Smoking Is a Potential Confounder of the Chlamydia pneumoniae–Coronary Artery Disease Association

David L. Hahn and Rjurik Golubjatnikov

Two recent studies, which did not adequately control for smoking status, found associations between Chlamydia pneumoniae serological titers and various manifestations of coronary artery disease (CAD). The validity of C. pneumoniae–CAD associations found in case-control studies has been criticized on the basis that smoking, known to be associated with CAD and hypothesized to be associated with C. pneumoniae seroreactivity via an increased prevalence of respiratory infection in smokers, could be an uncontrolled confounder in these studies. We investigated associations between current smoking status and C. pneumoniae serological titers in a cohort of 365 outpatients (mean age, 34 years) with respiratory illness. Current smokers were significantly (p=0.04) more likely than nonsmokers to have C. pneumoniae titers ≥1:128, and there was a significant (p<0.05) “dose-response” association between titer category and smoking, which persisted after controlling for age and sex in a logistic-regression model. These results support the hypothesis that smoking may be a confounder of the association of C. pneumoniae antibody titer and smoking-associated diseases such as CAD. Future studies into these associations should control for cigarette use. (Arteriosclerosis and Thrombosis 1992;12:945–947)

KEY WORDS • Chlamydia pneumoniae • smoking • coronary artery disease • antibody titers

Chlamydia pneumoniae (strain TWAR), a recently discovered respiratory pathogen, is an important cause of acute respiratory infections, including bronchitis and pneumonia, in all age groups. Additionally, long-term exposure to this pathogen has been hypothesized to cause immunopathologically mediated diseases, such as adult-onset asthma and some cases of sarcoidosis.

Both acute and chronic C. pneumoniae infections have recently been associated with various diseases of the heart. C. pneumoniae can cause endocarditis, indicating that this organism is capable of acute colonization of the endocardium. Quantitative associations have been reported between C. pneumoniae serological titers and chronic coronary heart disease, acute myocardial infarction, and angiographically demonstrated coronary artery disease (CAD), raising the possibility that chronic C. pneumoniae infection may be an additional risk factor for CAD. One of these studies has been criticized for not reporting data on smoking, which could have been a confounder of the C. pneumoniae–CAD association. The other study could not report smoking data because they were not available. The hypothesis that smoking may be a confounder of the C. pneumoniae–CAD association is based on the speculation that because smokers have higher rates of respiratory illness than nonsmokers, smokers will have higher rates of C. pneumoniae infection. The purpose of this article was to compare the prevalence of C. pneumoniae seropositive status in currently smoking versus non-smoking adults with acute respiratory illness.

Methods

This article reports data from a cohort of 365 middle-class, white outpatients with respiratory illness who were prospectively enrolled from four primary care (family practice) clinics between September 1, 1988 and January 31, 1991. Patient smoking status (current smoker versus current nonsmoker), as well as sera for microimmunofluorescence testing for C. pneumoniae, was obtained at the time of study enrollment. Sera were obtained for more than 82% of the patients during the convalescent phase. C. pneumoniae seropositive status was defined as either an acute or a convalescent serological titer ≥1:16.

Additionally, C. pneumoniae titer category was defined for each patient as either <1:16 (seronegative), 1:16, 1:32, 1:64, or ≥1:128 based on either the higher of the acute or convalescent titer or the acute titer if a convalescent titer was not available. Further details of the study population, data collection methods, and serological techniques have been published elsewhere.

Statistical Methods

Fisher's exact test was used to analyze 2×2 tables. Logistic regression was performed by using the GLIM program. Two-sided probability values ≤0.05 are reported as significant.
immunoglobulin G antibody seropositive status in the study group was marginally associated with current smoking (p = 0.08) and that high C. pneumoniae titers (≥1:128) were significantly associated with current smoking (p = 0.04). Furthermore, there was a significant (p < 0.05) quantitative linear relation between C. pneumoniae titer category and current smoking status, after controlling for age and sex by logistic regression (Table 2).

Discussion

Saikku et al.7 have reported associations of C. pneumoniae serological titers with both acute myocardial infarction and chronic coronary heart disease. The significance of these associations, which were not controlled for smoking, have been questioned.8 In a reply to the criticism that smoking was a likely confounder of the C. pneumoniae-CAD associations reported in their original article, Saikku et al.11 presented univariate data showing no association between C. pneumoniae seropositive status and smoking. They did not, however, control their analysis for age or sex, nor did they report data on dose–response associations between smoking and titer level. A recent case–control study reported a significant association of angiographically proven CAD with C. pneumoniae immunoglobulin G antibody seropositive status after controlling for age and sex but not for smoking.8 In this article we have reported a significant quantitative association of current smoking with C. pneumoniae serological titer. The reason for this association is uncertain, but it could be due to a greater frequency of respiratory infections among smokers, as hypothesized.9,12 Whatever the reason for the smoking-C. pneumoniae antibody association found in this study, the results favor the assertion that smoking could be a confounder of the C. pneumoniae–CAD association and strongly suggest that future studies of C. pneumoniae infection and CAD should control for smoking.

