Antiplatelet Properties of Protein S-Nitrosothiols Derived From Nitric Oxide and Endothelium-Derived Relaxing Factor

S-Nitrosothiols may serve as carriers in the mechanism of action of endothelium-derived relaxing factor (EDRF) by stabilizing the labile nitric oxide (NO) radical from inactivation by reactive species in the physiological milieu and by delivering NO to the heme activator site of guanylyl cyclase. Low-molecular-weight thiols, such as cysteine and glutathione, form S-nitrosothiol adducts with vasodilatory and antiplatelet properties, and protein thiols can interact in the presence of NO and/or EDRF to form uniquely stable S-nitroso-proteins. We now show that the S-nitroso-proteins, S-nitroso-albumin, S-nitroso-tissue type plasminogen activator, and S-nitroso-cathepsin B, have potent antiplatelet effects with an IC₅₀ of approximately 1.5 μM. In the dog, S-nitroso-albumin inhibits ex vivo platelet aggregation and significantly prolongs the template bleeding time from 2.15±0.13 (mean±SEM) to 9.70±1.24 minutes. The antiplatelet action of S-nitroso-proteins is associated with the stimulation of guanylyl cyclase and a significant decrease in fibrinogen binding to platelets. S-Nitroso-proteins undergo thiol-nitrosothiol exchange with low-molecular-weight thiols to form low-molecular-weight S-nitroso-thiols, and they also interact directly with the platelet surface, both of which processes facilitate generation of NO. These data suggest that S-nitroso-proteins are potent antiplatelet agents and may be intermediates in the antiplatelet mechanism of EDRF action.

KEY WORDS • S-nitrosothiols • thionitrites • cyclic GMP • thiols • sulfhydryl groups

The vascular endothelium plays an important role in modulating platelet function. Aggregating platelets secrete serotonin and adenosine diphosphate that bind to receptors on endothelial cells and in turn stimulate the release of endothelium-derived relaxing factor (EDRF). Recent studies suggest that EDRF can prevent platelet adhesion to the endothelium and inhibit platelet aggregation. Chemical and spectrophotometric analyses have led investigators to conclude that at least one form of EDRF is the highly labile nitric oxide (NO) radical. It has recently been demonstrated that bioactive NO equivalents in plasma are bound predominantly to thiol groups of proteins and that this reservoir may play a role in modulating vasomotor tone. In light of the established antiplatelet properties of NO, we now examine the effects of S-nitroso-proteins on platelet function. In this study, we 1) show that S-nitroso-proteins inhibit platelet function, 2) investigate in detail the mechanism of platelet inhibition by these biological NO adducts, 3) demonstrate novel aspects of their biochemical metabolism, and 4) document these inhibitory mechanisms in vitro and in vivo.

Methods

Tissue type plasminogen activator (t-PA) was provided by Genentech, Inc., South San Francisco, Calif. Fatty acid-free bovine serum albumin (BSA), cathepsin B, adenosine 5'-diphosphate (ADP), iodoacetamide, 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB), methylene blue, Sepharose 2B-300, and acetylsalicylic acid were obtained from Sigma Chemical Co., St. Louis, Mo. Sodium nitrate was purchased from Fisher Scientific, Fairlawn, N.J. NO gas was obtained from Matheson Gas, Secaucus, N.J. Sulfanilamide and N-(1-naphthyl)-ethylenediamine were purchased from Aldrich Chemi...
cal Co., Milwaukee, Wis. Human fibrinogen (plasminogen free and von Willebrand factor free) was purchased from Enzyme Research Laboratories, South Bend, Ind. Sephadex G-25 was purchased from Pharmacia Fine Chemicals, Uppsala, Sweden. Thrombin was purchased from ICN Immunobiologicals, Costa Mesa, Calif. Iodoacetamide and iodoacetamide were purchased from Pierce Chemical Company, Rockford, Ill. Soluble calf skin collagen was purchased from Worthington Biochemical Corp., Freehold, N.J. Microcarrier beads (Biosilon) for endothelial cell culture were obtained from Vanguard International, Neptune, N.J. Dulbecco's modified Eagle's medium was purchased from GIBCO Technologies, Grand Island, N.Y. Bleeding time templates were purchased from Organon Teknika Corp., Durham, N.C. Radioimmunoassay kits for cyclic guanosine monophosphate (GMP) were purchased from New England Nuclear, Boston. Phosphate-buffered saline (PBS), pH 7.4, consisted of 10 mM sodium phosphate and 150 mM NaCl. Tris-buffered saline, pH 7.4, consisted of 10 mM tris(hydroxymethyl)aminomethane and 150 mM NaCl.

