinin but not when they were stimulated with A23187. The increased eicosanoid production caused by exposure to elevated glucose could explain the decrease in cyclic nucleotide observed. This is less likely, given that SOD did not prevent the decrease in cGMP.
Glucose and Endothelial Vasoactive Products

Weisbrod et al

TABLE 1. Effects of Cyclooxygenase, NO Synthase, and Phosphodiesterase Inhibition on A23187-Stimulated Eicosanoid Formation

<table>
<thead>
<tr>
<th>Agent</th>
<th>Glucose concentration</th>
<th>6-Keto-PGF<sub>1α</sub></th>
<th>PGE<sub>2</sub></th>
<th>PGF<sub>1α</sub></th>
<th>TxB<sub>2</sub></th>
<th>15-HETE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indomethacin (10<sup>−6</sup> M)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−</td>
<td>5.5 mM</td>
<td>26±1.2</td>
<td>9.8±2.7</td>
<td>15±8.7</td>
<td>0.09±0.04</td>
<td>1.4±0.4</td>
</tr>
<tr>
<td>+</td>
<td>5.5 mM</td>
<td>15±4.5*</td>
<td>11±0.5*</td>
<td>7±0.2*</td>
<td>nd</td>
<td>0.4±0.1*</td>
</tr>
<tr>
<td>−</td>
<td>44 mM</td>
<td>35±12</td>
<td>13±3.3</td>
<td>23±16</td>
<td>0.07±0.04</td>
<td>1.9±0.9</td>
</tr>
<tr>
<td>+</td>
<td>44 mM</td>
<td>0.5±0.1*</td>
<td>0.8±0.2*</td>
<td>0.5±0.1*</td>
<td>nd</td>
<td>0.4±0.2*</td>
</tr>
<tr>
<td>NNA (3×10<sup>−4</sup> M)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−</td>
<td>5.5 mM</td>
<td>14±2.3</td>
<td>6.2±0.8</td>
<td>4.9±0.4</td>
<td>0.05±0.01</td>
<td>1.8±0.4</td>
</tr>
<tr>
<td>+</td>
<td>5.5 mM</td>
<td>15±3.4</td>
<td>6.0±2.5</td>
<td>4.4±0.1</td>
<td>0.05±0.03</td>
<td>1.7±1.2</td>
</tr>
<tr>
<td>−</td>
<td>44 mM</td>
<td>18±4.9</td>
<td>11±6.9</td>
<td>5.5±0.3</td>
<td>0.01±0.01</td>
<td>1.0±0.3</td>
</tr>
<tr>
<td>+</td>
<td>44 mM</td>
<td>17±5.4</td>
<td>10±6.4</td>
<td>5.5±0.6</td>
<td>0.05±0.01</td>
<td>0.8±0.6</td>
</tr>
<tr>
<td>IBMX (10<sup>−4</sup> M)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−</td>
<td>5.5 mM</td>
<td>9.5±1.3</td>
<td>6.6±0.7</td>
<td>15±1.7</td>
<td>0.08±0.02</td>
<td>1.0±0.2</td>
</tr>
<tr>
<td>+</td>
<td>5.5 mM</td>
<td>11.0±1.2</td>
<td>6.7±1.2</td>
<td>19±2.5</td>
<td>0.05±0.01</td>
<td>1.8±0.3</td>
</tr>
<tr>
<td>−</td>
<td>44 mM</td>
<td>10.3±1.5</td>
<td>8.6±0.9</td>
<td>20±1.4</td>
<td>0.14±0.02</td>
<td>1.8±0.4</td>
</tr>
<tr>
<td>+</td>
<td>44 mM</td>
<td>10.3±1.1</td>
<td>6.3±0.9</td>
<td>19±2.2</td>
<td>0.09±0.02</td>
<td>2.3±0.2</td>
</tr>
</tbody>
</table>