Significant limitations of our report are that quantitative smoking data (pack-years) were not obtained, nor were those who never smoked distinguished from past smokers in our study. Future studies should include these measures of smoking as well as documentation of current smoking status. Because misclassification of exposure generally results in attenuation of relative risks, the association of smoking with C. pneumoniae infection might have been stronger if smoking had been measured more accurately in our study. Lack of detailed quantitative information concerning past smoking does not detract from the conclusion that smoking may be a confounder of C. pneumoniae–CAD associations.

Thom et al.8 reported an estimated relative risk for CAD of 1.5 for C. pneumoniae titers between 1:16 and 1:32 and an estimated relative risk for CAD of 2.0 for titers of 1:64 and greater. Our study found associations of similar or slightly greater magnitude between smoking and comparable levels of C. pneumoniae titer (Table 2). A mathematical property of the relative risk is that...”

Table 1. Current Smoking and Chlamydia pneumoniae Seropositive Status

<table>
<thead>
<tr>
<th>C. pneumoniae seropositive (%)</th>
<th>Smokers (n=109)</th>
<th>Nonsmokers (n=252)</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. pneumoniae titer ≥1:128 (%)</td>
<td>11.9</td>
<td>5.6</td>
<td>0.04</td>
</tr>
</tbody>
</table>

*Fisher's exact test.

Results

Smoking status was recorded for 361 (98.9%) of 365 patients in the study cohort. Of these 361 who make up the current study group, 109 (30.2%) were current smokers and 252 (69.8%) were nonsmokers at the time of study enrollment. Average age of the study group was 34.1 years (SD, 14.1 years). The study group comprised 151 males (41.8%) and 210 females (58.2%), of whom 41 males (27.2%) and 68 females (32.4%) were current smokers (p = NS).

Data in Table 1 demonstrate that overall, C. pneumoniae seropositive status in the study group was marginally associated with current smoking (p = 0.08) and that high C. pneumoniae titers (≥1:128) were significantly associated with current smoking (p = 0.04). Furthermore, there was a significant (p < 0.05) quantitative linear relation between C. pneumoniae titer category and current smoking status, after controlling for age and sex by logistic regression (Table 2).

Discussion

Saikku et al.7 have reported associations of C. pneumoniae serological titers with both acute myocardial infarction and chronic coronary heart disease. The significance of these associations, which were not controlled for smoking, have been questioned.8 In a reply to the criticism that smoking was a likely confounder of the C. pneumoniae–CAD associations reported in their original article, Saikku et al.11 presented univariate data showing no association between C. pneumoniae seropositive status and smoking. They did not, however, control their analysis for age or sex, nor did they report data on dose–response associations between smoking and titer level. A recent case–control study reported a significant association of angiographically proven CAD with C. pneumoniae immunoglobulin G antibody seropositive status after controlling for age and sex but not for smoking.8 In this article we have reported a significant quantitative association of current smoking with C. pneumoniae serological titer. The reason for this association is uncertain, but it could be due to a greater frequency of respiratory infections among smokers, as hypothesized.9,12 Whatever the reason for the smoking-C. pneumoniae antibody association found in this study, the results favor the assertion that smoking could be a confounder of the C. pneumoniae–CAD association and strongly suggest that future studies of C. pneumoniae infection and CAD should control for smoking.

Significant limitations of our report are that quantitative smoking data (pack-years) were not obtained, nor were those who never smoked distinguished from past smokers in our study. Future studies should include these measures of smoking as well as documentation of current smoking status. Because misclassification of exposure generally results in attenuation of relative risks, the association of smoking with C. pneumoniae infection might have been stronger if smoking had been measured more accurately in our study. Lack of detailed quantitative information concerning past smoking does not detract from the conclusion that smoking may be a confounder of C. pneumoniae–CAD associations.

Thom et al.8 reported an estimated relative risk for CAD of 1.5 for C. pneumoniae titers between 1:16 and 1:32 and an estimated relative risk for CAD of 2.0 for titers of 1:64 and greater. Our study found associations of similar or slightly greater magnitude between smoking and comparable levels of C. pneumoniae titer (Table 2). A mathematical property of the relative risk is that...”

Table 2. Current Smoking Status and Chlamydia pneumoniae Antibody Titer Category

<table>
<thead>
<tr>
<th>Titer category</th>
<th>Smoking* (%)</th>
<th>Odds ratio (95% confidence interval)†</th>
</tr>
</thead>
<tbody>
<tr>
<td><16</td>
<td>37/148 (25)</td>
<td>1.0 (referent)</td>
</tr>
<tr>
<td>16</td>
<td>21/70 (30)</td>
<td>1.3 (0.66–2.4)</td>
</tr>
<tr>
<td>32</td>
<td>24/72 (33.3)</td>
<td>1.4 (0.77–2.7)</td>
</tr>
<tr>
<td>64</td>
<td>14/43 (32.6)</td>
<td>1.5 (0.69–3.1)</td>
</tr>
<tr>
<td>≥128</td>
<td>13/28 (46.4)</td>
<td>2.4 (1.03–5.8)</td>
</tr>
</tbody>
</table>

*Current smokers/total patients in category.
†From logistic regression, adjusted for age and sex (test for trend in the odds ratio, p < 0.05).

Smoking is a potential confounder of the Chlamydia pneumoniae-coronary artery disease association.

D L Hahn and R Golubjatnikov

doi: 10.1161/01.ATV.12.8.945

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1992 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/12/8/945

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/