BSA, which the NO that is displaced from 5-nitrosothiol content was quantified by the method of Saville,18 in which the NO that is displaced from 5-nitrosothiol groups by Hg2+ is assayed by diazotization of sulfanilamide and subsequent coupling with the chromophore N-(1-naphthyl)ethylenediamine. The stoichiometries of S-nitrosothiol bonds per protein molecule for BSA, t-PA, cathepsin B, and plasma were (mean±SEM) 0.85±0.04, 0.88±0.06, 0.90±0.02, and 0.87±0.02, respectively. For plasma, the concentration of free thiol was quantified by Ellman's reagent (DTNB).20

Carboxymidation

Blockade of protein thiols by carboxymidation with iodoacetamide prevented S-nitrosothiol formation as determined chemically. BSA or t-PA was carboxymidated by exposure to a 10-fold excess of iodoacetamide for 1 hour at room temperature in the dark and then extensively dialyzed to remove excess iodoacetamide.

Thiol Quantification

Quantification of thiol was performed either in plasma directly or in PBS (pH 7.4) using Ellman's reagent (DTNB).20

Endothelial Cell Culture

Bovine aortic endothelial cells were cultured on plastic beads (Biosilon) as previously described.21 Endothelial cells on beads (ECBs) were exposed to 30 μM acetylsalicylic acid for 30 minutes, washed three times, and resuspended in PBS. The ECBs were placed in the thiol-containing solutions and stimulated to secrete EDRF by exposure to shear force as previously described.15,16 In these experiments, ECBs were used at a density of 5×10^7 cells/μL and exposed to a shear stress of 0.43 dyne/cm^2 for 15 minutes, as calibrated in our laboratory.17

Platelets

Venous blood was obtained from volunteers who had not consumed aspirin or other nonsteroidal anti-inflammatory drugs for at least 10 days and was anticoagulated with 13 mM trisodium citrate. Platelet-rich plasma (PRP) was prepared by centrifugation at 150g for 10 minutes at 25°C, and platelet-poor plasma (PPP) was prepared by centrifugation at 800g for 10 minutes. Gel-filtered platelets (GFPs) were obtained by passing PRP over a Sepharose-2B column in calcium-free Tyrode's-HEPES buffer, as previously described.22 Platelet counts were measured using a Coulter Counter (model ZM, Coulter Electronics, Hialeah, Fla.) and adjusted to 150,000/μL by the addition of PPP or HBS.

Platelet Aggregation and Disaggregation

In platelet aggregation experiments, 200 μL of PRP or GFPs was incubated with 100 μL of S-nitroso-protein for 10 minutes at 37°C in a PAP-4 aggregometer (Biodata, Hatboro, Pa.), after which time aggregation was induced with 5 μM ADP, 100 μg/mL collagen, or 0.024 unit/ml thrombin. Aggregation experiments with GFPs were performed in the presence of 0.1 mg/mL fibrinogen; when thrombin was used as an agonist, 2.5 mM L-glycyl-L-prolyl-L-arginyl-L-proline was also added to inhibit (delay) fibrin polymerization.23 Aggregation was quantified by measuring the rate or extent of change of light transmittance and was expressed as a normalized value relative to control aggregation. Whole-blood aggregation was performed using impedance aggregometry in a Chronolog Whole Blood Aggregometer (Havertown, Pa.). In aggregations performed with methylene blue, platelets were preincubated for 15 minutes with 10^-4 M methylene blue before the addition of agonists or inhibitors of aggregation.
To measure the effects of S-nitroso-proteins on the dispersal of platelet aggregates, S-nitroso-proteins were added to PRP or GFPs after maximal aggregation was induced with 5 μM ADP (corresponding to approximately 60% light transmittance compared with PRP). Disaggregation was quantified by measuring the maximal rate and extent of decrease in light transmittance after the addition of S-nitroso-proteins.