NO, nitric oxide; PG, prostaglandin; TxB₂, thromboxane B₂; 15-HETE, 15(5)-hydroxy-(5Z, 8Z, 11Z, 13E)-eicosatetraenoic acid; nd, not detectable; −, in the absence of; +, in the presence of. Data are expressed as mean±SEM in nanograms per well; n=4, 2, and 9 for indomethacin, N-nitro-l-arginine (NNA), and 3-isobutyl-1-methylxanthine (IBMX), respectively. Cells used in each of the three treatments are from different primary cultures. Pig aortic endothelial cells were incubated for 6 hours in physiological salt solution containing 5.5 mM or 44 mM glucose. Indomethacin was present throughout the 6-hour incubation, and NNA and IBMX were added during the last 30 minutes. Eicosanoid levels were measured after stimulation with A23187 (10^{−6} M) for 10 minutes.

*Indomethacin significantly decreased all eicosanoids; NNA or IBMX had no apparent effect.

TABLE 2. Effects of Cyclooxygenase or NO Synthase Inhibition on A23187-Stimulated cGMP Formation in Pig Aortic Endothelial Cells

<table>
<thead>
<tr>
<th>Agent</th>
<th>Glucose concentration</th>
<th>Basal</th>
<th>A23187 (10<sup>−6</sup> M)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 Minute</td>
</tr>
<tr>
<td>Indomethacin (10<sup>−6</sup> M)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−</td>
<td>5.5 mM</td>
<td>11±4.4</td>
<td>430±110</td>
</tr>
<tr>
<td>+</td>
<td>5.5 mM</td>
<td>7.9±1.6</td>
<td>450±0.0</td>
</tr>
<tr>
<td>−</td>
<td>44 mM</td>
<td>11±3.2</td>
<td>340±67</td>
</tr>
<tr>
<td>+</td>
<td>44 mM</td>
<td>8.3±1.6</td>
<td>350±74</td>
</tr>
<tr>
<td>NNA (3×10<sup>−4</sup> M)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−</td>
<td>5.5 mM</td>
<td>5.6±1.5</td>
<td>440</td>
</tr>
<tr>
<td>+</td>
<td>5.5 mM</td>
<td>4.6±0.5</td>
<td>2.0</td>
</tr>
<tr>
<td>−</td>
<td>44 mM</td>
<td>5.4±2.0</td>
<td>240</td>
</tr>
<tr>
<td>+</td>
<td>44 mM</td>
<td>2.3±1.4</td>
<td>1.4</td>
</tr>
</tbody>
</table>

NO, nitric oxide; cGMP, cyclic GMP. Data are expressed as mean±SEM in femtomoles cGMP per microgram protein; n=2–5 for indomethacin and 1–2 for N-nitro-l-arginine (NNA). After a 6-hour incubation in physiological salt solution containing 5.5 mM or 44 mM glucose, pig aortic endothelial cells were equilibrated for 30 minutes with 3-isobutyl-1-methylxanthine (10^{−4} M). Indomethacin was present throughout the 6-hour incubation and NNA was added during the last 30 minutes. cGMP levels were measured in unstimulated cells (basal) and after 1 and 10 minutes of A23187 (10^{−6} M). Indomethacin had no apparent effect on cGMP levels, whereas NNA abolished A23187-stimulated increases in cGMP levels.
PGF\textsubscript{2\alpha}, others have found that diabetic human and animal vascular tissue and endothelial cells cultured in elevated glucose produce less prostacyclin (see References 22 and 23). In our own studies, the aortas of 6-week-old diabetic rabbits\(^5\) and those of normal rabbits \(^22\) and \(^23\) were exposed to insulin, which can itself influence eicosanoid release.\(^25\) Several studies, including our own, have suggested that elevated glucose interferes with prostacyclin production at the level of phospholipase \(A_2\).\(^5\)\(^,\)\(^1\)\(^2\) Whether elevated glucose causes an increase or decrease in eicosanoids, perhaps the most important factor is the duration of exposure, because the decreases observed have occurred over a duration of days to weeks. The present study suggests that the early and perhaps most direct result of elevated glucose is an increased release of endothelial cell eicosanoids, including prostacyclin.

Comparisons With Blood Vessels Exposed to Elevated Glucose

Aortas isolated from diabetic rabbits that have plasma glucose values averaging 20 mM or normal aortas exposed to 44 mM glucose for 6 hours release increased amounts of eicosanoids when stimulated by the endothelium-dependent agonist acetylcholine and demonstrate decreased relaxation.\(^5\)\(^,\)\(^1\)\(^1\) The increased eicosanoid release was ascribed to the endothelial cells because it was eliminated when the endothelium was removed. Although not all studies agree,\(^27\)\(^-\)\(^29\) abnormal endothelium-dependent relaxations in diabetes have been observed in the rat aorta,\(^2\)\(^0\)\(^-\)\(^3\)\(^3\) rabbit aorta,\(^5\)\(^,\)\(^1\)\(^1\) pig and dog coronary artery,\(^24\) and human penile corpus cavernosum.\(^10\) The reversal by cyclooxygenase inhibitors of reduced endothelium-dependent relaxations of rabbit aorta exposed to elevated glucose suggests that eicosanoids produced by the endothelium cause contraction that offsets the relaxation mediated by NO. Therefore, reduced NO production need not be invoked to explain the impaired endothelium-dependent relaxation, of which it is the primary mediator.\(^5\)\(^,\)\(^1\)\(^1\) This possibility is further supported by the apparent lack of any effect on NO release with increased eicosanoid production in PAECs exposed to elevated glucose.

The identity of the endothelium-derived eicosanoid vasoconstrictor is not known with certainty. Recent studies have suggested that the prostaglandin end products themselves, although they can all contract the rabbit aorta when applied exogenously,\(^2\) may not be released in sufficient quantities by the endothelium of the isolated rabbit aorta to contract the smooth muscle. Under normal-glucose conditions relatively large amounts of eicosanoids are produced, but there is no effect of cyclooxygenase blockade on endothelium-dependent relaxations.\(^1\)\(^1\) Also, aldose reductase inhibitors\(^35\) or free-radical scavengers\(^36\) both normalize the impaired endothelium-dependent relaxation of the diabetic rabbit aorta without affecting the increased production of eicosanoid metabolites. These findings suggest that the metabolism of glucose by the aldose reductase pathway may give rise to free radicals,\(^37\)\(^,\)\(^38\) that can interfere with endothelium-dependent relaxation. Furthermore, superoxide anion was shown to be a key element in the contraction caused by exogenous prostaglandin endoperoxide (PGH\(_2\)) but not the prostaglandin end products.\(^9\) A generalized increase in eicosanoid metabolites would be compatible, nevertheless, with an increase in PGH\(_2\) formation by cyclooxygenase, which also generates free radicals.\(^4\)\(^1\) It has been shown that the levels of PGH\(_2\) produced in the rabbit aortic endothelium are sufficient to contract the smooth muscle.\(^4\)\(^2\) It would appear then that the coincident production of free radicals and PGH\(_2\) may account for the endothelium-derived vasoconstrictor in blood vessels exposed to elevated glucose. Of interest is the fact that exposure of the rabbit aorta to hyperosmolar mannose does not impair endothelium-dependent relaxation as does glucose,\(^11\) which suggests that the metabolism of glucose is required for free-radical production, whereas the exposure to hyperosmolarity increases eicosanoid production.

In conclusion, various studies have shown that diabetes and exposure to elevated glucose can alter the levels of vasoactive substances, such as eicosanoids, released from the endothelium of blood vessels. These studies in PAECs may provide a model system with which to study the elaboration of vasoactive substances from endothelium exposed to elevated glucose.

References

Effect of elevated glucose on cyclic GMP and eicosanoids produced by porcine aortic endothelium.
R M Weisbrod, M L Brown and R A Cohen

doi: 10.1161/01.ATV.13.6.915
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1993 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/13/6/915

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org/subscriptions/