To exclude irreversible damage to platelets exposed to S-nitrosated proteins, we examined platelet function after the removal of S-nitrosated protein by gel filtration. PRP was incubated in the presence of 14 μM S-nitroso-BSA for 10 minutes or 60 minutes. PRP exposed to BSA or S-nitroso-BSA was then gel filtered on a Sepharose-2B column, and the platelets were counted and adjusted to 150,000/μL by the addition of HBS. Aggregation was then induced with 5 μM ADP as above and found not to be significantly different (maximal rate of aggregation, 0.85±0.05% transmittance/sec versus 0.88±0.05% transmittance/sec, n=6, p=NS, for t=10 minutes; 0.80±0.02% transmittance/sec versus 0.79±0.03% transmittance/sec, n=3, p=NS, for t=60 minutes).

Fibrinogen Binding

Human fibrinogen (free of plasminogen and von Willebrand factor) was radioiodinated with Iodo-beads as previously described. 23–25 125I-fibrinogen binding to GFPs stimulated with 5 μM ADP was performed as previously described. 24 Specific binding in the presence or absence of 14 μM S-nitroso-BSA was determined over a range of fibrinogen concentrations from 0.25 to 2.0 μM. Nonspecific binding was determined by using a 15-fold excess of unlabeled fibrinogen and accounted for 15% of total binding.

Cyclic Nucleotide Assays

Intraplatelet cyclic GMP was measured by radioimmunoassay. ADP (5 μM) was added to 300 μL GFPs incubated in the presence of 14 μM BSA or S-nitroso-BSA. After 1 minute, 300 μL of 10% trichloroacetic acid was added. Trichloroacetic acid was removed by ether extraction, and samples were acetylated with acetic anhydride to increase the sensitivity of the assay.

Bleeding Time Determination and Ex Vivo Aggregation

Mongrel dogs of either sex weighing between 20 and 26 kg were anesthetized with 20 mg/kg body wt sodium thiamylal (Boehringer Ingleheim, St. Joseph, Mo.), intubated with a cuffed endotracheal tube, and ventilated with a respirator (Drager AV, North American Drager, Telford, Pa.) with 50% O2 (22 breaths/min, 10-12 mL/kg body wt per stroke volume). Anesthesia was maintained throughout the experimental protocol with 1–2% halothane. Animals used in this study were maintained in accordance with the guidelines of the Committee on Animals of the institution, and those prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources, National Research Council (Department of Health, Education, and Welfare publication No. [NIH] 78-23, revised 1978).

Venous and arterial access was achieved, and intravenous doses of BSA or S-nitroso-BSA were then infused. Ex vivo platelet aggregation (induced by 5 μM ADP or 0.1 mg/mL collagen) measurements were performed at baseline and 5 minutes after infusion of BSA or S-nitroso-BSA at 1, 10, or 50 nmol/kg body wt per minute for 5 minutes. Bleeding time measurements were performed at baseline and 5 minutes after bolus infusion of 183 nmol/kg body wt of BSA or S-nitroso-BSA using a template apparatus applied to the ventral aspect of the tongue to minimize temperature fluctuation.

Protein Determinations

Protein concentrations were determined by the method of Bradford. 25

Statistical Analysis

Determination of statistical significance was carried out by nonpaired t test or two-way analysis of variance followed by a Newman-Keuls comparison. Values of p<0.05 were considered significant.

Results

Inhibition of Platelet Function by S-Nitroso-proteins

The effects of S-nitroso-proteins were first examined using GFPs. S-Nitroso-BSA inhibited ADP-induced platelet aggregation in a dose-dependent manner (Figure 1) with an apparent IC50 of 1.5 μM. Similar IC50s were measured for aggregation induced by collagen (1.2 μM) and thrombin (1.3 μM). In control experiments, BSA alone had no significant effect on platelet aggregation over the range of concentrations tested. S-Nitroso-t-PA, S-nitroso-cathepsin B, and S-nitrosated plasma also inhibited platelet aggregation (Table 1). As shown in Table 1, S-nitroso-BSA, S-nitroso-t-PA, and S-nitroso-cathepsin B were essentially equipotent, with IC50s of approximately 1.5 μM. Quantification of S-nitrosothiol before and after trichloroacetic acid precipitation showed that approximately 95% S-nitrosothiol was protein bound.

S-Nitroso-proteins were also synthesized by exposure of the proteins to authentic EDRF (NO) from bovine aortic endothelial cells stimulated to secrete EDRF as described in "Methods." S-Nitroso-proteins synthesized with EDRF also inhibited platelet aggregation (Figure 1). Neither BSA exposed to unstimulated endothelial cells nor PBS incubated with stimulated cells in the absence of BSA inhibited ADP-induced platelet aggregation in PRP. Pretreatment of endothelial cells with acetylsalicylic acid was performed in all cases to eliminate prostanoic synthesis.

The platelet-inhibitory action of S-nitroso-proteins was also comparable in GFPs and whole-blood preparations. For example, the relative extent of aggregation compared with control for 1.4 μM S-nitroso-BSA was 0.54±0.04 (mean±SEM) in GFPs, 0.39±0.13 in PRP, and 0.64±0.03 in whole blood. Disaggregation of platelets by S-nitroso-proteins was also observed at equivalent concentrations as those inducing inhibition of platelet aggregation (data not shown).

Time Dependence of Antithrombolytic Effects of S-Nitroso-proteins

The platelet-inhibitory effect of S-nitroso-proteins was time dependent. Increasing incubation times led to
progressive increases in the degree of platelet inhibition (Figure 2). S-Nitroso-BSA (140 nM) completely inhibited platelet aggregation in PRP after 60 minutes of incubation, indicating inhibition of the primary phase of ADP-induced aggregation. This time dependence probably reflects the relative stability of the protein S-NO bond and the gradual, cumulative release of NO from the S-nitroso-protein source. Whereas S-nitroso-proteins have half-lives of approximately 24 hours in PBS at 37°C, they have half-lives on the order of only 60 minutes in plasma at 37°C. By comparison, the half-life of NO in vivo is approximately 0.1 second.26

Table 1. Inhibition of Platelet Aggregation With Various S-Nitroso-proteins

<table>
<thead>
<tr>
<th>S-NO-protein</th>
<th>Relative extent of aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-NO-BSA</td>
<td>0.61±0.04</td>
</tr>
<tr>
<td>S-NO-t-PA</td>
<td>0.53±0.02</td>
</tr>
<tr>
<td>S-NO-cathepsin B</td>
<td>0.62±0.07</td>
</tr>
<tr>
<td>S-nitrosated plasma</td>
<td>0.25±0.02</td>
</tr>
</tbody>
</table>

Adenosine diphosphate–induced platelet aggregation was performed in the presence of bovine serum albumin (BSA), tissue type plasminogen activator (t-PA), cathepsin B, plasma, S-nitroso (NO)–BSA, S-NO-t-PA, S-NO-cathepsin B, and a nitrosated protein plasma fraction. The concentration of all proteins and S-nitroso-proteins was 1.4 μM. Plasma S-nitroso-protein concentration was quantified by the Saville reaction.18 Aggregations were not inhibited by the control or nonnitrosated proteins: BSA, 1.0±0.02; t-PA, 0.98±0.07; cathepsin B, 0.96±0.07; and plasma, 0.93±0.04. Values are presented as mean±SEM for n=4–12 experiments.

Protein versus S-nitroso-protein, p≤0.007; nitrosated plasma versus S-nitroso-protein, p≤0.04.

Transfer of NO From S-Nitroso-proteins to Low-Molecular-Weight Thiols

The stability of S-nitroso-proteins under physiological conditions, as well as their differential reactivity in PBS and plasma, begs the question of the mechanism by which these stable adducts release and deliver NO to the platelet in the aggregation experiments described here. To address this issue, we examined the effect of low-molecular-weight thiols on protein-bound S-nitrosothiol in a solution of S-nitroso-BSA. We incubated 50 μM S-nitroso-BSA with an equimolar concentration of reduced glutathione and measured the transfer of NO from BSA to glutathione over time by the Saville reaction18 after protein precipitation. As shown in Figure 3, approximately one half of the S-nitroso-BSA was converted to S-nitroso-glutathione after 10 minutes at 25°C. Comparable results were obtained with a cell-permeable, low-molecular-weight thiol, N-acetylcysteine. The functional correlate of this transfer was examined by showing that increasing concentrations of glutathione led to progressive inhibition of platelet aggregation in the presence of a subthreshold (under these conditions) concentration of S-nitroso-BSA (Figure 4). The implications of S-nitroso-glutathione-mediated platelet inhibition in these studies is further supported by the comparable potency of this compound synthesized de novo with acidified NaNO2 (IC50=20 μM).

The ability of low-molecular-weight thiols to enhance the inhibitory action of S-nitroso-proteins can account for the action of S-nitroso-BSA in PRP or whole blood; however, in a GFP system, some other mechanism of facilitated transfer of NO must be operative. The platelet surface is another source of reduced thiol equiva-
FIGURE 2. Effect of increasing incubation time on the degree of platelet inhibition by 140 nM S-nitroso-bovine serum albumin (BSA). Gel-filtered platelets were incubated with 140 nM S-nitroso-BSA for up to 1 hour, and platelet aggregation induced by 5 μM adenosine diphosphate in the presence of 0.1 mg/mL fibrinogen was determined at 1, 10, 30, 45, and 60 minutes during the incubation period as described in "Methods."

lents, and therefore, we tested the ability of GFPs in protein-free buffer (calcium-free Tyrode’s-HEPES) to facilitate the removal of NO from S-nitroso-BSA. GFPs were incubated with 132 μM S-nitroso-BSA, and the rate of loss of NO from BSA was determined by centrifuging the platelets from the incubation suspension over time, after which the S-nitroso-BSA content of the supernatant was measured by the Saville reaction. GFPs facilitated the release of NO from S-nitroso-BSA at a rate of 5.3±2.7 nmol/min per 10⁴ platelets (n=4); spontaneous release of NO from S-nitroso-BSA under these conditions was essentially undetectable (i.e., <0.1 nmol/min per 10⁴ platelets). These data support the hypothesis that the platelet surface can also catalyze the

FIGURE 3. Line plot showing the transfer of nitric oxide (NO) from S-nitroso-proteins to low-molecular-weight thiol. S-Nitroso-bovine serum albumin (BSA) (50 μM) was incubated with an equimolar concentration of reduced glutathione (GSH) at 25°C, and the distribution of NO between BSA (open circles) and GSH (closed circles) was determined over time by protein precipitation and the Saville reaction (n=2).

FIGURE 4. Semilog plot showing effect of increasing concentrations of reduced glutathione (GSH) on the extent of gel-filtered platelet (GFP) aggregation. S-Nitroso-bovine serum albumin (BSA) (15 μM) was incubated with increasing concentrations of GSH for 5 minutes and subsequently added to GFPs, in which the final concentration of S-nitroso-BSA was 5 μM. After 2 minutes the extent of aggregation induced by adenosine diphosphate was determined (open circles) in calcium-free Tyrode’s-HEPES buffer containing 0.1 mg/mL fibrinogen and compared with that of S-nitroso-BSA (open circle on y axis) and GSH alone (open triangle).
Inhibition of S-Nitroso-Protein Antiplatelet Action

Blockade of protein thiols by carboxyamidation prevented S-nitrosothiol formation, as determined chemically by the method of Saville as well as spectroscopically. This modification rendered the proteins exposed to NO or EDRF incapable of inhibiting platelet aggregation (Figure 5).

Effect of S-Nitroso-proteins on Platelet Cyclic GMP and Fibrinogen Binding

Consistent with the mechanism of platelet inhibition by organic nitrates, low-molecular-weight S-nitrosothiols, and EDRF, the platelet-inhibitory effect of S-nitroso-proteins was abolished by methylene blue, an inhibitor of guanylyl cyclase (Figure 5). The importance of cyclic GMP in the mechanism of platelet inhibition by S-nitroso-proteins was confirmed by showing that S-nitroso-BSA (14 μM) induced an approximate twofold increase in intraplatelet cyclic GMP compared with basal levels at 1 minute after exposure (n=4; mean±SEM of 0.61±0.07 picomoles of cyclic GMP per 10^8 platelets compared with a basal level of 0.35±0.04; p=0.022). BSA alone had no effect on cyclic GMP levels.

To elucidate further the mechanism of platelet inhibition by S-nitroso-proteins, fibrinogen-binding studies were performed in GFPs. Figure 6 shows that exposure of the platelets to S-nitroso-BSA led to a reduction in the number of platelet-bound fibrinogen molecules. S-Nitroso-BSA at a concentration of 14 μM, which inhibited platelet aggregation by 81%, caused a reduction in ADP-stimulated fibrinogen binding of 60% (54,000±12,000 fibrinogen molecules per platelet in the presence of BSA compared with 22,000±3,000 fibrinogen molecules per platelet in the presence of S-nitroso-BSA; mean±SEM of four experiments; BSA versus S-nitroso-BSA, p=0.04).

Effects of S-Nitroso-proteins on Platelet Function In Vivo

Finally, the biological/physiological relevance of S-nitroso-proteins was investigated in mongrel dogs by following the protocol described in “Methods.” A dose-dependent inhibition of ex vivo aggregation was apparently induced by ADP (Figure 7) or collagen (data not shown) and was accompanied by a significant prolongation of the bleeding time (Table 2).

Discussion

The experiments presented here demonstrate that NO and EDRF will react with protein thiols to form S-nitroso-protein adducts that are potent platelet-inhibitory compounds in vitro, ex vivo, and in vivo. The mechanism by which exogenous and endogenous nitro(so) derivatives inhibit platelets parallels that for vascular smooth muscle: the free radical NO stimulates guanylyl cyclase by forming a nitrosyl-heme complex at the activator site of the enzyme. Mellion and co-workers extended these observations to the platelet, confirming that NO inhibits platelets by elevating cyclic GMP. Our laboratory showed that NO-mediated elevation of cyclic GMP results in a marked decrease in the number of fibrinogen molecules bound to the platelet, to an inhibition of intracellular calcium flux, and to an inhibition of platelet secretion. The mechanism by which cyclic GMP leads to these inhibitory effects remains to be defined but may involve protein phosphorylation events regulated by cyclic GMP, or signal transduction events involving the phosphoinositide pathway. The characteristics of the platelet-inhibitory response for S-nitroso-proteins described in...
In view of the fact that NO is rapidly inactivated by molecular oxygen, superoxide anion, and heme as well as nonheme iron, it has been postulated that NO is stabilized by a carrier molecule that preserves its biological activity. Since Ignarro and coworkers demonstrated that nitro(so) compounds can react with reduced low-molecular-weight thiols such as cysteine and glutathione to form 5-nitrosothiols, evidence has mounted that supports the view that 5-nitrosothiols may serve such a carrier role as intermediates in the mechanism of nitrate and EDRF action. In platelets in particular, Loscalzo has shown that the reduced thiol N-acetylcysteine potentiates the antiplatelet effects of organic nitrates and that the incubation of nitroglycerin in PRP results in intraplatelet glutathione depletion coincident with the formation of S-nitrosothiols.

The role of reduced thiols in the action of EDRF is more controversial. Palmer and colleagues and Ignarro and coworkers have separately concluded that EDRF is chemically and spectrophotometrically identical to NO. However, it has recently been proposed that the vasodilatory properties of EDRF more closely resemble those of S-nitroso-cysteine than of NO, and the possibility that EDRF is released abuminally in the form of a nitroso derivative has been recently entertained. Notwithstanding the controversy over the chemical identity of EDRF, these reports, the findings that N-acetylcysteine potentiates the antiplatelet effects of EDRF and prolongs its half-life, and the present demonstration of S-nitrosothiol formation from endogenous NO, taken together, appear to support strongly the possibility of a role for reduced thiol in the metabolism of EDRF.

Figure 7. Effect of S-nitroso-bovine serum albumin (BSA) on ex vivo platelet aggregation. Ex vivo platelet aggregation induced by 5 μM adenosine diphosphate was performed after administration of S-nitroso-BSA (1, 10, or 50 nmol/kg body wt per minute) infused into the dog over 5 minutes as described in “Methods.” Blood was obtained for ex vivo aggregation 5 minutes after completing the infusion.
The biological importance of protein as a source of reduced thiol for reaction with NO remains to be determined. However, the remarkable prevalence of protein thiols (the most prevalent source of sulfhydryl groups in plasma and a rich source in the cell cytosol) and the highly specialized nature of this functional group suggest that the reaction with NO (through its oxidation to the reactive nitroso species, N2O3) may be regulated in a manner other than simple diffusional limitation. Several lines of evidence indirectly support the notion that the formation of protein-S-nitrosothiols is of biological importance. First, Fung and coworkers have demonstrated that the thiol of albumin catalyzes the denitritification of nitroglycerin in plasma. Second, thionitrites are proposed intermediates in the enzymatic denitritification of nitroglycerin by glutathione-S-transferase and glyceraldehyde-3-phosphate dehydrogenase. Third, hemoglobin has been shown to react by way of a sulfhydryl with a nitroso derivative of arachidonic. The precise mechanism(s) by which NO, carried on proteins as a relatively stable S-nitrosothiol adduct, traverses the platelet membrane to enter the cell and thereupon activates guanylyl cyclase is as yet unknown. The potential for transfer of NO from an S-nitroso-protein to a low-molecular-weight thiol that can, in turn, enter the platelet or facilitate NO transfer to and release at the platelet surface is supported by the data presented here and by recent data from our group. The greater nucleophilicity of low-molecular-weight thiols, such as Cys 34 of serum albumin, favors much higher pK's compared with those for certain proteins as a relatively stable 5-nitrosothiol protein. The authors thank Ms. Stephanie Tribuna for excellent technical assistance.

In summary, we have demonstrated that 1) NO and EDRF will react on exposure to sulfhydryl-containing proteins to form stable S-nitroso-proteins; 2) S-nitroso-proteins are potent platelet inhibitors in vitro, ex vivo, and in vivo; 3) the mechanism of platelet inhibition by S-nitroso-proteins, through increases in cyclic GMP, is similar to that of NO and related nitro(so) compounds; 4) NO is capable of being transferred from S-nitroso-proteins to low-molecular-weight thiols; and 5) the platelet surface is capable of facilitating the release of NO from S-nitroso-proteins. These data suggest that S-nitroso-proteins may serve as intermediates in the cellular metabolism of NO and raise the possibility that this posttranslational modification of protein structure may represent a novel type of cellular regulatory mechanism.

Acknowledgment

The authors thank Ms. Stephanie Tribuna for excellent technical assistance.

References

Antiplatelet properties of protein S-nitrosothiols derived from nitric oxide and endothelium-derived relaxing factor.

D I Simon, J S Stamler, O Jaraki, J F Keaney, J A Osborne, S A Francis, D J Singel and J Loscalzo

doi: 10.1161/01.ATV.13.6.791

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1993 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/13/6/791

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org/subscriptions/